libcm is a C development framework with an emphasis on audio signal processing applications.
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

cmProc2.c 171KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmSymTbl.h"
  10. #include "cmFloatTypes.h"
  11. #include "cmComplexTypes.h"
  12. #include "cmFile.h"
  13. #include "cmFileSys.h"
  14. #include "cmProcObj.h"
  15. #include "cmProcTemplate.h"
  16. #include "cmAudioFile.h"
  17. #include "cmMath.h"
  18. #include "cmProc.h"
  19. #include "cmVectOps.h"
  20. #include "cmKeyboard.h"
  21. #include "cmGnuPlot.h"
  22. #include "cmTime.h"
  23. #include "cmMidi.h"
  24. #include "cmProc2.h"
  25. //------------------------------------------------------------------------------------------------------------
  26. cmArray* cmArrayAllocate( cmCtx* c, cmArray* ap, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
  27. {
  28. cmArray* p = cmObjAlloc( cmArray, c, ap );
  29. if( eleCnt > 0 && eleByteCnt > 0 )
  30. if( cmArrayInit(p, eleCnt, eleByteCnt, flags ) != cmOkRC )
  31. cmArrayFree(&p);
  32. return cmOkRC;
  33. }
  34. cmRC_t cmArrayFree( cmArray** pp )
  35. {
  36. cmRC_t rc = cmOkRC;
  37. cmArray* p = *pp;
  38. if( pp == NULL || *pp == NULL )
  39. return cmOkRC;
  40. if((rc = cmArrayFinal(p)) != cmOkRC )
  41. return rc;
  42. cmMemPtrFree(&p->ptr);
  43. cmObjFree(pp);
  44. return rc;
  45. }
  46. cmRC_t cmArrayInit( cmArray* p, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
  47. {
  48. cmRC_t rc = cmOkRC;
  49. if((rc = cmArrayFinal(p)) != cmOkRC )
  50. return rc;
  51. p->allocByteCnt = eleCnt * eleByteCnt;
  52. p->ptr = cmIsFlag(flags,kZeroArrayFl) ? cmMemResizeZ( char, p->ptr, p->allocByteCnt ) : cmMemResize( char, p->ptr, p->allocByteCnt );
  53. p->eleCnt = eleCnt;
  54. p->eleByteCnt = eleByteCnt;
  55. return rc;
  56. }
  57. cmRC_t cmArrayFinal( cmArray* p )
  58. { return cmOkRC; }
  59. char* cmArrayReallocDestroy(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
  60. {
  61. // if memory is expanding
  62. if( newEleCnt * newEleByteCnt > p->allocByteCnt )
  63. cmArrayInit( p, newEleCnt, newEleByteCnt, flags );
  64. else
  65. {
  66. // ... otherwise memory is contrcmting
  67. p->eleCnt = newEleCnt;
  68. p->eleByteCnt = newEleByteCnt;
  69. if( cmIsFlag( flags, kZeroArrayFl ))
  70. memset(p->ptr,0,p->eleByteCnt);
  71. }
  72. return p->ptr;
  73. }
  74. void cmArrayReallocDestroyV(cmArray* p, int eleByteCnt,unsigned flags, ... )
  75. {
  76. unsigned i;
  77. unsigned eleCnt = 0;
  78. unsigned argCnt = 0;
  79. va_list vl0,vl1;
  80. assert(eleByteCnt>0);
  81. va_start(vl0,flags);
  82. va_copy(vl1,vl0);
  83. while( va_arg(vl0,void**) != NULL )
  84. {
  85. int argEleCnt = va_arg(vl0,int);
  86. assert(argEleCnt>0);
  87. eleCnt += argEleCnt;
  88. ++argCnt;
  89. }
  90. va_end(vl0);
  91. char* a = cmArrayReallocDestroy(p,eleCnt,eleByteCnt,flags);
  92. for(i=0; i<argCnt; ++i)
  93. {
  94. void** vp = va_arg(vl1,void**);
  95. unsigned n = va_arg(vl1,unsigned);
  96. *vp = a;
  97. a += n*eleByteCnt;
  98. }
  99. va_end(vl1);
  100. }
  101. char* cmArrayReallocPreserve(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
  102. {
  103. unsigned cn = p->eleCnt * p->eleByteCnt;
  104. unsigned dn = newEleCnt * newEleByteCnt;
  105. if( dn > p->allocByteCnt )
  106. p->allocByteCnt = dn;
  107. p->ptr = cmIsFlag(flags,kZeroArrayFl ) ? cmMemResizePZ( char, p->ptr, cn ) : cmMemResizeP( char, p->ptr, cn);
  108. p->eleCnt = newEleCnt;
  109. p->eleByteCnt= newEleByteCnt;
  110. return p->ptr;
  111. }
  112. //------------------------------------------------------------------------------------------------------------
  113. cmAudioFileWr* cmAudioFileWrAlloc( cmCtx* c, cmAudioFileWr* ap, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
  114. {
  115. cmAudioFileWr* p = cmObjAlloc( cmAudioFileWr, c, ap );
  116. if( cmAudioFileWrInit( p, procSmpCnt, fn, srate, chCnt, bitsPerSample ) != cmOkRC )
  117. cmObjFree(&p);
  118. return p;
  119. }
  120. cmRC_t cmAudioFileWrFree( cmAudioFileWr** pp )
  121. {
  122. cmRC_t rc = cmOkRC;
  123. if( pp != NULL && *pp != NULL )
  124. {
  125. cmAudioFileWr* p = *pp;
  126. if((rc = cmAudioFileWrFinal(p)) == cmOkRC )
  127. {
  128. cmMemPtrFree(&p->bufV);
  129. cmMemPtrFree(&p->fn );
  130. cmObjFree(pp);
  131. }
  132. }
  133. return rc;
  134. }
  135. cmRC_t cmAudioFileWrInit( cmAudioFileWr* p, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
  136. {
  137. cmRC_t rc;
  138. cmRC_t afRC;
  139. if((rc = cmAudioFileWrFinal( p)) != cmOkRC )
  140. return rc;
  141. p->h = cmAudioFileNewCreate( fn, srate, bitsPerSample, chCnt, &afRC, p->obj.err.rpt );
  142. if( afRC != kOkAfRC )
  143. return cmCtxRtCondition( &p->obj, afRC, "Unable to open the audio file:'%s'", fn );
  144. p->bufV = cmMemResize( cmSample_t, p->bufV, procSmpCnt * chCnt );
  145. p->procSmpCnt = procSmpCnt;
  146. p->chCnt = chCnt;
  147. p->curChCnt = 0;
  148. p->fn = cmMemResizeZ( cmChar_t, p->fn, strlen(fn)+1 );
  149. strcpy(p->fn,fn);
  150. return rc;
  151. }
  152. cmRC_t cmAudioFileWrFinal( cmAudioFileWr* p )
  153. {
  154. cmRC_t afRC;
  155. if( p != NULL )
  156. {
  157. if( cmAudioFileIsValid( p->h ) )
  158. if(( afRC = cmAudioFileDelete( &p->h )) != kOkAfRC )
  159. return cmCtxRtCondition( &p->obj, afRC, "Unable to close the audio file:'%s'", p->fn );
  160. }
  161. return cmOkRC;
  162. }
  163. cmRC_t cmAudioFileWrExec( cmAudioFileWr* p, unsigned chIdx, const cmSample_t* sp, unsigned sn )
  164. {
  165. cmRC_t afRC;
  166. assert( sn <= p->procSmpCnt && chIdx < p->chCnt );
  167. cmSample_t* buf = p->bufV + (chIdx * p->procSmpCnt);
  168. cmVOS_Copy( buf, sn, sp);
  169. if( sn < p->procSmpCnt )
  170. cmVOS_Fill( buf+sn, p->procSmpCnt-sn, 0 );
  171. p->curChCnt++;
  172. if( p->curChCnt == p->chCnt )
  173. {
  174. p->curChCnt = 0;
  175. cmSample_t* bufPtrPtr[ p->chCnt ];
  176. unsigned i = 0;
  177. for(i=0; i<p->chCnt; ++i)
  178. bufPtrPtr[i] = p->bufV + (i*p->procSmpCnt);
  179. if((afRC = cmAudioFileWriteSample( p->h, p->procSmpCnt, p->chCnt, bufPtrPtr )) != kOkAfRC )
  180. return cmCtxRtCondition( &p->obj, afRC, "Write failed on audio file:'%s'", p->fn );
  181. }
  182. return cmOkRC;
  183. }
  184. void cmAudioFileWrTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  185. {
  186. const char* fn = "/home/kevin/src/cm/test0.aif";
  187. double durSecs = 10;
  188. double srate = 44100;
  189. unsigned chCnt = 2;
  190. unsigned bitsPerSmp = 16;
  191. unsigned procSmpCnt = 64;
  192. double hz = 1000;
  193. unsigned overToneCnt= 1;
  194. unsigned smpCnt = durSecs * srate;
  195. unsigned i;
  196. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
  197. cmSigGen* sgp = cmSigGenAlloc( c, NULL, procSmpCnt, srate, kWhiteWfId, hz, overToneCnt );
