libcw/cwTime.cpp

455 lines
9.7 KiB
C++
Raw Permalink Normal View History

//| Copyright: (C) 2020-2024 Kevin Larke <contact AT larke DOT org>
//| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
#include "cwCommon.h"
#include "cwLog.h"
#include "cwCommonImpl.h"
#include "cwTest.h"
#include "cwTime.h"
#ifdef OS_OSX
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <unistd.h>
void cw::time::get( spec_t& t )
{
static uint64_t t0 = 0;
static mach_timebase_info_data_t tbi;
static struct timespec ts;
if( t0 == 0 )
{
mach_timebase_info(&tbi);
t0 = mach_absolute_time();
ts.tv_sec = time(NULL);
ts.tv_nsec = 0; // accept 1/2 second error vs. wall-time.
}
// get the current time
uint64_t t1 = mach_absolute_time();
// calc the elapsed time since the last call in nanosecs
uint64_t dt = (t1-t0) * tbi.numer / tbi.denom;
// calc the elapsed time since the first call in secs
uint32_t s = (uint32_t)(dt / 2^9);
// calc the current time in secs, and nanosecs
t.tv_sec = ts.tv_sec + s;
t.tv_nsec = dt - (s * 2^9);
}
#endif
#ifdef OS_LINUX
2023-05-20 01:21:03 +00:00
#include <sys/time.h> // gettimeofday()
void cw::time::get( spec_t& t )
{
clock_gettime(CLOCK_MONOTONIC,&t);
}
cw::time::spec_t cw::time::current_time()
{
spec_t t;
2024-02-24 18:55:44 +00:00
get(t);
return t;
}
#endif
2024-02-24 18:55:44 +00:00
unsigned long long cw::time::elapsedMicros( const spec_t& t0, const spec_t& t1 )
{
2024-02-24 18:55:44 +00:00
const unsigned long long ns_per_sec = 1000000000;
const unsigned long long us_per_sec = 1000000;
const unsigned long long ns_per_us = 1000;
// we assume that the time is normalized
assert( t0.tv_nsec < (long long)ns_per_sec );
assert( t1.tv_nsec < (long long)ns_per_sec );
2024-02-24 18:55:44 +00:00
if( t0.tv_sec > t1.tv_sec )
{
cwLogWarning("Negative elapsed time detected.");
spec_t tt0 = t1;
spec_t tt1 = t0;
return elapsedMicros(tt0,tt1);
}
// t1 does not cross a 'seconds' boundary with t0
if( t0.tv_sec == t1.tv_sec )
{
// then t0 nsecs must be <= t1 nsecs
assert( t0.tv_nsec <= t1.tv_nsec );
return (t1.tv_nsec - t0.tv_nsec)/ns_per_us;
}
// t1 occurs in a different second than t0
unsigned long long d_sec = (t1.tv_sec - t0.tv_sec) - 1; // difference in seconds
unsigned long long d_nsec0 = ns_per_sec - t0.tv_nsec; // time from t0 to next seconds boundary
unsigned long long d_nsec1 = t1.tv_nsec; // time from t1 to prev. seconds boundary
return (d_sec*us_per_sec) + ((d_nsec0 + d_nsec1)/ns_per_us);
}
/*
unsigned long long cw::time::elapsedMicros0( const spec_t& t0, const spec_t& t1 )
{
const unsigned long long us_per_sec = 1000000;
const unsigned long long ns_per_us = 1000;
// convert seconds to usecs
2024-02-24 18:55:44 +00:00
unsigned long long u0 = t0.tv_sec * us_per_sec;
unsigned long long u1 = t1.tv_sec * us_per_sec;
// convert nanoseconds to usec
2024-02-24 18:55:44 +00:00
u0 += t0.tv_nsec / ns_per_us;
u1 += t1.tv_nsec / ns_per_us;
// take diff between t1 and t0
return u1 - u0;
}
2024-02-24 18:55:44 +00:00
*/
2024-02-24 18:55:44 +00:00
unsigned long long cw::time::elapsedMicros( const spec_t& t0 )
{
spec_t t1;
get(t1);
return elapsedMicros(t0,t1);
}
unsigned cw::time::elapsedMs( const spec_t& t0, const spec_t& t1 )
2024-02-24 18:55:44 +00:00
{ return (unsigned)(elapsedMicros(t0,t1)/1000); }
2020-02-01 15:13:21 +00:00
