libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmProc5.c 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmFloatTypes.h"
  10. #include "cmComplexTypes.h"
  11. #include "cmFileSys.h"
  12. #include "cmJson.h"
  13. #include "cmSymTbl.h"
  14. #include "cmAudioFile.h"
  15. #include "cmText.h"
  16. #include "cmProcObj.h"
  17. #include "cmProcTemplate.h"
  18. #include "cmMath.h"
  19. #include "cmFile.h"
  20. #include "cmTime.h"
  21. #include "cmMidi.h"
  22. #include "cmProc.h"
  23. #include "cmProc2.h"
  24. #include "cmProc5.h"
  25. #include "cmVectOps.h"
  26. //=======================================================================================================================
  27. cmGoertzel* cmGoertzelAlloc( cmCtx* c, cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
  28. {
  29. cmGoertzel* op = cmObjAlloc(cmGoertzel,c,p);
  30. op->shb = cmShiftBufAlloc(c,NULL,0,0,0);
  31. if( srate > 0 )
  32. if( cmGoertzelInit(op,srate,fcHzV,chCnt,procSmpCnt,wndSmpCnt,hopSmpCnt) != cmOkRC )
  33. cmGoertzelFree(&op);
  34. return op;
  35. }
  36. cmRC_t cmGoertzelFree( cmGoertzel** pp )
  37. {
  38. cmRC_t rc = cmOkRC;
  39. if( pp==NULL || *pp==NULL )
  40. return rc;
  41. cmGoertzel* p = *pp;
  42. if((rc = cmGoertzelFinal(p)) != cmOkRC )
  43. return rc;
  44. cmShiftBufFree(&p->shb);
  45. cmMemFree(p->ch);
  46. cmMemFree(p->wnd);
  47. cmObjFree(pp);
  48. return rc;
  49. }
  50. cmRC_t cmGoertzelInit( cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
  51. {
  52. cmRC_t rc;
  53. unsigned i;
  54. if((rc = cmGoertzelFinal(p)) != cmOkRC )
  55. return rc;
  56. p->ch = cmMemResizeZ(cmGoertzelCh,p->ch,chCnt);
  57. p->chCnt = chCnt;
  58. p->srate = srate;
  59. p->wnd = cmMemResizeZ(cmSample_t,p->wnd,wndSmpCnt);
  60. cmVOS_Hann(p->wnd,wndSmpCnt);
  61. cmShiftBufInit(p->shb,procSmpCnt,wndSmpCnt,hopSmpCnt);
  62. for(i=0; i<p->chCnt; ++i)
  63. {
  64. cmGoertzelSetFcHz(p,i,fcHzV[i]);
  65. }
  66. return rc;
  67. }
  68. cmRC_t cmGoertzelFinal( cmGoertzel* p )
  69. { return cmOkRC; }
  70. cmRC_t cmGoertzelSetFcHz( cmGoertzel* p, unsigned chIdx, double hz )
  71. {
  72. assert( chIdx < p->chCnt );
  73. p->ch[chIdx].hz = hz;
  74. p->ch[chIdx].coeff = 2*cos(2*M_PI*hz/p->srate);
  75. return cmOkRC;
  76. }
  77. cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* inpV, unsigned procSmpCnt, double* outV, unsigned chCnt )
  78. {
  79. unsigned i,j;
  80. while( cmShiftBufExec(p->shb,inpV,procSmpCnt) )
  81. {
  82. unsigned xn = p->shb->wndSmpCnt;
  83. cmSample_t x[ xn ];
  84. cmVOS_MultVVV(x,xn,p->wnd,p->shb->outV);
  85. for(i=0; i<chCnt; ++i)
  86. {
  87. cmGoertzelCh* ch = p->ch + i;
  88. ch->s2 = x[0];
  89. ch->s1 = x[1] + 2 * x[0] * ch->coeff;
  90. for(j=2; j<xn; ++j)
  91. {
  92. ch->s0 = x[j] + ch->coeff * ch->s1 - ch->s2;
  93. ch->s2 = ch->s1;
  94. ch->s1 = ch->s0;
  95. }
  96. outV[i] = ch->s2*ch->s2 + ch->s1*ch->s1 - ch->coeff * ch->s2 * ch->s1;
  97. }
  98. }
  99. return cmOkRC;
  100. }
  101. //=======================================================================================================================
  102. double _cmGoldSigSinc( double t, double T )
  103. {
  104. double x = t/T;