  198. cmAudioFileWr* awp = cmAudioFileWrAlloc( c, NULL, procSmpCnt, fn, srate, chCnt, bitsPerSmp );
  199. for(i=0; i<smpCnt; ++i)
  200. {
  201. cmSigGenExec( sgp );
  202. cmAudioFileWrExec( awp, 0, sgp->outV, sgp->outN );
  203. cmAudioFileWrExec( awp, 1, sgp->outV, sgp->outN );
  204. i += sgp->outN;
  205. }
  206. printf("Frames:%i\n",smpCnt);
  207. cmAudioFileWrFree(&awp);
  208. cmSigGenFree( &sgp );
  209. cmCtxFree(&c);
  210. cmAudioFileReportFn( fn, 0, 20, rpt );
  211. }
  212. //------------------------------------------------------------------------------------------------------------
  213. cmMatrixBuf* cmMatrixBufAllocFile( cmCtx* c, cmMatrixBuf* p, const char* fn )
  214. {
  215. cmRC_t rc;
  216. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  217. if( fn != NULL )
  218. if((rc = cmMatrixBufInitFile(op,fn)) != cmOkRC )
  219. cmObjFree(&op);
  220. return op;
  221. }
  222. cmMatrixBuf* cmMatrixBufAllocCopy(cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
  223. {
  224. cmRC_t rc;
  225. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  226. if( sp != NULL && rn > 0 && cn > 0 )
  227. if((rc = cmMatrixBufInitCopy(op,rn,cn,sp)) != cmOkRC )
  228. cmObjFree(&op);
  229. return op;
  230. }
  231. cmMatrixBuf* cmMatrixBufAlloc( cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn )
  232. {
  233. cmRC_t rc;
  234. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  235. if( rn > 0 && cn > 0 )
  236. if((rc = cmMatrixBufInit(op,rn,cn)) != cmOkRC )
  237. cmObjFree(&op);
  238. return op;
  239. }
  240. cmRC_t cmMatrixBufFree( cmMatrixBuf** pp )
  241. {
  242. cmRC_t rc = cmOkRC;
  243. if( pp != NULL && *pp != NULL )
  244. {
  245. cmMatrixBuf* p = *pp;
  246. if((rc = cmMatrixBufFinal(p)) == cmOkRC )
  247. {
  248. cmMemPtrFree(&p->bufPtr);
  249. cmObjFree(pp);
  250. }
  251. }
  252. return rc;
  253. }
  254. void _cmMatrixBufGetFileSize( FILE* fp, unsigned* lineCharCntPtr, unsigned* lineCntPtr )
  255. {
  256. *lineCharCntPtr = 0;
  257. *lineCntPtr = 0;
  258. while( !feof(fp) )
  259. {
  260. char ch;
  261. unsigned charCnt = 0;
  262. while( (ch = getc(fp)) != EOF )
  263. {
  264. charCnt++;
  265. if( ch == '\n' )
  266. break;
  267. }
  268. *lineCntPtr += 1;
  269. if(charCnt > *lineCharCntPtr )
  270. *lineCharCntPtr = charCnt;
  271. }
  272. *lineCharCntPtr += 5; // add a safety margin
  273. }
  274. cmRC_t _cmMatrixBufGetMatrixSize( cmObj* op, FILE* fp, unsigned lineCharCnt, unsigned lineCnt, unsigned* rowCntPtr, unsigned * colCntPtr, const char* fn )
  275. {
  276. unsigned i;
  277. char lineBuf[ lineCharCnt + 1 ];
  278. *rowCntPtr = 0;
  279. *colCntPtr = 0;
  280. for(i=0; i<lineCnt; ++i)
  281. {
  282. if(fgets(lineBuf,lineCharCnt,fp)==NULL)
  283. {
  284. // if the last line is blank then return from here
  285. if( feof(fp) )
  286. return cmOkRC;
  287. return cmCtxRtCondition( op, cmSystemErrorRC, "A read error occured on the matrix file:'%s'.",fn);
  288. }
  289. assert( strlen(lineBuf) < lineCharCnt );
  290. char* lp = lineBuf;
  291. char* tp;
  292. // eat any leading white space
  293. while( (*lp) && isspace(*lp) )
  294. ++lp;
  295. // if the line was blank then skip it
  296. if( strlen(lp) == 0 || *lp == '#' )
  297. continue;
  298. (*rowCntPtr) += 1;
  299. unsigned colCnt;
  300. for(colCnt=0; (tp = strtok(lp," ")) != NULL; ++colCnt )
  301. lp = NULL;
  302. if( colCnt > *colCntPtr )
  303. *colCntPtr = colCnt;
  304. }
  305. return cmOkRC;
  306. }
  307. double _cmMatrixBufStrToNum( cmObj* op, const char* cp )
  308. {
  309. double v;
  310. if( sscanf(cp,"%le ",&v) != 1 )
  311. cmCtxRtCondition( op, cmArgAssertRC, "Parse error reading matrix file.");
  312. return v;
  313. }
  314. cmRC_t _cmMatrixBufReadFile(cmObj* op, FILE* fp, cmSample_t* p, unsigned lineCharCnt, unsigned rn, unsigned cn)
  315. {
  316. char lineBuf[ lineCharCnt+1 ];
  317. unsigned ci = 0;
  318. unsigned ri = 0;
  319. while( fgets(lineBuf,lineCharCnt,fp) != NULL )
  320. {
  321. char* lp = lineBuf;
  322. char* tp;
  323. while( (*lp) && isspace(*lp) )
  324. lp++;
  325. if( strlen(lp) == 0 || *lp == '#' )
  326. continue;
  327. for(ci=0; (tp = strtok(lp," ")) != NULL; ++ci )
  328. {
  329. p[ (ci*rn) + ri ] = _cmMatrixBufStrToNum(op,tp); //atof(tp);
  330. lp = NULL;
  331. }
  332. ++ri;
  333. }
  334. return cmOkRC;
  335. }
  336. cmRC_t cmMatrixBufInitFile( cmMatrixBuf* p, const char* fn )
  337. {
  338. cmRC_t rc;
  339. FILE* fp;
  340. unsigned lineCharCnt;
  341. unsigned lineCnt;
  342. unsigned rn;
  343. unsigned cn;
  344. if((fp = fopen(fn,"rt")) == NULL )
  345. return cmCtxRtCondition( &p->obj, cmSystemErrorRC, "Unable to open the matrix file:'%s'", fn );
  346. // get the length of the longest line in the file
  347. _cmMatrixBufGetFileSize(fp,&lineCharCnt,&lineCnt);
  348. rewind(fp);
  349. // get the count of matrix rows and columns
  350. if((rc=_cmMatrixBufGetMatrixSize( &p->obj, fp, lineCharCnt, lineCnt, &rn, &cn, fn )) != cmOkRC )
  351. goto errLabel;
  352. rewind(fp);
  353. // allocate the matrix memory
  354. cmMatrixBufInit(p,rn,cn);
  355. // fill the matrix from the file
  356. rc = _cmMatrixBufReadFile(&p->obj,fp,p->bufPtr,lineCharCnt,rn,cn);
  357. errLabel:
  358. if( rc != cmOkRC )
  359. cmMatrixBufFinal(p);
  360. fclose(fp);
  361. return rc;
  362. }
  363. cmRC_t cmMatrixBufInitCopy( cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
  364. {
  365. cmRC_t rc;
  366. if((rc = cmMatrixBufInit(p,rn,cn)) != cmOkRC )
  367. return rc;
  368. cmVOS_Copy(p->bufPtr,(rn*cn),sp);
  369. return rc;
  370. }
  371. cmRC_t cmMatrixBufInit( cmMatrixBuf* p, unsigned rn, unsigned cn )
  372. {
  373. cmRC_t rc;
  374. if((rc = cmMatrixBufFinal(p)) != cmOkRC )
  375. return rc;
  376. p->rn = rn;
  377. p->cn = cn;
  378. p->bufPtr = cmMemResize( cmSample_t, p->bufPtr, rn*cn );
  379. return cmOkRC;
  380. }
  381. cmRC_t cmMatrixBufFinal( cmMatrixBuf* p )
  382. { return cmOkRC; }
  383. cmSample_t* cmMatrixBufColPtr( cmMatrixBuf* p, unsigned ci )
  384. { assert(ci<p->cn); return p->bufPtr + (ci * p->rn); }
  385. cmSample_t* cmMatrixBufRowPtr( cmMatrixBuf* p, unsigned ri )
  386. { assert(ri<p->rn); return p->bufPtr + ri; }
  387. void cmMatrixBufTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  388. {
  389. cmSample_t v[] = {1,2,2,3};
  390. cmCtx* c = cmCtxAlloc(NULL,rpt,lhH,stH);
  391. cmMatrixBuf* mbp = cmMatrixBufAllocFile(c, NULL, "temp.mat" );
  392. cmMatrixBuf* vbp = cmMatrixBufAllocCopy(c, NULL, 4,1,v);
  393. unsigned i;
  394. printf("rn:%i cn:%i\n",mbp->rn,mbp->cn);
  395. //cmVOS_Print( stdout, 10, 10, mbp->bufPtr );
  396. printf("%.1f\n ",cmVOS_Median( cmMatrixBufColPtr(vbp,0),vbp->rn));
  397. for(i=0; i<mbp->cn; ++i)