unsigned cw::time::elapsedMs( const spec_t& t0 )
{
spec_t t1;
get(t1);
return elapsedMs(t0,t1);
}
2020-02-01 15:13:21 +00:00
2022-03-20 14:18:54 +00:00
double cw::time::elapsedSecs( const spec_t& t0, const spec_t& t1 )
{
return elapsedMicros(t0,t1) / 1000000.0;
}
double cw::time::elapsedSecs( const spec_t& t0 )
{
spec_t t1;
get(t1);
return elapsedSecs(t0,t1);
}
unsigned cw::time::absElapsedMicros( const spec_t& t0, const spec_t& t1 )
{
if( isLTE(t0,t1) )
return elapsedMicros(t0,t1);
return elapsedMicros(t1,t0);
}
int cw::time::diffMicros( const spec_t& t0, const spec_t& t1 )
{
if( isLTE(t0,t1) )
return elapsedMicros(t0,t1);
return -((int)elapsedMicros(t1,t0));
}
bool cw::time::isLTE( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec < t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec <= t1.tv_nsec;
return false;
}
bool cw::time::isLT( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec < t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec < t1.tv_nsec;
return false;
}
bool cw::time::isGTE( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec > t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec >= t1.tv_nsec;
return false;
}
bool cw::time::isGT( const spec_t& t0, const spec_t& t1 )
{
if( t0.tv_sec > t1.tv_sec )
return true;
if( t0.tv_sec == t1.tv_sec )
return t0.tv_nsec > t1.tv_nsec;
return false;
}
bool cw::time::isEqual( const spec_t& t0, const spec_t& t1 )
{ return t0.tv_sec==t1.tv_sec && t0.tv_nsec==t1.tv_nsec; }
bool cw::time::isZero( const spec_t& t0 )
{ return t0.tv_sec==0 && t0.tv_nsec==0; }
void cw::time::setZero( spec_t& t0 )
{
t0.tv_sec = 0;
t0.tv_nsec = 0;
}
cw::rc_t cw::time::now( spec_t& ts )
{
rc_t rc = kOkRC;
int errRC;
memset(&ts,0,sizeof(ts));
if((errRC = clock_gettime(CLOCK_MONOTONIC, &ts)) != 0 )
rc = cwLogSysError(kInvalidOpRC,errRC,"Unable to obtain system time.");
return rc;
}
void cw::time::subtractMicros( spec_t& ts, unsigned micros )
{
unsigned rem_us = micros % 1000000; // fractional seconds in microseconds
unsigned rem_ns = rem_us * 1000; // fractional seconds in nanoseconds
// if the fractional micros is greater than the fractional nano's
if( rem_ns > ts.tv_nsec )
{
// subtract the fractional nano's from the fractional micros
// (this sets the fractional nano's to 0)
rem_ns -= ts.tv_nsec;
// convert the remaining fractional micros to the fractional nano's
ts.tv_nsec = 1000000000 - rem_ns;
// subtract the carry
ts.tv_sec -= 1;
}
else
{
ts.tv_nsec -= rem_ns;
}
assert( ts.tv_sec > micros / 1000000 );
ts.tv_sec -= micros / 1000000;
}
2023-01-14 22:15:55 +00:00
void cw::time::advanceMicros( spec_t& ts, unsigned us )
{
const unsigned ns_per_sec = 1000000000;
2023-01-14 22:15:55 +00:00
ts.tv_nsec += us * 1000; // convert us to nano's
2023-01-14 22:15:55 +00:00
// check if nano's now have more than ns_pser_sec
time_t sec = ts.tv_nsec / ns_per_sec;
2023-01-14 22:15:55 +00:00
ts.tv_sec += sec;
ts.tv_nsec -= sec * ns_per_sec;
2023-01-14 22:15:55 +00:00
}
void cw::time::advanceMs( spec_t& ts, unsigned ms )
{
const unsigned ns_per_sec = 1000000000;
ts.tv_nsec += ms * 1000000;
time_t sec = ts.tv_nsec / ns_per_sec;
ts.tv_sec += sec;
ts.tv_nsec -= sec * ns_per_sec;
}
cw::rc_t cw::time::futureMs( spec_t& ts, unsigned ms )
{
rc_t rc;
if((rc = now(ts)) == kOkRC )
advanceMs(ts,ms);
return rc;
}
2020-04-17 17:28:09 +00:00