  105. return x == 0 ? 1.0 : sin(M_PI*x)/(M_PI*x);
  106. }
  107. void _cmGoldSigRaisedCos( cmSample_t* yV, int yN, double sPc, double beta )
  108. {
  109. int i;
  110. for(i=0; i<yN; ++i)
  111. {
  112. double t = i - yN/2;
  113. double den = 1 - (4*(beta*beta)*(t*t) / (sPc*sPc));
  114. double a;
  115. if(fabs(den) < 0.00001 )
  116. a = 1;
  117. else
  118. a = cos(M_PI * beta * t/ sPc ) / den;
  119. yV[i] = _cmGoldSigSinc(t,sPc) * a;
  120. }
  121. }
  122. void _cmGoldSigConv( cmGoldSig_t* p, unsigned chIdx )
  123. {
  124. int i;
  125. int sPc = p->a.samplesPerChip;
  126. int osf = p->a.rcosOSFact;
  127. // for each bit in the spreading-code
  128. for(i=0; i<p->mlsN; ++i)
  129. {
  130. int j = (i*sPc) + sPc/2; // index into bbV[] of center of impulse response
  131. int k = j - (sPc*osf)/2; // index into bbV[] of start of impulse response
  132. int h;
  133. // for each sample in the impulse response
  134. for(h=0; h<p->rcosN; ++h,++k)
  135. {
  136. while( k<0 )
  137. k += p->sigN;
  138. while( k>=p->sigN )
  139. k -= p->sigN;
  140. p->ch[chIdx].bbV[k] += p->ch[chIdx].pnV[i] * p->rcosV[h];
  141. }
  142. }
  143. }
  144. void _cmGoldSigModulate( cmGoldSig_t* p, unsigned chIdx )
  145. {
  146. unsigned i;
  147. double rps = 2.0 * M_PI * p->a.carrierHz / p->a.srate;
  148. cmSample_t* yV = p->ch[chIdx].mdV;
  149. cmSample_t* bbV = p->ch[chIdx].bbV;
  150. for(i=0; i<p->sigN; ++i)
  151. yV[ i ] = bbV[i]*cos(rps*i) + bbV[i]*sin(rps*i);
  152. // apply a half Hann envelope to the onset/offset of the id signal
  153. if( p->a.envMs > 0 )
  154. {
  155. unsigned wndMs = p->a.envMs * 2;
  156. unsigned wndN = wndMs * p->a.srate / 1000;
  157. wndN += wndN % 2 ? 0 : 1; // force the window length to be odd
  158. unsigned wNo2 = wndN/2 + 1;
  159. cmSample_t wndV[ wndN ];
  160. cmVOS_Hann(wndV,wndN);
  161. cmVOS_MultVV(yV,wNo2,wndV);
  162. cmVOS_MultVV(yV + p->sigN - wNo2, wNo2, wndV + wNo2 - 1);
  163. }
  164. }
  165. cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a )
  166. {
  167. cmGoldSig_t* op = cmObjAlloc(cmGoldSig_t,ctx,p);
  168. if( a != NULL )
  169. if( cmGoldSigInit(op,a) != cmOkRC )
  170. cmGoldSigFree(&op);
  171. return op;
  172. }
  173. cmRC_t cmGoldSigFree( cmGoldSig_t** pp )
  174. {
  175. cmRC_t rc = cmOkRC;
  176. if( pp == NULL || *pp == NULL )
  177. return rc;
  178. cmGoldSig_t* p = *pp;
  179. if((rc = cmGoldSigFinal(p)) != cmOkRC )
  180. return rc;
  181. unsigned i;
  182. for(i=0; i<p->a.chN; ++i)
  183. {
  184. cmMemFree(p->ch[i].bbV);
  185. cmMemFree(p->ch[i].mdV);
  186. }
  187. cmMemFree(p->ch);
  188. cmMemFree(p->rcosV);
  189. cmMemFree(p->pnM);
  190. cmMemFree(p);
  191. *pp = NULL;
  192. return rc;
  193. }
  194. cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a )
  195. {
  196. cmRC_t rc = cmOkRC;
  197. unsigned i;
  198. p->a = *a; // store arg recd
  199. p->ch = cmMemResizeZ(cmGoldSigCh_t,p->ch,a->chN); // alloc channel array
  200. p->mlsN = (1 << a->lfsrN) - 1; // calc spreading code length
  201. p->rcosN = a->samplesPerChip * a->rcosOSFact; // calc rcos imp. resp. length
  202. p->rcosN += (p->rcosN % 2)==0; // force rcos imp. length odd
  203. p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN); // alloc rcos imp. resp. vector