  398. {
  399. //cmVOS_Print( stdout, 1, mbp->cn, cmMatrixBufColPtr(c,mbp,i) );
  400. printf("%.1f, ",cmVOS_Median( cmMatrixBufColPtr(mbp,i),mbp->rn));
  401. }
  402. printf("\n");
  403. cmMatrixBufFree(&mbp);
  404. cmMatrixBufFree(&vbp);
  405. cmCtxFree(&c);
  406. }
  407. //------------------------------------------------------------------------------------------------------------
  408. cmSigGen* cmSigGenAlloc( cmCtx* c, cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
  409. {
  410. cmSigGen* op = cmObjAlloc( cmSigGen, c, p );
  411. if( procSmpCnt > 0 && srate > 0 && wfId != kInvalidWfId )
  412. if( cmSigGenInit( op, procSmpCnt, srate, wfId, fundFrqHz, overToneCnt ) != cmOkRC )
  413. cmObjFree(&op);
  414. return op;
  415. }
  416. cmRC_t cmSigGenFree( cmSigGen** pp )
  417. {
  418. cmRC_t rc = cmOkRC;
  419. if( pp != NULL && *pp != NULL )
  420. {
  421. cmSigGen* p = *pp;
  422. if((rc = cmSigGenFinal(p)) == cmOkRC )
  423. {
  424. cmMemPtrFree(&p->outV);
  425. cmObjFree(pp);
  426. }
  427. }
  428. return rc;
  429. }
  430. cmRC_t cmSigGenInit( cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
  431. {
  432. assert( srate > 0 && procSmpCnt > 0 );
  433. p->outV = cmMemResize( cmSample_t, p->outV, procSmpCnt );
  434. p->outN = procSmpCnt;
  435. p->wfId = wfId;
  436. p->overToneCnt = overToneCnt;
  437. p->fundFrqHz = fundFrqHz;
  438. p->phase = 0;
  439. p->delaySmp = 0;
  440. p->srate = srate;
  441. return cmOkRC;
  442. }
  443. cmRC_t cmSigGenFinal( cmSigGen* p )
  444. { return cmOkRC; }
  445. cmRC_t cmSigGenExec( cmSigGen* p )
  446. {
  447. switch( p->wfId )
  448. {
  449. case kSineWfId: p->phase = cmVOS_SynthSine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  450. case kCosWfId: p->phase = cmVOS_SynthCosine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  451. case kSquareWfId: p->phase = cmVOS_SynthSquare( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  452. case kTriangleWfId: p->phase = cmVOS_SynthTriangle( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  453. case kSawtoothWfId: p->phase = cmVOS_SynthSawtooth( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  454. case kWhiteWfId: cmVOS_Random( p->outV, p->outN, -1.0, 1.0 ); break;
  455. case kPinkWfId: p->delaySmp = cmVOS_SynthPinkNoise(p->outV, p->outN, p->delaySmp ); break;
  456. case kPulseWfId: p->phase = cmVOS_SynthPulseCos( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  457. case kImpulseWfId: p->phase = cmVOS_SynthImpulse( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  458. case kSilenceWfId: cmVOS_Fill( p->outV, p->outN, 0 ); break;
  459. case kPhasorWfId: p->phase = cmVOS_SynthPhasor( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  460. case kSeqWfId: p->phase = cmVOS_Seq( p->outV, p->outN, p->phase, 1 ); break;
  461. case kInvalidWfId:
  462. default:
  463. return cmCtxRtAssertFailed( &p->obj, 0, "Invalid waveform shape.");
  464. }
  465. return cmOkRC;
  466. }
  467. //------------------------------------------------------------------------------------------------------------
  468. cmDelay* cmDelayAlloc( cmCtx* c, cmDelay* ap, unsigned procSmpCnt, unsigned delaySmpCnt )
  469. {
  470. cmDelay* p = cmObjAlloc( cmDelay, c, ap );
  471. if( procSmpCnt > 0 && delaySmpCnt > 0 )
  472. if( cmDelayInit( p,procSmpCnt,delaySmpCnt) != cmOkRC && ap == NULL )
  473. cmObjFree(&p);
  474. return p;
  475. }
  476. cmRC_t cmDelayFree( cmDelay** pp )
  477. {
  478. cmRC_t rc = cmOkRC;
  479. if( pp != NULL && *pp != NULL )
  480. {
  481. cmDelay* p = *pp;
  482. if((rc = cmDelayFinal(*pp)) == cmOkRC )
  483. {
  484. cmMemPtrFree(&p->bufPtr);
  485. cmObjFree(pp);
  486. }
  487. }
  488. return rc;
  489. }
  490. cmRC_t cmDelayInit( cmDelay* p, unsigned procSmpCnt, unsigned delaySmpCnt )
  491. {
  492. p->procSmpCnt = procSmpCnt;
  493. p->delaySmpCnt = delaySmpCnt;
  494. p->bufSmpCnt = delaySmpCnt + procSmpCnt;
  495. p->bufPtr = cmMemResizeZ( cmSample_t, p->bufPtr, p->bufSmpCnt);
  496. p->delayInIdx = 0;
  497. p->outCnt = 1;
  498. p->outV[0] = p->bufPtr;
  499. p->outN[0] = p->procSmpCnt;
  500. p->outV[1] = NULL;
  501. p->outN[1] = 0;
  502. return cmOkRC;
  503. }
  504. cmRC_t cmDelayFinal( cmDelay* p )
  505. { return cmOkRC; }
  506. cmRC_t cmDelayCopyIn( cmDelay* p, const cmSample_t* sp, unsigned sn )
  507. {
  508. assert(sn<=p->procSmpCnt);
  509. unsigned n0 = cmMin(sn,p->bufSmpCnt - p->delayInIdx);
  510. // copy as many samples as possible from the input to the delayInIdx
  511. cmVOS_Copy(p->bufPtr + p->delayInIdx, n0, sp);
  512. p->delayInIdx = (p->delayInIdx + n0) % p->bufSmpCnt;
  513. // if there was not enough room to copy all the samples into the end of the buffer ....
  514. if( n0 < sn )
  515. {
  516. assert( p->delayInIdx == 0 );
  517. // ... then copy the rest to the beginning of the buffer
  518. unsigned n1 = sn - n0;
  519. cmVOS_Copy(p->bufPtr,n1, sp + n0 );
  520. p->delayInIdx = (p->delayInIdx + n1) % p->bufSmpCnt;
  521. }
  522. return cmOkRC;
  523. }
  524. cmRC_t cmDelayAdvance( cmDelay* p, unsigned sn )
  525. {
  526. // advance the output by sn and make sn samples available
  527. int delayOutIdx = ((p->outV[0] - p->bufPtr) + sn) % p->bufSmpCnt;
  528. p->outV[0] = p->bufPtr + delayOutIdx;
  529. p->outN[0] = cmMin(p->bufSmpCnt - delayOutIdx , sn );
  530. p->outCnt = p->outN[0] == sn ? 1 : 2 ;
  531. p->outV[1] = p->outCnt == 1 ? NULL : p->bufPtr;
  532. p->outN[1] = p->outCnt == 1 ? 0 : sn - p->outN[0];
  533. return cmOkRC;
  534. }
  535. cmRC_t cmDelayExec( cmDelay* p, const cmSample_t* sp, unsigned sn, bool bypassFl )
  536. {
  537. cmRC_t rc = cmOkRC;
  538. if( bypassFl )
  539. memcpy(p->outV,sp,sn*sizeof(cmSample_t));
  540. else
  541. {
  542. cmDelayCopyIn(p,sp,sn);
  543. rc = cmDelayAdvance(p,sn);
  544. }
  545. return rc;
  546. }
  547. void cmDelayTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  548. {
  549. cmCtx ctx;
  550. cmDelay delay;
  551. cmSigGen sigGen;
  552. unsigned procCnt = 4;
  553. unsigned procSmpCnt = 5;
  554. unsigned delaySmpCnt = 3;
  555. unsigned i;
  556. cmCtx* c = cmCtxAlloc( &ctx, rpt, lhH, stH );
  557. cmDelay* dlp = cmDelayAlloc( c, &delay, procSmpCnt, delaySmpCnt );
  558. cmSigGen* sgp = cmSigGenAlloc( c, &sigGen, procSmpCnt, 0, kSeqWfId,0, 0);
  559. for(i=0; i<procCnt; ++i)
  560. {
  561. cmSigGenExec(sgp);
  562. cmDelayExec(dlp,sgp->outV,sgp->outN,false);
  563. //cmVOS_Print( c->outFp, 1, sgp->outN, sgp->outV, 5, 0 );
  564. cmCtxPrint(c,"%i %i : ",i,0);
  565. cmVOS_PrintE( rpt, 1, dlp->outN[0], dlp->outV[0] );
  566. if( dlp->outN[1] > 0 )
  567. {
  568. cmCtxPrint(c,"%i %i : ",i,1);
  569. cmVOS_PrintE( rpt, 1, dlp->outN[1], dlp->outV[1] );
  570. }
  571. }
  572. cmSigGenFinal(sgp);
  573. cmDelayFinal(dlp);
