libcw/cwMtx.h

264 lines
7.8 KiB
C
Raw Normal View History

2020-08-20 00:11:49 +00:00
#ifndef cwMtx_h
#define cwMtx_h
namespace cw
{
namespace mtx
{
enum
{
kAliasReleaseFl = 0x01, // do not allocate memory, use the passed data pointer, and eventually release it
kAliasNoReleaseFl = 0x02, // do not allocate memory, use the passed data pointer, and do not ever release it
kDuplDataFl = 0x04, // allocate data space and copy the data in
kZeroFl = 0x08, // zero the newly allocated data
};
template< typename T >
struct mtx_str
{
unsigned flags = 0;
unsigned dimN = 0;
unsigned* dimV = nullptr;
T* base = nullptr;
unsigned allocEleN = 0; // always 0 if data is aliased
};
template< typename T >
void release( struct mtx_str<T>*& m )
{
if( m != nullptr )
{
mem::release(m->dimV);
if( cwIsNotFlag(m->flags,kAliasNoReleaseFl) )
mem::release(m->base);
mem::release(m);
}
}
template< typename T >
struct mtx_str<T>* _init( struct mtx_str<T>* m, unsigned dimN, const unsigned* dimV, T* base=nullptr, unsigned flags=0 )
{
// if a pre-allocated mtx obj was not given then allocate one
if( m == nullptr )
m = mem::allocZ<mtx_str<T>>(1);
// if the pre-allocd mtx obj has more dim's then the new one
if( m->dimN >= dimN )
m->dimN = dimN;
else // else expand dimV[]
{
m->dimV = mem::resize<unsigned>(m->dimV,dimN);
m->dimN = dimN;
}
// update dimV[] with the new extents and calc. the new ele count
unsigned eleN = 0;
for(unsigned i=0; i<dimN; ++i)
{
m->dimV[i] = dimV[i];
eleN = (i==0 ? 1 : eleN) * dimV[i];
}
bool aliasFl = cwIsFlag(flags, kAliasNoReleaseFl | kAliasReleaseFl );
// if the new object data is aliased
if( aliasFl )
{
// release any memory the pre-allocated obj may own
if( cwIsNotFlag(m->flags,kAliasNoReleaseFl) )
mem::release(m->base);
m->base = base;
m->allocEleN = 0; // always 0 when data is aliased
}
else // the new object is not aliased
{
// if the current data space is too small then reallocate it
if( eleN > m->allocEleN )
{
// don't allow an alias-no-release ptr to be released
if( cwIsFlag(m->flags,kAliasNoReleaseFl) )
m->base = nullptr;
m->base = mem::resize<T>(m->base, eleN, cwIsFlag(flags,kZeroFl) ? mem::kZeroAllFl : 0 );
m->allocEleN = eleN;
}
}
// if duplication was requested
if( cwIsFlag(flags,kDuplDataFl) )
{
assert( aliasFl == false );
memcpy(m->base,base, eleN*sizeof(T) );
}
m->flags = flags;
return m;
}
// Allocate the matrix w/o zeroing the initial contents
template< typename T >
struct mtx_str<T>* alloc( unsigned dimN, const unsigned* dimV )
{ return _init<T>( nullptr, dimN, dimV, nullptr, 0); }
// Allocate the matrix and zero the contents
template< typename T >
struct mtx_str<T>* allocZ( unsigned dimN, const unsigned* dimV )
{ return _init<T>( nullptr, dimN, dimV, nullptr, kZeroFl); }
// Allocate the matrix and copy the data from base[]
template< typename T >
struct mtx_str<T>* allocDupl( unsigned dimN, const unsigned* dimV, const T* base )
{ return _init<T>( nullptr, dimN, dimV, const_cast<T*>(base), kDuplDataFl); }
// Allocate a matrix and use base[] as the data. Release base[] when it is no longer needed.
template< typename T >
struct mtx_str<T>* allocAlias( unsigned dimN, const unsigned* dimV, T* base )
{ return _init<T>( nullptr, dimN, dimV, base, kAliasReleaseFl); }
// Allocate a mtrix and use base[] as the data - do NOT release base[].