  204. p->pnM = cmMemResizeZ(int,p->pnM,p->mlsN*a->chN); // alloc spreading-code mtx
  205. p->sigN = p->mlsN * a->samplesPerChip; // calc audio signal length
  206. // generate spreading codes
  207. if( cmGenGoldCodes(a->lfsrN, a->mlsCoeff0, a->mlsCoeff1, a->chN, p->pnM, p->mlsN ) == false )
  208. {
  209. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to generate sufficient balanced Gold codes.");
  210. goto errLabel;
  211. }
  212. // generate the rcos impulse response
  213. _cmGoldSigRaisedCos(p->rcosV,p->rcosN,a->samplesPerChip,a->rcosBeta);
  214. // for each channel
  215. for(i=0; i<a->chN; ++i)
  216. {
  217. // Note: if (i*p->mlsN) is set to 0 in the following line then all channels
  218. // will use the same spreading code.
  219. p->ch[i].pnV = p->pnM + (i*p->mlsN); // get ch. spreading code
  220. p->ch[i].bbV = cmMemResizeZ(cmSample_t,p->ch[i].bbV,p->sigN); // alloc baseband signal vector
  221. p->ch[i].mdV = cmMemResizeZ(cmSample_t,p->ch[i].mdV,p->sigN); // alloc output audio vector
  222. // Convolve spreading code with rcos impulse reponse to form baseband signal.
  223. _cmGoldSigConv(p, i );
  224. // Modulate baseband signal to carrier frq. and apply attack/decay envelope.
  225. _cmGoldSigModulate(p, i );
  226. }
  227. errLabel:
  228. if((rc = cmErrLastRC(&p->obj.err)) != cmOkRC )
  229. cmGoldSigFree(&p);
  230. return rc;
  231. }
  232. cmRC_t cmGoldSigFinal( cmGoldSig_t* p )
  233. { return cmOkRC; }
  234. cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn )
  235. {
  236. cmVectArray_t* vap = NULL;
  237. unsigned i;
  238. vap = cmVectArrayAlloc(ctx,kSampleVaFl);
  239. for(i=0; i<p->a.chN; ++i)
  240. {
  241. cmVectArrayAppendS(vap,p->ch[i].bbV,p->sigN);
  242. cmVectArrayAppendS(vap,p->ch[i].mdV,p->sigN);
  243. }
  244. cmVectArrayWrite(vap,fn);
  245. cmVectArrayFree(&vap);
  246. return cmOkRC;
  247. }
  248. cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned dsN, unsigned *bsiV, unsigned bsiN, double noiseGain, cmSample_t** yVRef, unsigned* yNRef )
  249. {
  250. unsigned yN = prefixN + bsiN * (p->sigN + dsN);
  251. cmSample_t* yV = cmMemAllocZ(cmSample_t,yN);
  252. unsigned i;
  253. cmVOS_Random(yV, yN, -noiseGain, noiseGain );
  254. for(i=0; i<bsiN; ++i)
  255. {
  256. bsiV[i] = prefixN + i*(p->sigN + dsN);
  257. cmVOS_AddVV(yV + bsiV[i], p->sigN, p->ch[chIdx].mdV );
  258. }
  259. if( yVRef != NULL )
  260. *yVRef = yV;
  261. if( yNRef != NULL )
  262. *yNRef = yN;
  263. return cmOkRC;
  264. }
  265. //=======================================================================================================================
  266. cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* ap, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
  267. {
  268. cmPhat_t* p = cmObjAlloc(cmPhat_t,ctx,ap);
  269. // The FFT buffer and the delay line is at least twice the size of the
  270. // id signal. This will guarantee that at least one complete id signal
  271. // is inside the buffer. In practice it means that it is possible
  272. // that there will be two id's in the buffer therefore if there are
  273. // two correlation spikes it is important that we take the second.