  574. cmCtxFinal(c);
  575. }
  576. //------------------------------------------------------------------------------------------------------------
  577. cmFIR* cmFIRAllocKaiser(cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
  578. {
  579. cmFIR* op = cmObjAlloc( cmFIR, c, p );
  580. if( procSmpCnt > 0 && srate > 0 )
  581. if( cmFIRInitKaiser(op,procSmpCnt,srate,passHz,stopHz,passDb,stopDb,flags) != cmOkRC )
  582. cmObjFree(&op);
  583. return op;
  584. }
  585. cmFIR* cmFIRAllocSinc( cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
  586. {
  587. cmFIR* op = cmObjAlloc( cmFIR, c, p );
  588. if( srate > 0 && sincSmpCnt > 0 )
  589. if( cmFIRInitSinc(op,procSmpCnt,srate,sincSmpCnt,fcHz,flags,wndV) != cmOkRC )
  590. cmObjFree(&op);
  591. return op;
  592. }
  593. cmRC_t cmFIRFree( cmFIR** pp )
  594. {
  595. cmRC_t rc = cmOkRC;
  596. if( pp != NULL && *pp != NULL)
  597. {
  598. cmFIR* p = *pp;
  599. if((rc = cmFIRFinal(*pp)) == cmOkRC )
  600. {
  601. cmMemPtrFree(&p->coeffV);
  602. cmMemPtrFree(&p->outV);
  603. cmMemPtrFree(&p->delayV);
  604. cmObjFree(pp);
  605. }
  606. }
  607. return rc;
  608. }
  609. cmRC_t cmFIRInitKaiser( cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
  610. {
  611. // pass/stop frequencies above nyquist produce incorrect results
  612. assert( passHz <= srate/2 && stopHz<=srate/2);
  613. // based on Orfandis, Introduction to Signal Processing, p.551 Prentice Hall, 1996
  614. double fcHz = (passHz + stopHz) / 2; // fc is half way between passHz and stopHz
  615. double dHz = fabs(stopHz-passHz);
  616. // convert ripple spec from db to linear
  617. double dPass = (pow(10,passDb/20)-1) / (pow(10,passDb/20)+1);
  618. double dStop = pow(10,-stopDb/20);
  619. // in practice the ripple must be equal in the stop and pass band - so take the minimum between the two
  620. double d = cmMin(dPass,dStop);
  621. // convert the ripple back to db
  622. double A = -20 * log10(d);
  623. // compute the kaiser alpha coeff
  624. double alpha = 0;
  625. if( A >= 50.0 ) // for ripple > 50
  626. alpha = 0.1102 * (A-8.7);
  627. else // for ripple <= 21
  628. {
  629. if( A > 21 )
  630. alpha = (0.5842 * (pow(A-21.0,0.4))) + (0.07886*(A-21));
  631. }
  632. double D = 0.922;
  633. if( A > 21 )
  634. D = (A - 7.95) / 14.36;
  635. // compute the filter order
  636. unsigned N = (unsigned)(floor(D * srate / dHz) + 1);
  637. //if N is even
  638. if( cmIsEvenU(N) )
  639. N = N + 1;
  640. //printf("fc=%f df=%f dPass=%f dStop=%f d=%f alpha=%f A=%f D=%f N=%i\n",fcHz,dHz,dPass,dStop,d,alpha,A,D,N);
  641. // compute a kaiser function to truncate the sinc
  642. double wnd[ N ];
  643. cmVOD_Kaiser( wnd, N, alpha );
  644. // form an ideal FIR LP impulse response based on a sinc function
  645. cmFIRInitSinc(p,procSmpCnt,srate,N,fcHz,flags, wnd);
  646. //cmVOD_Print(stdout,1,p->coeffCnt,p->coeffV);
  647. return cmOkRC;
  648. }
  649. cmRC_t cmFIRInitSinc( cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
  650. {
  651. cmRC_t rc;
  652. if((rc = cmFIRFinal(p)) != cmOkRC )
  653. return rc;
  654. p->coeffCnt = sincSmpCnt;
  655. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  656. p->outN = procSmpCnt;
  657. p->coeffV = cmMemResizeZ( double, p->coeffV, p->coeffCnt );
  658. p->delayV = cmMemResizeZ( double, p->delayV, p->coeffCnt-1 ); // there is always one less delay than coeff
  659. p->delayIdx = 0;
  660. unsigned lp_flags = kNormalize_LPSincFl;
  661. lp_flags |= cmIsFlag(flags,kHighPassFIRFl) ? kHighPass_LPSincFl : 0;
  662. cmVOD_LP_Sinc(p->coeffV, p->coeffCnt, wndV, srate, fcHz, lp_flags );
  663. return cmOkRC;
  664. }
  665. cmRC_t cmFIRFinal( cmFIR* p )
  666. { return cmOkRC; }
  667. cmRC_t cmFIRExec( cmFIR* p, const cmSample_t* sbp, unsigned sn )
  668. {
  669. unsigned delayCnt = p->coeffCnt-1;
  670. int di = p->delayIdx;
  671. const cmSample_t* sep = sbp + sn;
  672. cmSample_t* op = p->outV;
  673. assert( di < delayCnt );
  674. assert( sn <= p->outN );
  675. // for each input sample
  676. while( sbp < sep )
  677. {
  678. // advance the delay line
  679. p->delayIdx = (p->delayIdx + 1) % delayCnt;
  680. const double* cbp = p->coeffV;
  681. const double* cep = cbp + p->coeffCnt;
  682. // mult input sample by coeff[0]
  683. double v = *sbp * *cbp++;
  684. // calc the output sample
  685. while( cbp<cep)
  686. {
  687. // note that the delay is being iterated backwards
  688. if( di == -1 )
  689. di=delayCnt-1;
  690. v += *cbp++ * p->delayV[di];
  691. --di;
  692. }
  693. // store the output sample
  694. *op++ = v;
  695. // insert the input sample
  696. p->delayV[ p->delayIdx ] = *sbp++;
  697. // store the position of the newest ele in the delay line
  698. di = p->delayIdx;
  699. }
  700. return cmOkRC;
  701. }
  702. void cmFIRTest0( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  703. {
  704. unsigned N = 512;
  705. cmKbRecd kb;
  706. cmCtx c;
  707. cmCtxInit(&c,rpt,lhH,stH);
  708. double srate = N;
  709. unsigned procSmpCnt = N;
  710. cmPlotSetup("Test Proc Impl",2,1);
  711. cmSample_t in[ procSmpCnt ];
  712. cmVOS_Fill(in,procSmpCnt,0);
  713. in[0] = 1;
  714. cmVOS_Random(in,procSmpCnt, -1.0, 1.0 );
  715. cmFIR* ffp = cmFIRAllocKaiser( &c, NULL, procSmpCnt,srate, srate*0.025, srate/2, 10, 60, 0 );
  716. //cmFIR* ffp = cmFIRAllocSinc( &c, NULL, 32, 1000, 0 );
  717. cmFftSR* ftp = cmFftAllocSR( &c, NULL, ffp->outV, ffp->outN, kToPolarFftFl );
  718. cmFIRExec( ffp, in, procSmpCnt );
  719. cmFftExecSR( ftp, NULL, 0 );
  720. cmVOR_AmplitudeToDb(ftp->magV,ftp->binCnt,ftp->magV);
  721. printf("coeff cnt:%i\n",ffp->coeffCnt );
  722. cmPlotClear();
  723. cmPlotLineR( "test", NULL, ftp->magV, NULL, ftp->binCnt, NULL, kSolidPlotLineId );
  724. cmPlotDraw();
  725. cmKeyPress(&kb);
  726. cmFftFreeSR(&ftp);
  727. cmFIRFree(&ffp);
  728. }
  729. void cmFIRTest1( cmCtx* ctx )
  730. {
  731. const char* sfn = "/home/kevin/temp/sig.va";
  732. const char* ffn = "/home/kevin/temp/fir.va";
  733. unsigned N = 44100;
  734. unsigned srate = N;
  735. unsigned procSmpCnt = N;
  736. double passHz = 15000;
  737. double stopHz = 14000;
  738. double passDb = 1.0;
  739. double stopDb = 60.0;
  740. unsigned flags = kHighPassFIRFl;
  741. cmSample_t x[ procSmpCnt ];
  742. cmVOS_Fill(x,procSmpCnt,0);
  743. x[0] = 1;
  744. cmVOS_Random(x,procSmpCnt, -1.0, 1.0 );
  745. cmFIR* f = cmFIRAllocKaiser( ctx, NULL, procSmpCnt, srate, passHz, stopHz, stopDb, passDb, flags );
  746. cmFIRExec( f, x, procSmpCnt );
  747. cmVectArrayWriteMatrixS(ctx, ffn, f->outV, 1, f->outN );
  748. cmVectArrayWriteMatrixS(ctx, sfn, x, 1, N );
  749. cmFIRFree(&f);
  750. }
  751. //------------------------------------------------------------------------------------------------------------
