libcw/cwAudioDeviceTest.cpp

503 lines
17 KiB
C++
Raw Normal View History

#include "cwCommon.h"
#include "cwLog.h"
#include "cwCommonImpl.h"
#include "cwMem.h"
#include "cwTime.h"
#include "cwTextBuf.h"
#include "cwAudioDevice.h"
#include "cwAudioBuf.h"
#include "cwAudioDeviceAlsa.h"
#include "cwAudioDeviceTest.h"
namespace cw
{
namespace audio
{
namespace device
{
/// [cmAudioPortExample]
// See test() below for the main point of entry.
// Data structure used to hold the parameters for cpApPortTest()
// and the user defined data record passed to the host from the
// audio port callback functions.
typedef struct
{
unsigned bufCnt; // 2=double buffering 3=triple buffering
unsigned chIdx; // first test channel
//unsigned chCnt; // count of channels to test
unsigned framesPerCycle; // DSP frames per cycle
unsigned bufFrmCnt; // count of DSP frames used by the audio buffer (bufCnt * framesPerCycle)
unsigned bufSmpCnt; // count of samples used by the audio buffer (chCnt * bufFrmCnt)
unsigned inDevIdx; // input device index
unsigned outDevIdx; // output device index
double srate; // audio sample rate
unsigned meterMs; // audio meter buffer length
// param's and state for cmApSynthSine()
unsigned phase; // sine synth phase
double frqHz; // sine synth frequency in Hz
// buffer and state for cmApCopyIn/Out()
sample_t* buf; // buf[bufSmpCnt] - circular interleaved audio buffer
unsigned bufInIdx; // next input buffer index
unsigned bufOutIdx; // next output buffer index
unsigned bufFullCnt; // count of full samples
// debugging log data arrays
unsigned logCnt; // count of elements in log[] and ilong[]
char* log; // log[logCnt]
unsigned* ilog; // ilog[logCnt]
unsigned logIdx; // current log index
unsigned iCbCnt; // count the callback
unsigned oCbCnt;
} cmApPortTestRecd;
#ifdef NOT_DEF
// The application can request any block of channels from the device. The packets are provided with the starting
// device channel and channel count. This function converts device channels and channel counts to buffer
// channel indexes and counts.
//
// Example:
// input output
// i,n i n
// App: 0,4 0 1 2 3 -> 2 2
// Pkt 2,8 2 3 4 5 6 7 8 -> 0 2
//
// The return value is the count of application requested channels located in this packet.
//
// input: *appChIdxPtr and appChCnt describe a block of device channels requested by the application.
// *pktChIdxPtr and pktChCnt describe a block of device channels provided to the application
//
// output:*appChIdxPtr and <return value> describe a block of app buffer channels which will send/recv samples.
// *pktChIdxPtr and <return value> describe a block of pkt buffer channels which will send/recv samples
//
unsigned _cmApDeviceToBuffer( unsigned* appChIdxPtr, unsigned appChCnt, unsigned* pktChIdxPtr, unsigned pktChCnt )
{
unsigned abi = *appChIdxPtr;
unsigned aei = abi+appChCnt-1;
unsigned pbi = *pktChIdxPtr;
unsigned pei = pbi+pktChCnt-1;
// if the ch's rqstd by the app do not overlap with this packet - return false.
if( aei < pbi || abi > pei )
return 0;
// if the ch's rqstd by the app overlap with the beginning of the pkt channel block
if( abi < pbi )
{
appChCnt -= pbi - abi;
*appChIdxPtr = pbi - abi;
*pktChIdxPtr = 0;
}
else
{
// the rqstd ch's begin inside the pkt channel block
pktChCnt -= abi - pbi;
*pktChIdxPtr = abi - pbi;
*appChIdxPtr = 0;
}
// if the pkt channels extend beyond the rqstd ch block
if( aei < pei )
pktChCnt -= pei - aei;
else
appChCnt -= aei - pei; // the rqstd ch's extend beyond or coincide with the pkt block
// the returned channel count must always be the same for both the rqstd and pkt
return cmMin(appChCnt,pktChCnt);
}
// synthesize a sine signal into an interleaved audio buffer
unsigned _cmApSynthSine( cmApPortTestRecd* r, float* p, unsigned chIdx, unsigned chCnt, unsigned frmCnt, unsigned phs, double hz )
{
long ph = 0;
unsigned i;
unsigned bufIdx = r->chIdx;
unsigned bufChCnt;
if( (bufChCnt = _cmApDeviceToBuffer( &bufIdx, r->chCnt, &chIdx, chCnt )) == 0)
return phs;
//if( r->cbCnt < 50 )
// printf("ch:%i cnt:%i ch:%i cnt:%i bi:%i bcn:%i\n",r->chIdx,r->chCnt,chIdx,chCnt,bufIdx,bufChCnt);
for(i=bufIdx; i<bufIdx+bufChCnt; ++i)
{
unsigned j;
float* op = p + i;
ph = phs;
for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
{
*op = (float)(0.9 * sin( 2.0 * M_PI * hz * ph / r->srate ));
}
}
return ph;
}
// Copy the audio samples in the interleaved audio buffer sp[srcChCnt*srcFrameCnt]
// to the internal record buffer.