  274. unsigned fhN = cmNextPowerOfTwo(mult*hN);
  275. // allocate the FFT object
  276. cmFftAllocSR(ctx,&p->fft,NULL,fhN,kToPolarFftFl);
  277. cmIFftAllocRS(ctx,&p->ifft,fhN/2 + 1 );
  278. if( chN != 0 )
  279. if( cmPhatInit(p,chN,hN,alpha,mult,flags) != cmOkRC )
  280. cmPhatFree(&p);
  281. return p;
  282. }
  283. cmRC_t cmPhatFree( cmPhat_t** pp )
  284. {
  285. cmRC_t rc = cmOkRC;
  286. if( pp == NULL || *pp == NULL )
  287. return rc;
  288. cmPhat_t* p = *pp;
  289. if((rc = cmPhatFinal(p)) != cmOkRC )
  290. return rc;
  291. cmMemFree(p->t0V);
  292. cmMemFree(p->t1V);
  293. cmMemFree(p->dV);
  294. cmMemFree(p->xV);
  295. cmMemFree(p->fhM);
  296. cmMemFree(p->mhM);
  297. cmMemFree(p->wndV);
  298. cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft);
  299. cmObjFreeStatic(cmIFftFreeRS, cmIFftRS, p->ifft);
  300. cmVectArrayFree(&p->ftVa);
  301. cmObjFree(pp);
  302. return rc;
  303. }
  304. cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
  305. {
  306. cmRC_t rc = cmOkRC;
  307. if((rc = cmPhatFinal(cmOkRC)) != cmOkRC )
  308. return rc;
  309. p->fhN = cmNextPowerOfTwo(mult*hN);
  310. if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC )
  311. return rc;
  312. if((cmIFftInitRS(&p->ifft, p->fft.binCnt )) != cmOkRC )
  313. return rc;
  314. p->alpha = alpha;
  315. p->flags = flags;
  316. // allocate the delay line
  317. p->dV = cmMemResizeZ(cmSample_t,p->dV,p->fhN);
  318. p->di = 0;
  319. // allocate the linear buffer
  320. p->xV = cmMemResizeZ(cmSample_t,p->xV,p->fhN);
  321. p->t0V = cmMemResizeZ(cmComplexR_t,p->t0V,p->fhN);
  322. p->t1V = cmMemResizeZ(cmComplexR_t,p->t1V,p->fhN);
  323. // allocate the window function
  324. p->wndV = cmMemResizeZ(cmSample_t,p->wndV,p->fhN);
  325. cmVOS_Hann(p->wndV,p->fhN);
  326. // allocate the signal id matrix
  327. p->chN = chN;
  328. p->hN = hN;
  329. p->binN = p->fft.binCnt; //atFftRealBinCount(p->fftH);
  330. p->fhM = cmMemResizeZ(cmComplexR_t, p->fhM, p->fhN * chN);
  331. p->mhM = cmMemResizeZ(float, p->mhM, p->binN * chN);
  332. cmPhatReset(p);
  333. //if( cmIsFlag(p->flags,kDebugAtPhatFl))
  334. // cmVectArrayAlloc(ctx, &p->ftVa, kSampleVaFl );
  335. //else
  336. // p->ftVa = NULL;
  337. return rc;
  338. }
  339. cmRC_t cmPhatFinal( cmPhat_t* p )
  340. { return cmOkRC; }
  341. cmRC_t cmPhatReset( cmPhat_t* p )
  342. {
  343. p->di = 0;
  344. p->absIdx = 0;
  345. cmVOS_Zero(p->dV,p->fhN);
  346. return cmOkRC;
  347. }
  348. cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned hN )
  349. {
  350. unsigned i;
  351. assert( chIdx < p->chN );
  352. assert( hN == p->hN );
  353. // Allocate a window vector
  354. cmSample_t* wndV = cmMemAllocZ(cmSample_t,hN);
  355. cmVOS_Hann(wndV,hN);
  356. // get ptr to output column in p->fhM[].