  752. cmFuncFilter* cmFuncFilterAlloc( cmCtx* c, cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
  753. {
  754. cmRC_t rc;
  755. cmFuncFilter* op = cmObjAlloc( cmFuncFilter,c, p );
  756. if( procSmpCnt > 0 && funcPtr != NULL && wndSmpCnt > 0 )
  757. {
  758. if( cmShiftBufAlloc(c,&p->shiftBuf,0,0,0) != NULL )
  759. if((rc = cmFuncFilterInit(op,procSmpCnt,funcPtr,userPtr,wndSmpCnt)) != cmOkRC )
  760. {
  761. cmShiftBuf* sbp = &p->shiftBuf;
  762. cmShiftBufFree(&sbp);
  763. cmObjFree(&op);
  764. }
  765. }
  766. return op;
  767. }
  768. cmRC_t cmFuncFilterFree( cmFuncFilter** pp )
  769. {
  770. cmRC_t rc = cmOkRC;
  771. if( pp!=NULL && *pp != NULL )
  772. {
  773. cmFuncFilter* p = *pp;
  774. if((rc = cmFuncFilterFinal(*pp)) == cmOkRC )
  775. {
  776. cmShiftBuf* sbp = &p->shiftBuf;
  777. cmShiftBufFree(&sbp);
  778. cmMemPtrFree(&p->outV);
  779. cmObjFree(pp);
  780. }
  781. }
  782. return rc;
  783. }
  784. cmRC_t cmFuncFilterInit( cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
  785. {
  786. cmRC_t rc;
  787. if(( rc = cmFuncFilterFinal(p)) != cmOkRC )
  788. return rc;
  789. // The shift buffer always consits of the p->wndSmpCnt-1 samples from the previous
  790. // exec followed by the latest procSmpCnt samples at the end of the buffer
  791. cmShiftBufInit( &p->shiftBuf, procSmpCnt, wndSmpCnt + procSmpCnt - 1, procSmpCnt );
  792. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt);
  793. p->outN = procSmpCnt;
  794. p->funcPtr = funcPtr;
  795. p->curWndSmpCnt = 1;
  796. p->wndSmpCnt = wndSmpCnt;
  797. return rc;
  798. }
  799. cmRC_t cmFuncFilterFinal( cmFuncFilter* p )
  800. { return cmOkRC; }
  801. cmRC_t cmFuncFilterExec( cmFuncFilter* p, const cmSample_t* sp, unsigned sn )
  802. {
  803. assert( sn <= p->outN);
  804. // The window used by this function is always causal. At the very beginning of the signal
  805. // the window length begins at 1 and increases until is has the length p->wndSmpCnt.
  806. // Note that this approach ignores any zeros automatically prepended to the beginning of the
  807. // signal by the shift buffer. The first window processed always has a length of 1 and
  808. // begins with the first actual sample given to the shift buffer. Successive windows increase
  809. // by one and start at the first actual sample until the full window length is available
  810. // from the shift buffer. At this point the window length remains constant and it is hopped
  811. // by one sample for each window.
  812. while(cmShiftBufExec(&p->shiftBuf,sp,sn))
  813. {
  814. const cmSample_t* fsp = p->shiftBuf.outV;
  815. cmSample_t* dp = p->outV;
  816. cmSample_t* ep = p->outV + sn; // produce as many output values as there are input samples
  817. // for each output sample
  818. while( dp < ep )
  819. {
  820. // the source range should never extend outside the shift buffer
  821. assert( fsp + p->curWndSmpCnt <= p->shiftBuf.outV + p->shiftBuf.wndSmpCnt );
  822. // calc the next output value
  823. *dp++ = p->funcPtr( fsp, p->curWndSmpCnt, p->userPtr );
  824. // if the window has not yet achieved its full length ...
  825. if( p->curWndSmpCnt < p->wndSmpCnt )
  826. ++p->curWndSmpCnt; // ... then increase its length by 1
  827. else
  828. ++fsp; // ... otherwise shift it ahead by 1
  829. }
  830. }
  831. return cmOkRC;
  832. }
  833. cmSample_t cmFuncFiltTestFunc( const cmSample_t* sp, unsigned sn, void* vp )
  834. {
  835. //printf("% f % f %p % i\n",*sp,*sp+(sn-1),sp,sn);
  836. cmSample_t v = cmVOS_Median(sp,sn);
  837. printf("%f ",v);
  838. return v;
  839. //return *sp;
  840. }
  841. void cmFuncFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  842. {
  843. unsigned procSmpCnt = 1;
  844. unsigned N = 32;
  845. cmSample_t v[N];
  846. cmCtx c;
  847. unsigned i;
  848. cmCtxAlloc(&c,rpt,lhH,stH);
  849. cmVOS_Seq(v,N,0,1);
  850. cmVOS_Print(rpt,1,32,v);
  851. cmFuncFilter* ffp = NULL;
  852. ffp = cmFuncFilterAlloc( &c, NULL, procSmpCnt, cmFuncFiltTestFunc, NULL, 5 );
  853. for(i=0; i<N; ++i)
  854. cmFuncFilterExec(ffp,v+(i*procSmpCnt),procSmpCnt);
  855. cmFuncFilterFree( &ffp );
  856. cmCtxFinal(&c);
  857. //unsigned v1n = 9;
  858. //cmSample_t v1[9] = { 1, 75, 91, 35, 6, 80, 40, 91, 79};
  859. //cmSample_t v1[10] = {53, 64, 48, 78, 30, 59, 7, 50, 71, 53 };
  860. //printf("Median: %f \n",cmVOS_Median(v1,v1+v1n));
  861. }
  862. //------------------------------------------------------------------------------------------------------------
  863. cmDhmm* cmDhmmAlloc( cmCtx* c, cmDhmm* ap, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
  864. {
  865. cmDhmm* p = cmObjAlloc( cmDhmm, c, ap );
  866. if( stateN > 0 && symN > 0 )
  867. if( cmDhmmInit(p, stateN, symN, initV, transM, stsM ) != cmOkRC )
  868. cmObjFree(&p);
  869. return p;
  870. }
  871. cmRC_t cmDhmmFree( cmDhmm** pp )
  872. {
  873. cmRC_t rc = cmOkRC;
  874. cmDhmm* p = *pp;
  875. if( pp==NULL || *pp==NULL )
  876. return cmOkRC;
  877. if((rc = cmDhmmFinal(p)) != cmOkRC )
  878. return cmOkRC;
  879. cmObjFree(pp);
  880. return rc;
  881. }
  882. cmRC_t cmDhmmInit( cmDhmm* p, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
  883. {
  884. cmRC_t rc;
  885. if((rc = cmDhmmFinal(p)) != cmOkRC )
  886. return rc;
  887. p->stateN = stateN;
  888. p->symN = symN;
  889. p->initV = initV;
  890. p->transM = transM;
  891. p->stsM = stsM;
  892. return cmOkRC;
  893. }
  894. cmRC_t cmDhmmFinal( cmDhmm* p )
  895. { return cmOkRC; }
  896. cmRC_t cmDhmmExec( cmDhmm* p )
  897. {
  898. return cmOkRC;
  899. }
  900. // Generate a random matrix with rows that sum to 1.0.
  901. void _cmDhmmGenRandMatrix( cmReal_t* dp, unsigned rn, unsigned cn )
  902. {
  903. cmReal_t v[ cn ];
  904. unsigned i,j;
  905. for(i=0; i<rn; ++i)
  906. {
  907. cmVOR_Random( v, cn, 0.0, 1.0 );
  908. cmVOR_NormalizeProbability( v, cn);
  909. for(j=0; j<cn; ++j)
  910. dp[ (j * rn) + i ] = v[j];
  911. }
  912. }
  913. enum { kEqualProbHmmFl=0x01, kRandProbHmmFl=0x02, kManualProbHmmFl=0x04 };
  914. void _cmDhmmGenProb( cmReal_t* dp, unsigned rn, unsigned cn, unsigned flags, const cmReal_t* sp )
  915. {
  916. switch( flags )
  917. {
  918. case kRandProbHmmFl:
  919. _cmDhmmGenRandMatrix( dp, rn, cn );
  920. break;
  921. case kEqualProbHmmFl:
  922. {
  923. // equal prob
  924. cmReal_t pr = 1.0/cn;
  925. unsigned i,j;
  926. for(i=0; i<rn; ++i)
  927. for(j=0; j<cn; ++j)
  928. dp[ (j*rn) + i ] = pr;
  929. }
  930. break;
  931. case kManualProbHmmFl:
  932. cmVOR_Copy( dp, (rn*cn), sp );
  933. break;
  934. default:
  935. assert(0);
  936. }
  937. }
  938. // generate a random integer in the range 0 to probN-1 where probV[ probN ] contains
  939. // the probability of generating each of the possible values.