void _cmApCopyIn( cmApPortTestRecd* r, const sample_t* sp, unsigned srcChIdx, unsigned srcChCnt, unsigned srcFrameCnt )
{
unsigned i,j;
unsigned chCnt = cmMin(r->chCnt,srcChCnt);
for(i=0; i<srcFrameCnt; ++i)
{
for(j=0; j<chCnt; ++j)
r->buf[ r->bufInIdx + j ] = sp[ (i*srcChCnt) + j ];
for(; j<r->chCnt; ++j)
r->buf[ r->bufInIdx + j ] = 0;
r->bufInIdx = (r->bufInIdx+r->chCnt) % r->bufFrmCnt;
}
//r->bufFullCnt = (r->bufFullCnt + srcFrameCnt) % r->bufFrmCnt;
r->bufFullCnt += srcFrameCnt;
}
// Copy audio samples out of the internal record buffer into dp[dstChCnt*dstFrameCnt].
void _cmApCopyOut( cmApPortTestRecd* r, sample_t* dp, unsigned dstChIdx, unsigned dstChCnt, unsigned dstFrameCnt )
{
// if there are not enough samples available to fill the destination buffer then zero the dst buf.
if( r->bufFullCnt < dstFrameCnt )
{
printf("Empty Output Buffer\n");
memset( dp, 0, dstFrameCnt*dstChCnt*sizeof(sample_t) );
}
else
{
unsigned i,j;
unsigned chCnt = cmMin(dstChCnt, r->chCnt);
// for each output frame
for(i=0; i<dstFrameCnt; ++i)
{
// copy the first chCnt samples from the internal buf to the output buf
for(j=0; j<chCnt; ++j)
dp[ (i*dstChCnt) + j ] = r->buf[ r->bufOutIdx + j ];
// zero any output ch's for which there is no internal buf channel
for(; j<dstChCnt; ++j)
dp[ (i*dstChCnt) + j ] = 0;
// advance the internal buffer
r->bufOutIdx = (r->bufOutIdx + r->chCnt) % r->bufFrmCnt;
}
r->bufFullCnt -= dstFrameCnt;
}
}
// Audio port callback function called from the audio device thread.
void _cmApPortCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
{
unsigned i;
// for each incoming audio packet
for(i=0; i<inPktCnt; ++i)
{
cmApPortTestRecd* r = (cmApPortTestRecd*)inPktArray[i].userCbPtr;
if( inPktArray[i].devIdx == r->inDevIdx )
{
// copy the incoming audio into an internal buffer where it can be picked up by _cpApCopyOut().