void cw::time::fracSecondsToSpec( spec_t& ts, double sec )
{
const unsigned long long ns_per_sec = 1000000000;
ts.tv_sec = (unsigned long long)sec;
ts.tv_nsec = (sec - ts.tv_sec) * ns_per_sec;
}
void cw::time::secondsToSpec( spec_t& ts, unsigned sec )
{
ts.tv_sec = sec;
ts.tv_nsec = 0;
}
2023-05-01 01:16:14 +00:00
double cw::time::specToSeconds( const spec_t& t )
{
const long long ns_per_sec = 1000000000;
spec_t ts = t;
2023-05-01 01:16:14 +00:00
double sec = ts.tv_sec;
while( ts.tv_nsec >= ns_per_sec )
2023-05-01 01:16:14 +00:00
{
sec += 1.0;
ts.tv_nsec -= ns_per_sec;
2023-05-01 01:16:14 +00:00
}
return sec + ((double)ts.tv_nsec)/1e9;
}
unsigned long long cw::time::specToMicroseconds( const spec_t& ts )
{
const unsigned long long us_per_sec = 1000000;
const unsigned long long ns_per_sec = 1000000000;
unsigned long long us = ts.tv_sec * us_per_sec;
unsigned long long sec = ts.tv_nsec / ns_per_sec;
us += sec * us_per_sec;
us += (ts.tv_nsec - (sec * ns_per_sec))/1000;
return us;
}
2023-05-01 01:16:14 +00:00
void cw::time::millisecondsToSpec( spec_t& ts, unsigned ms )
{
unsigned sec = ms/1000;
unsigned ns = (ms - (sec*1000)) * 1000000;
ts.tv_sec = sec;
ts.tv_nsec = ns;
}
void cw::time::microsecondsToSpec( spec_t& ts, unsigned long long us )
{
const unsigned long long usPerSec = 1000000;
unsigned long long sec = us/usPerSec;
unsigned long long ns = (us - (sec*usPerSec)) * 1000;
ts.tv_sec = sec;
ts.tv_nsec = ns;
}
2020-04-17 17:28:09 +00:00
cw::time::spec_t cw::time::microsecondsToSpec( unsigned long long us )
{
spec_t ts;
microsecondsToSpec(ts,us);
return ts;
}
2023-05-20 01:21:03 +00:00
unsigned cw::time::formatDateTime( char* buffer, unsigned bufN, bool includeDateFl )
{
// from here: https://stackoverflow.com/questions/3673226/how-to-print-time-in-format-2009-08-10-181754-811
int millisec;
struct tm* tm_info;
struct timeval tv;
int n = 0;
gettimeofday(&tv, NULL);
millisec = lrint(tv.tv_usec/1000.0); // Round to nearest millisec
// Allow for rounding up to nearest second
if (millisec>=1000)
{
millisec -=1000;
tv.tv_sec++;
}
tm_info = localtime(&tv.tv_sec);
const char* fmt = "%H:%M:%S";
if( includeDateFl )
fmt = "%Y:%m:%d %H:%M:%S";
n = strftime(buffer, bufN, fmt, tm_info);
if( n < (int)bufN && bufN-n >= 5 )
n = snprintf(buffer + n, bufN-n,".%03d", millisec);
return (unsigned)n;
}
cw::rc_t cw::time::test(const test::test_args_t& test )
2020-04-17 17:28:09 +00:00
{
spec_t t0,t1;
get(t0);
futureMs(t1,1000);
unsigned dMs = elapsedMs(t0,t1);
cwLogPrint("dMs:%i : GTE:%i LTE:%i\n",dMs, isGTE(t0,t1), isLTE(t0,t1) );
2020-04-17 17:28:09 +00:00
microsecondsToSpec( t0, 2500000 ); // 2.5 seconds
cwLogPrint("%li %li\n",t0.tv_sec,t0.tv_nsec);
subtractMicros( t0, 750000 ); // subtract .75 seconds
cwLogPrint("%li %li\n",t0.tv_sec,t0.tv_nsec);
subtractMicros( t0, 500000 ); // subtract .5 seconds
cwLogPrint("%li %li\n",t0.tv_sec,t0.tv_nsec);
time::get(t0);
//time::get(t1);
t1 = t0;
advanceMicros(t1,5000);
int usec = time::elapsedMicros(t0,t1);
cwLogPrint("usec:%i\n",usec);
2024-02-24 18:55:44 +00:00
t0 = current_time();
sleepMs(1000);
cwLogPrint("sleep %i ms\n",elapsedMs(t0));
2024-11-08 16:16:31 +00:00
cw::time::fracSecondsToSpec( t0, 12.34567 );
double sec = specToSeconds( t0 );
cwLogPrint("fsecs: %f\n",sec);
2020-04-17 17:28:09 +00:00
return kOkRC;
}