  940. unsigned _cmDhmmGenRandInt( const cmReal_t* probV, unsigned probN, unsigned stride )
  941. {
  942. cmReal_t tmp[ probN ];
  943. cmReal_t cumSumV[ probN+1 ];
  944. const cmReal_t* sp = probV;
  945. cumSumV[0] = 0;
  946. if( stride > 1 )
  947. {
  948. cmVOR_CopyStride( tmp, probN, probV, stride );
  949. sp = tmp;
  950. }
  951. cmVOR_CumSum( cumSumV+1, probN, sp );
  952. return cmVOR_BinIndex( cumSumV, probN+1, (cmReal_t)rand()/RAND_MAX );
  953. }
  954. cmRC_t cmDhmmGenObsSequence( cmDhmm* p, unsigned* dbp, unsigned dn )
  955. {
  956. const unsigned* dep = dbp + dn;
  957. // generate the first state based on the init state prob. vector
  958. unsigned state = _cmDhmmGenRandInt( p->initV, p->stateN, 1 );
  959. // generate an observation from the state based on the symbol prob. vector
  960. *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
  961. while( dbp < dep )
  962. {
  963. // get the next state based on the previous state
  964. state = _cmDhmmGenRandInt( p->transM + state, p->stateN, p->stateN );
  965. // given a state generate an observation
  966. *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
  967. }
  968. return cmOkRC;
  969. }
  970. /// Perform a forward evaluation of the model given a set of observations.
  971. /// initPrV[ stateN ] is the probability of the model being in each state at the start of the evaluation.
  972. /// alphaM[ stateN, obsN ] is a return value and represents the probability of seeing each symbol at each time step.
  973. enum { kNoLogScaleHmmFl = 0x00, kLogScaleHmmFl = 0x01 };
  974. cmRC_t cmDHmmForwardEval( cmDhmm* p, const cmReal_t* initPrV, const unsigned* obsV, unsigned obsN, cmReal_t* alphaM, unsigned flags, cmReal_t* logProbPtr )
  975. {
  976. bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
  977. cmReal_t logProb = 0;
  978. cmReal_t* abp = alphaM; // define first dest. column
  979. const cmReal_t* aep = abp + p->stateN;
  980. const cmReal_t* sts = p->stsM + (obsV[0] * p->stateN); // stsM[] column for assoc'd with first obs. symbol
  981. unsigned i;
  982. // calc the prob of begining in each state given the obs. symbol
  983. for(i=0; abp < aep; ++i )
  984. *abp++ = *initPrV++ * *sts++;
  985. // scale to prevent underflow
  986. if( scaleFl )
  987. {
  988. cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
  989. if( sum > 0 )
  990. {
  991. cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
  992. logProb += log(sum);
  993. }
  994. }
  995. // for each time step
  996. for(i=1; i<obsN; ++i)
  997. {
  998. // next state 0 (first col, first row) is calc'd first
  999. const cmReal_t* tm = p->transM;
  1000. // pick the stsM[] column assoc'd with ith observation symbol
  1001. const cmReal_t* sts = p->stsM + (obsV[i] * p->stateN);
  1002. // store a pointer to the alpha column assoc'd with obsV[i-1]
  1003. const cmReal_t* app0 = abp - p->stateN;
  1004. aep = abp + p->stateN;
  1005. // for each dest state
  1006. while( abp < aep )
  1007. {
  1008. // prob of being in each state on the previous time step
  1009. const cmReal_t* app = app0;
  1010. const cmReal_t* ape = app + p->stateN;
  1011. *abp = 0;
  1012. // for each src state - calc prob. of trans from src to dest
  1013. while( app<ape )
  1014. *abp += *app++ * *tm++;
  1015. // calc prob of obs symbol in dest state
  1016. *abp++ *= *sts++;
  1017. }
  1018. // scale to prevent underflow
  1019. if( scaleFl )
  1020. {
  1021. cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
  1022. if( sum > 0 )
  1023. {
  1024. cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
  1025. logProb += log(sum);
  1026. }
  1027. }
  1028. }
  1029. if( logProbPtr != NULL )
  1030. *logProbPtr = logProb;
  1031. return cmOkRC;
  1032. }
  1033. cmRC_t cmDHmmBcmkwardEval( cmDhmm* p, const unsigned* obsV, unsigned obsN, cmReal_t* betaM, unsigned flags )
  1034. {
  1035. bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
  1036. int i,j,t;
  1037. cmVOR_Fill(betaM+((obsN-1)*p->stateN),p->stateN,1.0);
  1038. // for each time step
  1039. for(t=obsN-2; t>=0; --t)
  1040. {
  1041. // for each state at t
  1042. for(i=0; i<p->stateN; ++i)
  1043. {
  1044. double Bt = 0;
  1045. // for each state at t+1
  1046. for(j=0; j<p->stateN; ++j)
  1047. {
  1048. double aij = p->transM[ (j * p->stateN) + i ];
  1049. double bj = p->stsM[ (obsV[t+1] * p->stateN) + j ];
  1050. double Bt1 = betaM[ ((t+1) * p->stateN) + j ];
  1051. Bt += aij * bj * Bt1;
  1052. }
  1053. betaM[ (t * p->stateN) + i ] = Bt;
  1054. }
  1055. if( scaleFl )
  1056. {
  1057. double* bp = betaM + (t * p->stateN);
  1058. double sum = cmVOR_Sum(bp, p->stateN );
  1059. if( sum > 0 )
  1060. cmVOR_DivVS( bp, p->stateN, sum );
  1061. }
  1062. }
  1063. return cmOkRC;
  1064. }
  1065. void _cmDhmmNormRow( cmReal_t* p, unsigned pn, unsigned stride, const cmReal_t* sp )
  1066. {
  1067. if( sp == NULL )
  1068. sp = p;
  1069. cmReal_t sum = 0;
  1070. unsigned n = pn * stride;
  1071. const cmReal_t* bp = sp;
  1072. const cmReal_t* ep = bp + n;
  1073. for(; bp<ep; bp+=stride)
  1074. sum += *bp;
  1075. for(ep = p+n; p<ep; p+=stride,sp+=stride)
  1076. *p = *sp / sum;
  1077. }
  1078. void _cmDhmmNormMtxRows( cmReal_t* dp, unsigned rn, unsigned cn, const cmReal_t* sp )
  1079. {
  1080. const cmReal_t* erp = sp + rn;
  1081. while( sp < erp )
  1082. _cmDhmmNormRow( dp++, cn, rn, sp++ );
  1083. }
  1084. cmRC_t cmDhmmTrainEM( cmDhmm* p, const unsigned* obsV, unsigned obsN, unsigned iterCnt, unsigned flags )
  1085. {
  1086. unsigned i,j,k,t;
  1087. cmReal_t alphaM[ p->stateN * obsN ];
  1088. cmReal_t betaM[ p->stateN * obsN ];
  1089. cmReal_t g[ p->stateN * obsN ];
  1090. cmReal_t q[ p->stateN * p->symN ];
  1091. cmReal_t E[ p->stateN * p->stateN ];
  1092. cmReal_t logProb = 0;
  1093. //cmDhmmReport(p->obj.ctx,p);
  1094. for(k=0; k<iterCnt; ++k)
  1095. {
  1096. cmVOR_Fill( q, (p->stateN * p->symN), 0 );
  1097. cmVOR_Fill( E, (p->stateN * p->stateN), 0 );
  1098. // calculate alpha and beta
  1099. cmDHmmForwardEval( p, p->initV, obsV, obsN, alphaM, flags, &logProb);
  1100. cmDHmmBcmkwardEval( p, obsV, obsN, betaM, flags );
  1101. // gamma[ stateN, obsN ] = alphaM .* betaM - gamma is the probability of being in each state at each time step
  1102. cmVOR_MultVVV( g,(p->stateN*obsN), alphaM, betaM );
  1103. // normalize gamma
  1104. for(i=0; i<obsN; ++i)
  1105. cmVOR_NormalizeProbability( g + (i*p->stateN), p->stateN );
  1106. //printf("ITER:%i logProb:%f\n",k,logProb);
  1107. // count the number of times state i emits obsV[0] in the starting location