_cmApCopyIn( r, (sample_t*)inPktArray[i].audioBytesPtr, inPktArray[i].begChIdx, inPktArray[i].chCnt, inPktArray[i].audioFramesCnt );
}
++r->iCbCnt;
//printf("i %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
}
unsigned hold_phase = 0;
// for each outgoing audio packet
for(i=0; i<outPktCnt; ++i)
{
cmApPortTestRecd* r = (cmApPortTestRecd*)outPktArray[i].userCbPtr;
if( outPktArray[i].devIdx == r->outDevIdx )
{
// zero the output buffer
memset(outPktArray[i].audioBytesPtr,0,outPktArray[i].chCnt * outPktArray[i].audioFramesCnt * sizeof(sample_t) );
// if the synth is enabled
if( r->synthFl )
{
unsigned tmp_phase = _cmApSynthSine( r, outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt, r->phase, r->frqHz );
// the phase will only change on packets that are actually used
if( tmp_phase != r->phase )
hold_phase = tmp_phase;
}
else
{
// copy the any audio in the internal record buffer to the playback device
_cmApCopyOut( r, (sample_t*)outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt );
}
}
r->phase = hold_phase;
//printf("o %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
// count callbacks
++r->oCbCnt;
}
}
#endif
// print the usage message for cmAudioPortTest.c
void _cmApPrintUsage()
{
char msg[] =
"cmApPortTest() command switches\n"
"-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -t -p -h \n"
"\n"
"-r <srate> = sample rate\n"
"-a <chidx> = first channel\n"
"-c <chcnt> = audio channels\n"
"-b <bufcnt> = count of buffers\n"
"-f <frmcnt> = count of samples per buffer\n"
"-i <idevidx> = input device index\n"
"-o <odevidx> = output device index\n"
"-p = print report but do not start audio devices\n"
"-h = print this usage message\n";
cwLogInfo(msg);
}
// Get a command line option. Note that if 'boolFl' is set to 'true' then the function simply
// returns '1'. This is used to handle arguments whose presense indicates a positive boolean
// flag. For example -h (help) indicates that the usage data should be printed - it needs no other argument.
int _cmApGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl=false )
{
int i = 0;
for(; i<argc; ++i)
if( strcmp(label,argv[i]) == 0 )
{
if(boolFl)
return 1;
if( i == (argc-1) )
return defaultVal;
return atoi(argv[i+1]);
}
return defaultVal;
}
unsigned _cmGlobalInDevIdx = 0;
unsigned _cmGlobalOutDevIdx = 0;
void _cmApPortCb2( audioPacket_t* inPktArray, unsigned inPktCnt, audioPacket_t* outPktArray, unsigned outPktCnt )
{
for(unsigned i=0; i<inPktCnt; ++i)
static_cast<cmApPortTestRecd*>(inPktArray[i].cbArg)->iCbCnt++;
for(unsigned i=0; i<outPktCnt; ++i)
static_cast<cmApPortTestRecd*>(outPktArray[i].cbArg)->oCbCnt++;
buf::inputToOutput( _cmGlobalInDevIdx, _cmGlobalOutDevIdx );
buf::update( inPktArray, inPktCnt, outPktArray, outPktCnt );
}
}
}
}
// Audio Port testing function
cw::rc_t cw::audio::device::test( int argc, const char** argv )
{
cmApPortTestRecd r;
unsigned i;
rc_t rc;
driver_t* drv = nullptr;
handle_t h;
alsa::handle_t alsaH;
bool runFl = true;
if( _cmApGetOpt(argc,argv,"-h",0,true) )
_cmApPrintUsage();
runFl = _cmApGetOpt(argc,argv,"-p",0,true)?false:true;
r.srate = _cmApGetOpt(argc,argv,"-r",44100);
//r.chIdx = _cmApGetOpt(argc,argv,"-a",0);
//r.chCnt = _cmApGetOpt(argc,argv,"-c",2);
r.bufCnt = _cmApGetOpt(argc,argv,"-b",3);
r.framesPerCycle = _cmApGetOpt(argc,argv,"-f",512);
//r.bufFrmCnt = (r.bufCnt*r.framesPerCycle);
//r.bufSmpCnt = (r.chCnt * r.bufFrmCnt);
r.logCnt = 100;
r.meterMs = 50;
sample_t buf[r.bufSmpCnt];
char log[r.logCnt];
unsigned ilog[r.logCnt];
r.inDevIdx = _cmGlobalInDevIdx = _cmApGetOpt(argc,argv,"-i",0);
r.outDevIdx = _cmGlobalOutDevIdx = _cmApGetOpt(argc,argv,"-o",0);
r.phase = 0;
r.frqHz = 2000;
r.bufInIdx = 0;
r.bufOutIdx = 0;
r.bufFullCnt = 0;