  357. cmComplexR_t* yV = p->fhM + (chIdx*p->fhN);
  358. // Zero pad hV[hN] to p->fhN;
  359. assert( hN <= p->fhN );
  360. cmVOS_Zero(p->xV,p->fhN);
  361. cmVOS_Copy(p->xV,hN,hV);
  362. // Apply the window function to the id signal
  363. if(cmIsFlag(p->flags,kHannAtPhatFl) )
  364. cmVOS_MultVVV(p->xV,hN,hV,wndV);
  365. // take FFT of id signal. The result is in fft->complexV and fft->magV,phsV
  366. cmFftExecSR(&p->fft, p->xV, p->fhN );
  367. // Store the magnitude of the id signal
  368. //atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN);
  369. cmVOF_CopyR(p->mhM + (chIdx*p->binN), p->binN, p->fft.magV );
  370. // Scale the magnitude
  371. cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha);
  372. // store the complex conjugate of the FFT result in yV[]
  373. //atFftComplexConj(yV,p->binN);
  374. for(i=0; i<p->binN; ++i)
  375. yV[i] = cmCconjR(p->fft.complexV[i]);
  376. cmMemFree(wndV);
  377. return cmOkRC;
  378. }
  379. cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef )
  380. {
  381. cmVectArray_t* vap = NULL;
  382. cmSample_t* v = NULL;
  383. cmRC_t rc = cmOkRC;
  384. // instantiate a VectArray from a file
  385. if( (vap = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  386. {
  387. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector file read failed '%s'.",fn);
  388. goto errLabel;
  389. }
  390. // get the count of elements in the vector
  391. *vnRef = cmVectArrayEleCount(vap);
  392. // allocate memory to hold the vector
  393. v = cmMemAlloc(cmSample_t,*vnRef);
  394. // copy the vector from the vector array object into v[]
  395. if((rc = cmVectArrayGetF(vap,v,vnRef)) != cmOkRC )
  396. {
  397. cmMemFree(v);
  398. v = NULL;
  399. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector copy out failed '%s'.",fn);
  400. goto errLabel;
  401. }
  402. cmRptPrintf(p->obj.err.rpt,"%i : %s",*vnRef,fn);
  403. errLabel:
  404. cmVectArrayFree(&vap);
  405. return v;
  406. }
  407. cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN )
  408. {
  409. unsigned n = cmMin(xN,p->fhN-p->di);
  410. // update the delay line
  411. cmVOS_Copy(p->dV+p->di,n,xV);
  412. if( n < xN )
  413. cmVOS_Copy(p->dV,xN-n,xV+n);
  414. p->di = cmModIncr(p->di,xN,p->fhN);
  415. // p->absIdx is the absolute sample index associated with di
  416. p->absIdx += xN;
  417. return cmOkRC;
  418. }
  419. void cmPhatChExec(
  420. cmPhat_t* p,
  421. unsigned chIdx,
  422. unsigned sessionId,
  423. unsigned roleId)
  424. {
  425. unsigned n0 = p->fhN - p->di;
  426. unsigned n1 = p->fhN - n0;
  427. // Linearize the delay line into xV[]
  428. cmVOS_Copy(p->xV, n0, p->dV + p->di );
  429. cmVOS_Copy(p->xV+n0, n1, p->dV );
  430. if( cmIsFlag(p->flags,kDebugAtPhatFl))
  431. cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
  432. // apply a window function to the incoming signal
  433. if( cmIsFlag(p->flags,kHannAtPhatFl) )
  434. cmVOS_MultVV(p->xV,p->fhN,p->wndV);
  435. // Take the FFT of the delay line.