  1108. cmVOR_Copy( q + (obsV[0] * p->stateN), p->stateN, g );
  1109. for(t=0; t<obsN-1; ++t)
  1110. {
  1111. // point to alpha[:,t] and beta[:,t+1]
  1112. const cmReal_t* alpha_t0 = alphaM + (t*p->stateN);
  1113. const cmReal_t* beta_t1 = betaM + ((t+1)*p->stateN);
  1114. cmReal_t Et[ p->stateN * p->stateN ];
  1115. cmReal_t Esum = 0;
  1116. // for each source state
  1117. for(i=0; i<p->stateN; ++i)
  1118. {
  1119. // for each dest state
  1120. for(j=0; j<p->stateN; ++j)
  1121. {
  1122. // prob of transitioning from state i to j and emitting obs[t] at time t
  1123. cmReal_t Eps = alpha_t0[i] * p->transM[ (j*p->stateN) + i ] * p->stsM[ (obsV[t+1]*p->stateN) + j ] * beta_t1[j];
  1124. // count the number of transitions from i to j
  1125. Et[ (j*p->stateN) + i ] = Eps;
  1126. Esum += Eps;
  1127. }
  1128. // count the number of times state i emits obsV[t]
  1129. q[ (obsV[t+1] * p->stateN) + i ] += g[ ((t+1)*p->stateN) + i ];
  1130. }
  1131. // normalize Et and sum it into E
  1132. cmVOR_DivVS( Et, (p->stateN*p->stateN), Esum );
  1133. cmVOR_AddVV( E, (p->stateN*p->stateN), Et );
  1134. }
  1135. // update the model
  1136. _cmDhmmNormMtxRows( p->initV, 1, p->stateN, g );
  1137. _cmDhmmNormMtxRows( p->transM, p->stateN, p->stateN, E );
  1138. _cmDhmmNormMtxRows( p->stsM, p->stateN, p->symN, q );
  1139. }
  1140. return cmOkRC;
  1141. }
  1142. cmRC_t cmDhmmReport( cmDhmm* p )
  1143. {
  1144. cmVOR_PrintL("initV:\n", p->obj.err.rpt, 1, p->stateN, p->initV );
  1145. cmVOR_PrintL("transM:\n", p->obj.err.rpt, p->stateN, p->stateN, p->transM );
  1146. cmVOR_PrintL("symM:\n", p->obj.err.rpt, p->stateN, p->symN, p->stsM );
  1147. return cmOkRC;
  1148. }
  1149. void cmDhmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1150. {
  1151. unsigned stateN = 2;
  1152. unsigned symN = 3;
  1153. unsigned obsN = 4;
  1154. unsigned iterN = 10;
  1155. cmReal_t initV0[ stateN ];
  1156. cmReal_t transM0[ stateN * stateN ];
  1157. cmReal_t stsM0[ symN * stateN ];
  1158. cmReal_t initV1[ stateN ];
  1159. cmReal_t transM1[ stateN * stateN ];
  1160. cmReal_t stsM1[ symN * stateN ];
  1161. unsigned obsV[ obsN ];
  1162. unsigned hist[ symN ];
  1163. unsigned genFl = kManualProbHmmFl;
  1164. cmReal_t initV[] =
  1165. {
  1166. 0.44094,
  1167. 0.55906
  1168. };
  1169. cmReal_t transM[] =
  1170. {
  1171. 0.48336,
  1172. 0.81353,
  1173. 0.51664,
  1174. 0.18647,
  1175. };
  1176. cmReal_t stsM[] =
  1177. {
  1178. 0.20784,
  1179. 0.18698,
  1180. 0.43437,
  1181. 0.24102,
  1182. 0.35779,
  1183. 0.57199
  1184. };
  1185. unsigned obsM[] = { 2, 2, 2, 0 };
  1186. cmReal_t initV2[] = { 0.79060, 0.20940 };
  1187. cmReal_t transM2[] = { 0.508841, 0.011438, 0.491159, 0.988562 };
  1188. cmReal_t stsM2[] = { 0.25789, 0.35825, 0.61981, 0.42207, 0.12230, 0.21969 };
  1189. //srand( time(NULL) );
  1190. // generate a random HMM
  1191. _cmDhmmGenProb( initV0, 1, stateN, genFl, initV );
  1192. _cmDhmmGenProb( transM0, stateN, stateN, genFl, transM );
  1193. _cmDhmmGenProb( stsM0, stateN, symN, genFl, stsM );
  1194. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH);
  1195. cmDhmm* h0p = cmDhmmAlloc( c, NULL, stateN, symN, initV0, transM0, stsM0 );
  1196. // generate an observation sequence based on the random HMM
  1197. //cmDhmmGenObsSequence(c, h0p, obsV, obsN );
  1198. memcpy(obsV,obsM,obsN*sizeof(unsigned));
  1199. if( 0 )
  1200. {
  1201. // print the HMM
  1202. cmDhmmReport( h0p);
  1203. // print the observation symbols
  1204. cmVOU_PrintL("obs:\n", rpt, 1, obsN, obsV );
  1205. // print the histogram of the obs. symbols
  1206. cmVOU_Hist( hist, symN, obsV, obsN );
  1207. cmVOU_PrintL("hist:\n", rpt, 1, symN, hist );
  1208. // calc alpha (the forward probabilities)
  1209. cmReal_t alphaM[ h0p->stateN*obsN ];
  1210. cmReal_t logProb=0;
  1211. cmDHmmForwardEval( h0p, h0p->initV, obsV, obsN, alphaM, kLogScaleHmmFl, &logProb);
  1212. printf("log prob:%f\n alpha:\n", logProb );
  1213. cmVOR_Print( rpt, h0p->stateN, obsN, alphaM );
  1214. // calc beta (the bcmkward probabilities)
  1215. cmReal_t betaM[ h0p->stateN*obsN ];
  1216. logProb=0;
  1217. cmDHmmBcmkwardEval( h0p, obsV, obsN, betaM, kLogScaleHmmFl);
  1218. printf("log prob:%f\n beta:\n", logProb );
  1219. cmVOR_Print( h0p->obj.err.rpt, h0p->stateN, obsN, betaM );
  1220. }
  1221. // initialize a second HMM with random probabilities
  1222. _cmDhmmGenProb( initV1, 1, stateN, kManualProbHmmFl, initV2 );
  1223. _cmDhmmGenProb( transM1, stateN, stateN, kManualProbHmmFl, transM2 );
  1224. _cmDhmmGenProb( stsM1, stateN, symN, kManualProbHmmFl, stsM2 );
  1225. cmDhmm* h1p = cmDhmmAlloc( c, NULL, stateN, symN, initV1, transM1, stsM1 );
  1226. cmDhmmTrainEM( h1p, obsV, obsN, iterN, kLogScaleHmmFl );
  1227. cmDhmmFree(&h1p);
  1228. cmDhmmFree(&h0p);
  1229. cmCtxFree(&c);
  1230. }
  1231. //------------------------------------------------------------------------------------------------------------
  1232. cmConvolve* cmConvolveAlloc( cmCtx* c, cmConvolve* ap, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
  1233. {
  1234. cmConvolve* p = cmObjAlloc( cmConvolve, c, ap);
  1235. p->fft = cmFftAllocSR( c,NULL,NULL,0,kNoConvertFftFl);
  1236. p->ifft= cmIFftAllocRS(c,NULL,p->fft->binCnt);
  1237. if( hn > 0 && procSmpCnt > 0 )
  1238. if( cmConvolveInit(p,h,hn,procSmpCnt) != cmOkRC )
  1239. cmObjFree(&p);
  1240. return p;
  1241. }
  1242. cmRC_t cmConvolveFree( cmConvolve** pp )
  1243. {
  1244. cmRC_t rc;
  1245. cmConvolve* p = *pp;
  1246. if( pp == NULL || *pp == NULL )
  1247. return cmOkRC;
  1248. if((rc = cmConvolveFinal(p)) != cmOkRC )
  1249. return cmOkRC;
  1250. cmFftFreeSR(&p->fft);
  1251. cmIFftFreeRS(&p->ifft);
  1252. cmMemPtrFree(&p->H);
  1253. cmMemPtrFree(&p->outV);
  1254. cmObjFree(pp);
  1255. return cmOkRC;
  1256. }
  1257. cmRC_t cmConvolveInit( cmConvolve* p, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
  1258. {
  1259. cmRC_t rc;
  1260. unsigned i;
  1261. unsigned cn = cmNextPowerOfTwo( hn + procSmpCnt - 1 );
  1262. if((rc = cmConvolveFinal(p)) != cmOkRC )
  1263. return rc;
  1264. cmFftInitSR( p->fft, NULL, cn, kNoConvertFftFl );
  1265. cmIFftInitRS( p->ifft, p->fft->binCnt);
  1266. p->H = cmMemResizeZ( cmComplexR_t,p->H, p->fft->binCnt );
  1267. p->outV = cmMemResizeZ( cmSample_t,p->outV, cn );
  1268. p->olaV = p->outV + procSmpCnt;
  1269. p->outN = procSmpCnt;
  1270. p->hn = hn;
  1271. // take the FFT of the impulse response
  1272. cmFftExecSR( p->fft, h, hn );
  1273. // copy the FFT of the impulse response to p->H[]
  1274. for(i=0; i<p->fft->binCnt; ++i)