r.logIdx = 0;
r.buf = buf;
r.log = log;
r.ilog = ilog;
r.iCbCnt = 0;
r.oCbCnt = 0;
//cwLogInfo("Program cfg: %s in:%i out:%i chidx:%i chs:%i bufs=%i frm=%i rate=%f",runFl?"exec":"rpt",r.inDevIdx,r.outDevIdx,r.chIdx,r.chCnt,r.bufCnt,r.framesPerCycle,r.srate);
// initialize the audio device interface
if((rc = create(h)) != kOkRC )
{
cwLogInfo("Initialize failed.");
goto errLabel;
}
// initialize the ALSA device driver interface
if((rc = alsa::create(alsaH, drv )) != kOkRC )
{
cwLogInfo("ALSA initialize failed.");
goto errLabel;
}
// register the ALSA device driver with the audio interface
if((rc = registerDriver( h, drv )) != kOkRC )
{
cwLogInfo("ALSA driver registration failed.");
goto errLabel;
}
// report the current audio device configuration
for(i=0; i<deviceCount(h); ++i)
{
cwLogInfo("%i [in: chs=%i frames=%i] [out: chs=%i frames=%i] srate:%8.1f %s",i,deviceChannelCount(h,i,true),deviceFramesPerCycle(h,i,true),deviceChannelCount(h,i,false),deviceFramesPerCycle(h,i,false),deviceSampleRate(h,i),deviceLabel(h,i));
}
// report the current audio devices using the audio port interface function
//report(h);
if( runFl )
{
// initialize the audio bufer
buf::initialize( deviceCount(h), r.meterMs );
// setup the buffer for the output device
buf::setup( r.outDevIdx, r.srate, r.framesPerCycle, r.bufCnt, deviceChannelCount(h,r.outDevIdx,true), r.framesPerCycle, deviceChannelCount(h,r.outDevIdx,false), r.framesPerCycle );
// setup the buffer for the input device
//if( r.inDevIdx != r.outDevIdx )
buf::setup( r.inDevIdx, r.srate, r.framesPerCycle, r.bufCnt, deviceChannelCount(h,r.inDevIdx,true), r.framesPerCycle, deviceChannelCount(h,r.inDevIdx,false), r.framesPerCycle );
// setup an output device
if(deviceSetup(h, r.outDevIdx,r.srate,r.framesPerCycle,_cmApPortCb2,&r) != kOkRC )
cwLogInfo("Out device setup failed.");
else
// setup an input device
if( deviceSetup(h, r.inDevIdx,r.srate,r.framesPerCycle,_cmApPortCb2,&r) != kOkRC )
cwLogInfo("In device setup failed.");
else
// start the input device
if( deviceStart(h, r.inDevIdx) != kOkRC )
cwLogInfo("In device start failed.");
else
// start the output device
if( deviceStart(h, r.outDevIdx) != kOkRC )
cwLogInfo("Out Device start failed.");
else
cwLogInfo("Setup complete!");
cwLogInfo("q=quit O/o output tone, I/i input tone, P/p pass M/m meter s=buf report");
//buf::enableTone( r.outDevIdx,-1,buf::kOutFl | buf::kEnableFl);
//buf::enableMeter(r.outDevIdx,-1,buf::kOutFl | buf::kEnableFl);
char c;
while((c=getchar()) != 'q')
{
deviceRealTimeReport(h, r.outDevIdx );
switch(c)
{
case 'i':
case 'I':
buf::enableTone(r.inDevIdx,-1,buf::kInFl | (c=='I'?buf::kEnableFl:0));
break;
case 'o':
case 'O':
buf::enableTone(r.outDevIdx,-1,buf::kOutFl | (c=='O'?buf::kEnableFl:0));
break;
case 'p':
case 'P':
buf::enablePass(r.outDevIdx,-1,buf::kOutFl | (c=='P'?buf::kEnableFl:0));
break;
case 'M':
case 'm':
buf::enableMeter( r.inDevIdx, -1, buf::kInFl | (c=='M'?buf::kEnableFl:0));
buf::enableMeter( r.outDevIdx, -1, buf::kOutFl | (c=='M'?buf::kEnableFl:0));
break;
case 's':
buf::report();
break;
}
}
// stop the input device
if( deviceIsStarted(h,r.inDevIdx) )
if( deviceStop(h,r.inDevIdx) != kOkRC )
cwLogInfo("In device stop failed.");
// stop the output device
if( deviceIsStarted(h,r.outDevIdx) )
if( deviceStop(h,r.outDevIdx) != kOkRC )
cwLogInfo("Out device stop failed.");
}
errLabel:
// release the ALSA driver
rc_t rc0 = alsa::destroy(alsaH);
// release any resources held by the audio port interface
rc_t rc1 = destroy(h);
rc_t rc2 = buf::finalize();
//cmApNrtFree();
//cmApFileFree();
// report the count of audio buffer callbacks
cwLogInfo("cb count: i:%i o:%i", r.iCbCnt, r.oCbCnt );
return rcSelect(rc,rc0,rc1,rc2);
}
/// [cmAudioPortExample]