  436. // p->t0V[p->binN] = fft(p->xV)
  437. //atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN );
  438. cmFftExecSR(&p->fft, p->xV, p->fhN );
  439. // Calc. the Cross Power Spectrum (aka cross spectral density) of the
  440. // input signal with the id signal.
  441. // Note that the CPS is equivalent to the Fourier Transform of the
  442. // cross-correlation of the two signals.
  443. // t0V[] *= p->fhM[:,chIdx]
  444. //atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN );
  445. cmVOCR_MultVVV( p->t0V, p->fft.complexV, p->fhM + (chIdx * p->fhN), p->binN);
  446. // Calculate the magnitude of the CPS.
  447. // xV[] = | t0V[] |
  448. cmVOCR_Abs( p->xV, p->t0V, p->binN );
  449. // Weight the CPS by the scaled magnitude of the id signal
  450. // (we want to emphasize the limited frequencies where the
  451. // id signal contains energy)
  452. // t0V[] *= p->mhM[:,chIdx]
  453. if( p->alpha > 0 )
  454. cmVOCR_MultVFV( p->t0V, p->mhM + (chIdx*p->binN), p->binN);
  455. // Divide through by the magnitude of the CPS
  456. // This has the effect of whitening the spectram and thereby
  457. // minimizing the effect of the magnitude correlation
  458. // while maximimizing the effect of the phase correlation.
  459. //
  460. // t0V[] /= xV[]
  461. cmVOCR_DivVFV( p->t0V, p->xV, p->binN );
  462. // Take the IFFT of the weighted CPS to recover the cross correlation.
  463. // xV[] = IFFT(t0V[])
  464. cmIFftExecRS( &p->ifft, p->t0V );
  465. // Normalize the result by the length of the transform.
  466. cmVOS_DivVVS( p->xV, p->fhN, p->ifft.outV, p->fhN );
  467. // Shift the correlation spike to mark the end of the id
  468. cmVOS_Rotate( p->xV, p->fhN, -((int)p->hN) );
  469. // normalize by the length of the correlation
  470. cmVOS_DivVS(p->xV,p->fhN,p->fhN);
  471. if( cmIsFlag(p->flags,kDebugAtPhatFl))
  472. {
  473. cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
  474. cmSample_t v[] = { sessionId, roleId };
  475. cmVectArrayAppendS(p->ftVa, v, sizeof(v)/sizeof(v[0]));
  476. }
  477. }
  478. cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr )
  479. {
  480. cmRC_t rc = cmOkRC;
  481. if( cmIsFlag(p->flags, kDebugAtPhatFl))
  482. {
  483. const char* path = NULL;
  484. if( p->ftVa != NULL )
  485. if((rc = cmVectArrayWrite(p->ftVa, path = cmFsMakeFn(path,"cmPhatFT","va",dirStr,NULL) )) != cmOkRC )
  486. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT debug file write failed.");
  487. cmFsFreeFn(path);
  488. }
  489. return rc;
  490. }
  491. #ifdef NOTDEF
  492. cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
  493. {
  494. cmRC_t rc = cmOkRC;
  495. cmGoldSigArg_t sa;
  496. cmGoldSig_t* s = NULL;
  497. cmPhat_t* p = NULL;
  498. char* path = NULL;
  499. unsigned dspFrmCnt = 256;
  500. unsigned listenDelaySmp = 8196;
  501. double noiseGain = 0.05;
  502. unsigned chIdx = 0;
  503. cmSample_t* yV = NULL;
  504. unsigned yN = 0;
  505. double phatAlpha = 0.5;
  506. unsigned phatMult = 4.0;
  507. double nonLinExpo = 4.0;
  508. cmVectArray_t* outVA = NULL;
  509. cmVectArray_t* inVA = NULL;
  510. cmVectArray_t* statusVA = NULL;
  511. unsigned bsiN = 4;
  512. unsigned bsiV[bsiN]; // known signal onset in absolute samples
  513. unsigned esiV[bsiN]; // known signal offset
  514. unsigned lsiV[bsiN]; // end of listen time (when cmPhatChExec()) is run.