template< typename T >
struct mtx_str<T>* allocAliasNoRelease( unsigned dimN, const unsigned* dimV, const T* base )
{ return _init<T>( nullptr, dimN, dimV, const_cast<T*>(base), kAliasNoReleaseFl); }
template< typename T >
struct mtx_str<T>* alloc( unsigned dimN, const unsigned* dimV, T* base=nullptr, unsigned flags=0 )
{ return _init<T>( nullptr, dimN, dimV, base, flags); }
// resize m[]
template< typename T >
struct mtx_str<T>* resize( struct mtx_str<T>* m, const unsigned* dimV, unsigned dimN, T* base=nullptr, unsigned flags=0 )
{ return _init<T>( m, dimN, dimV, base, flags ); }
// resize y[] to have the same size as x[]
template< typename T >
struct mtx_str<T>* resize( struct mtx_str<T>* y, const struct mtx_str<T>& x )
{ return resize(y,x->dimV,x->dimN); }
// Return 'true' if the matrices have the same size.
template< typename T >
bool is_size_equal( const struct mtx_str<T>& x0, const struct mtx_str<T>& x1 )
{
if( x0.dimN != x1.dimN )
return false;
for(unsigned i=0; i<x0->dimN; ++i)
if( x0.dimV[i] != x1.dimV[i] )
return false;
return true;
}
// Return the count of elements in the matrix
template< typename T >
bool ele_count( const struct mtx_str<T>& x )
{
unsigned eleN = 1;
for(unsigned i=0; i<eleN; ++i)
eleN *= x.dimV[i];
return eleN;
}
// y = m * x (elementwise)
template< typename T >
void mult( struct mtx_str<T>& y, const struct mtx_str<T>& x0, const struct mtx_str<T>& x1 )
{
assert( is_size_equal(x0,x1) );
resize<T>(&y,x0); // resize y to the same dim's as m
unsigned n = ele_count<T>(x0);
for(unsigned i=0; i<n; ++i)
y.base[i] = x0.base[i] * x1.base[i];
}
// y *= x (elementwise)
template< typename T >
void mult( struct mtx_str<T>& y, const struct mtx_str<T>& x )
{
assert( is_size_equal(y,x) );
unsigned n = ele_count<T>(x);
for(unsigned i=0; i<n; ++i)
y.base[i] *= x.base[i];
}
// y = x * scalar (elementwise)
template< typename T >
void mult( struct mtx_str<T>& y, const struct mtx_str<T>& x, const T& scalar )
{
resize<T>(&y,x); // resize y to the same dim's as m
unsigned n = ele_count<T>(x);
for(unsigned i=0; i<n; ++i)
y.base[i] = x.base[i] * scalar;
}
// y *= scalar (elementwise)
template< typename T >
void mult( struct mtx_str<T>& y, const T& scalar )
{
unsigned n = ele_count<T>(y);
for(unsigned i=0; i<n; ++i)
y.base[i] *= scalar;
}
// y = m + x (elementwise)
template< typename T >
void add( struct mtx_str<T>& y, const struct mtx_str<T>& x0, const struct mtx_str<T>& x1 )
{
assert( is_size_equal(x0,x1) );
resize<T>(&y,x0); // resize y to the same dim's as m
unsigned n = ele_count<T>(x0);
for(unsigned i=0; i<n; ++i)
y.base[i] = x0.base[i] + x1.base[i];
}
// y += x (elementwise)
template< typename T >
void add( struct mtx_str<T>& y, const struct mtx_str<T>& x )
{
assert( is_size_equal(y,x) );
unsigned n = ele_count<T>(x);
for(unsigned i=0; i<n; ++i)
y.base[i] += x.base[i];
}
// y = x + scalar (elementwise)
template< typename T >
void add( struct mtx_str<T>& y, const struct mtx_str<T>& x, const T& scalar )
{
resize(&y,x);
unsigned n = ele_count<T>(y);
for(unsigned i=0; i<n; ++i)
y.base[i] = x.base[i] + scalar;
}
// y += scalar (elementwise)
template< typename T >
void add( struct mtx_str<T>& y, const T& scalar )
{
unsigned n = ele_count<T>(y);
for(unsigned i=0; i<n; ++i)
y.base[i] += scalar;
}
template< typename T >
void mtx_mul( struct mtx_str<T>& y, const struct mtx_str<T>& m, const struct mtx_str<T>& x )
{
}
typedef struct mtx_str<float> fmtx_t;
}
}
#endif