  515. unsigned dsiV[bsiN]; // detection time
  516. unsigned i,j;
  517. sa.chN = 1;
  518. sa.srate = 44100.0;
  519. sa.lfsrN = 8;
  520. sa.mlsCoeff0 = 0x8e;
  521. sa.mlsCoeff1 = 0x96;
  522. sa.samplesPerChip = 64;
  523. sa.rcosBeta = 0.5;
  524. sa.rcosOSFact = 4;
  525. sa.carrierHz = 17000.0;
  526. sa.envMs = 50.0;
  527. // allocate the the id signals
  528. if( (s = cmGoldSigAlloc( ctx, NULL, &sa ) == NULL )
  529. return cmErrMsg(&ctx->err, cmSubSysFailRC, "Signal allocate failed.");
  530. // set the post signal listen delay to half the signal length
  531. listenDelaySmp = s->sigN/2;
  532. // allocate a PHAT detector
  533. if( (p = cmPhatAlloc(ctx,NULL,sa.chN,s->sigN, phatAlpha, phatMult, kDebugAtPhatFl ) == NULL )
  534. {
  535. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "PHAT allocate failed.");
  536. goto errLabel;
  537. }
  538. // register an id signal with the PHAT detector
  539. if( cmPhatSetId(p, chIdx, s->ch[chIdx].mdV, s->sigN ) != cmOkRC )
  540. {
  541. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "PHAT setId failed.");
  542. goto errLabel;
  543. }
  544. // generate an input test signal containing bsiN id signals
  545. if( atSignalGen(s,chIdx,p->fhN,s->sigN,bsiV,bsiN,noiseGain,&yV,&yN) != cmOkRC )
  546. {
  547. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Signal generation failed.");
  548. goto errLabel;
  549. }
  550. // bsiV[] now holds signal onsets. Set esiV[] to signal offsets.
  551. atVOU_AddVVS(esiV,bsiV,bsiN,s->sigN );
  552. // set lsiV[] to end-of-listen location
  553. atVOU_AddVVS(lsiV,esiV,bsiN,listenDelaySmp);
  554. // zero the detection vector
  555. atVOU_Zero(dsiV,bsiN);
  556. // allocate a vector array to record the PHAT input signals
  557. if( cmVectArrayAlloc(ctx,&inVA,kSampleVaFl) != cmOkRC )
  558. {
  559. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray inVA alloc failed.");
  560. goto errLabel;
  561. }
  562. // allocate a vector array to record the PHAT correlation output signals
  563. if( cmVectArrayAlloc(ctx,&outVA,kSampleVaFl) != cmOkRC )
  564. {
  565. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray outVA alloc failed.");
  566. goto errLabel;
  567. }
  568. // allocate a vector array to record the PHAT status
  569. if( cmVectArrayAlloc(ctx,&statusVA,kSampleVaFl) != cmOkRC )
  570. {
  571. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray statusVA alloc failed.");
  572. goto errLabel;
  573. }
  574. // for each 'dspFrmCnt' samples in the input signal
  575. for(i=0,j=0; j<bsiN && i<=yN-dspFrmCnt; i+=dspFrmCnt)
  576. {
  577. // store a copy of the input signal
  578. cmVectArrayAppendS(inVA,yV+i,dspFrmCnt);
  579. // feed the next dspFrmCnt samples to the PHAT detector
  580. cmPhatExec(p,yV+i,dspFrmCnt);
  581. // if the approximate end of an id signal is encountered
  582. if( lsiV[j] <= i && i < lsiV[j] + dspFrmCnt )
  583. {
  584. // execute the PHAT correlator
  585. cmPhatChExec( p, chIdx, -1, -1 );
  586. // apply non-linear exponent to the correlation vector
  587. cmVOS_PowV(p->xV,p->fhN,nonLinExpo);
  588. // locate the corr. peak inside the listening window
  589. // (the detection window is last 'detectWndSmp' samples in the corr. vector )
  590. unsigned detectWndSmp = 2*listenDelaySmp;
  591. dsiV[j] = cmVOS_ArgMax( p->xV + p->fhN - detectWndSmp, detectWndSmp);
  592. // convert the pk index to absolute time
  593. dsiV[j] = i + dspFrmCnt - detectWndSmp + dsiV[j];
  594. // sig beg sig end detect begin dtct end detect
  595. cmSample_t v[] = { bsiV[j], esiV[j], lsiV[j]-detectWndSmp, lsiV[j], dsiV[j] };
  596. // store the detection information
  597. cmVectArrayAppendS(statusVA,v,sizeof(v)/sizeof(v[0]));
  598. // store the correlation output vector
  599. cmVectArrayAppendS(outVA,p->xV,p->fhN);
  600. j += 1;
  601. }
  602. }
  603. // write inVA
  604. if( cmVectArrayWrite(inVA,path = atMakePath(&ctx->err,path,"phatIn","va",dirStr,NULL)) != cmOkRC )
  605. {
  606. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray outVA write failed.");
  607. goto errLabel;
  608. }
  609. // write outVA
  610. if( cmVectArrayWrite(outVA,path = atMakePath(&ctx->err,path,"phatOut","va",dirStr,NULL)) != cmOkRC )
  611. {
  612. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray outVA write failed.");
  613. goto errLabel;
  614. }
  615. // write statusVA
  616. if( cmVectArrayWrite(statusVA,path = atMakePath(&ctx->err,path,"phatStatus","va",dirStr,NULL)) != cmOkRC )
  617. {
  618. rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray statusVA write failed.");
  619. goto errLabel;
  620. }
  621. errLabel:
  622. cmVectArrayFree(&outVA);
  623. cmVectArrayFree(&inVA);
  624. if( cmPhatFree(&p) != cmOkRC )
  625. cmErrMsg(&ctx->err,cmSubSysFailRC,"PHAT free failed.");
  626. if( atSignalFree(&s) != cmOkRC )
  627. cmErrMsg(&ctx->err,cmSubSysFailRC,"Signal free failed.");
  628. return rc;
  629. }
  630. cmRC_t cmPhatTest2( cmCtx* ctx )
  631. {
  632. cmRC_t rc = cmOkRC;
  633. cmPhat_t* p = NULL;
  634. unsigned hN = 16;
  635. float alpha = 1.0;
  636. unsigned mult = 4;
  637. cmSample_t hV[] = { 4,3,2,1, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
  638. cmSample_t x0V[] = { 4,3,2,1, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
  639. cmSample_t x1V[] = { 0,0,0,0, 4,3,2,1, 0,0,0,0, 0,0,0,0 };
  640. cmSample_t x2V[] = { 0,0,0,0, 0,0,0,0, 4,3,2,1, 0,0,0,0 };
  641. cmSample_t x3V[] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 4,3,2,1 };
  642. cmSample_t* xV[] = { x0V, x1V, x2V, x3V };
  643. unsigned chN = sizeof(xV)/sizeof(xV[0]);
  644. unsigned i;
  645. if(cmPhatAlloc(ctx,&p,chN,hN,alpha,mult,kNoFlagsAtPhatFl) != cmOkRC )
  646. {
  647. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"cmPhatAlloc() failed.");
  648. goto errLabel;
  649. }
  650. for(i=0; i<chN; ++i)
  651. if( cmPhatSetId(p,i,hV,hN) != cmOkRC )
  652. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"cmPhatSetId() failed.");
  653. for(i=0; i<chN; ++i)
  654. {
  655. cmPhatReset(p);
  656. if( cmPhatExec(p,xV[i],hN) != cmOkRC )
  657. {
  658. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"cmPhatExec() failed.");
  659. goto errLabel;
  660. }
  661. cmPhatChExec(p, i, -1, -1);
  662. cmVOS_PrintL(&ctx->printRpt,"x:",p->xV,1,p->fhN);
  663. }
  664. errLabel:
  665. cmPhatFree(&p);
  666. return rc;
  667. }
  668. #endif