  1275. p->H[i] = p->fft->complexV[i] / p->fft->wndSmpCnt;
  1276. return cmOkRC;
  1277. }
  1278. cmRC_t cmConvolveFinal( cmConvolve* p )
  1279. { return cmOkRC; }
  1280. cmRC_t cmConvolveExec( cmConvolve* p, const cmSample_t* x, unsigned xn )
  1281. {
  1282. unsigned i;
  1283. // take FT of input signal
  1284. cmFftExecSR( p->fft, x, xn );
  1285. // multiply the signal spectra of the input signal and impulse response
  1286. for(i=0; i<p->fft->binCnt; ++i)
  1287. p->ifft->complexV[i] = p->H[i] * p->fft->complexV[i];
  1288. // take the IFFT of the convolved spectrum
  1289. cmIFftExecRS(p->ifft,NULL);
  1290. // sum with previous impulse response tail
  1291. cmVOS_AddVVV( p->outV, p->outN-1, p->olaV, p->ifft->outV );
  1292. // first sample of the impulse response tail is complete
  1293. p->outV[p->outN-1] = p->ifft->outV[p->outN-1];
  1294. // store the new impulse response tail
  1295. cmVOS_Copy(p->olaV,p->hn-1,p->ifft->outV + p->outN );
  1296. return cmOkRC;
  1297. }
  1298. cmRC_t cmConvolveSignal( cmCtx* c, const cmSample_t* h, unsigned hn, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn )
  1299. {
  1300. cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
  1301. cmConvolveExec(p,x,xn);
  1302. unsigned n = cmMin(p->outN,yn);
  1303. cmVOS_Copy(y,n,p->outV);
  1304. if( yn > p->outN )
  1305. {
  1306. unsigned m = cmMin(yn-p->outN,p->hn-1);
  1307. cmVOS_Copy(y+n,m,p->olaV);
  1308. }
  1309. cmConvolveFree(&p);
  1310. return cmOkRC;
  1311. }
  1312. cmRC_t cmConvolveTest(cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1313. {
  1314. cmCtx *c = cmCtxAlloc(NULL,rpt,lhH,stH);
  1315. cmSample_t h[] = { 1, .5, .25, 0, 0 };
  1316. unsigned hn = sizeof(h) / sizeof(h[0]);
  1317. cmSample_t x[] = { 1, 0, 0, 0, 1, 0, 0, 0 };
  1318. unsigned xn = sizeof(x) / sizeof(x[0]);
  1319. unsigned yn = xn+hn-1;
  1320. cmSample_t y[yn];
  1321. //cmVOS_Hann(h,5);
  1322. cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
  1323. cmConvolveExec(p,x,xn);
  1324. cmVOS_Print( rpt, 1, p->outN, p->outV );
  1325. cmVOS_Print( rpt, 1, p->hn-1, p->olaV );
  1326. cmConvolveFree(&p);
  1327. cmConvolveSignal(c,h,hn,x,xn,y,yn);
  1328. cmVOS_Print( rpt, 1, hn+xn-1, y );
  1329. cmCtxFree(&c);
  1330. return cmOkRC;
  1331. }
  1332. //------------------------------------------------------------------------------------------------------------
  1333. cmBfcc* cmBfccAlloc( cmCtx* ctx, cmBfcc* ap, unsigned bandCnt, unsigned binCnt, double binHz )
  1334. {
  1335. cmBfcc* p = cmObjAlloc( cmBfcc, ctx, ap );
  1336. if( bandCnt > 0 )
  1337. if( cmBfccInit( p, bandCnt, binCnt, binHz ) != cmOkRC )
  1338. cmBfccFree(&p);
  1339. return p;
  1340. }
  1341. cmRC_t cmBfccFree( cmBfcc** pp )
  1342. {
  1343. cmRC_t rc;
  1344. if( pp== NULL || *pp==NULL)
  1345. return cmOkRC;
  1346. cmBfcc* p = *pp;
  1347. if((rc = cmBfccFinal(p)) != cmOkRC )
  1348. return rc;
  1349. cmMemPtrFree(&p->dctMtx);
  1350. cmMemPtrFree(&p->filtMask);
  1351. cmMemPtrFree(&p->outV);
  1352. cmObjFree(pp);
  1353. return rc;
  1354. }
  1355. cmRC_t cmBfccInit( cmBfcc* p, unsigned bandCnt, unsigned binCnt, double binHz )
  1356. {
  1357. cmRC_t rc;
  1358. if((rc = cmBfccFinal(p)) != cmOkRC )
  1359. return rc;
  1360. p->dctMtx = cmMemResizeZ( cmReal_t, p->dctMtx, bandCnt*bandCnt);
  1361. p->filtMask = cmMemResizeZ( cmReal_t, p->filtMask, bandCnt*binCnt);
  1362. p->outV = cmMemResizeZ( cmReal_t, p->outV, bandCnt );
  1363. p->binCnt = binCnt;
  1364. p->bandCnt = bandCnt;
  1365. cmVOR_BarkMask( p->filtMask, bandCnt, binCnt, binHz );
  1366. cmVOR_DctMatrix(p->dctMtx, bandCnt, bandCnt );
  1367. return rc;
  1368. }
  1369. cmRC_t cmBfccFinal( cmBfcc* p )
  1370. { return cmOkRC; }
  1371. cmRC_t cmBfccExec( cmBfcc* p, const cmReal_t* magV, unsigned binCnt )
  1372. {
  1373. assert( binCnt <= p->binCnt );
  1374. cmReal_t t[ p->bandCnt ];
  1375. cmReal_t v[ binCnt ];
  1376. // convert magnitude to power
  1377. cmVOR_PowVVS(v,binCnt,magV,2.0);
  1378. // apply the filter mask to the power spectrum
  1379. cmVOR_MultVMV( t, p->bandCnt, p->filtMask, binCnt, v );
  1380. //cmVOR_PrintL("\t:\n", p->obj.ctx->outFuncPtr, 1, p->bandCnt, t);
  1381. cmVOR_ReplaceLte( t, p->bandCnt, t, 0, 0.1e-5 );
  1382. cmVOR_LogV( t, p->bandCnt, t );
  1383. // decorellate the bands with a DCT
  1384. cmVOR_MultVMV( p->outV, p->bandCnt, p->dctMtx, p->bandCnt, t );
  1385. return cmOkRC;
  1386. }
  1387. void cmBfccTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1388. {
  1389. double srate = 11025;
  1390. unsigned binCnt = 129;
  1391. double binHz = srate/(binCnt-1);
  1392. unsigned bandCnt = kDefaultBarkBandCnt;
  1393. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
  1394. cmBfcc* b = cmBfccAlloc( c, NULL, bandCnt, binCnt, binHz );
  1395. cmReal_t powV[] = {
  1396. 0.8402, 0.3944, 0.7831, 0.7984, 0.9116, 0.1976, 0.3352, 0.7682, 0.2778, 0.5540,
  1397. 0.4774, 0.6289, 0.3648, 0.5134, 0.9522, 0.9162, 0.6357, 0.7173, 0.1416, 0.6070,
  1398. 0.0163, 0.2429, 0.1372, 0.8042, 0.1567, 0.4009, 0.1298, 0.1088, 0.9989, 0.2183,
  1399. 0.5129, 0.8391, 0.6126, 0.2960, 0.6376, 0.5243, 0.4936, 0.9728, 0.2925, 0.7714,
  1400. 0.5267, 0.7699, 0.4002, 0.8915, 0.2833, 0.3525, 0.8077, 0.9190, 0.0698, 0.9493,
  1401. 0.5260, 0.0861, 0.1922, 0.6632, 0.8902, 0.3489, 0.0642, 0.0200, 0.4577, 0.0631,
  1402. 0.2383, 0.9706, 0.9022, 0.8509, 0.2667, 0.5398, 0.3752, 0.7602, 0.5125, 0.6677,
  1403. 0.5316, 0.0393, 0.4376, 0.9318, 0.9308, 0.7210, 0.2843, 0.7385, 0.6400, 0.3540,
  1404. 0.6879, 0.1660, 0.4401, 0.8801, 0.8292, 0.3303, 0.2290, 0.8934, 0.3504, 0.6867,
  1405. 0.9565, 0.5886, 0.6573, 0.8587, 0.4396, 0.9240, 0.3984, 0.8148, 0.6842, 0.9110,
  1406. 0.4825, 0.2158, 0.9503, 0.9201, 0.1477, 0.8811, 0.6411, 0.4320, 0.6196, 0.2811,
  1407. 0.7860, 0.3075, 0.4470, 0.2261, 0.1875, 0.2762, 0.5564, 0.4165, 0.1696, 0.9068,
  1408. 0.1032, 0.1261, 0.4954, 0.7605, 0.9848, 0.9350, 0.6844, 0.3832, 0.7498 };
  1409. //cmVOR_Random(powV, binCnt, 0.0, 1.0 );
  1410. cmBfccExec(b,powV,binCnt);
  1411. //cmVOR_PrintL("\nin:\n", rpt, 1, binCnt, powV);
  1412. //cmVOR_PrintL("\nfilt:\n", rpt, bandCnt, binCnt, b->filtMask);
  1413. //cmVOR_PrintL("\ndct:\n", rpt, bandCnt, bandCnt,b->dctMtx);
  1414. cmVOR_PrintL("\nbfcc:\n", rpt, 1, bandCnt, b->outV);
  1415. cmBfccFree(&b);
  1416. cmCtxFree(&c);
  1417. }
  1418. //------------------------------------------------------------------------------------------------------------
  1419. cmCeps* cmCepsAlloc( cmCtx* ctx, cmCeps* ap, unsigned binCnt, unsigned outN )
  1420. {
  1421. cmCeps* p = cmObjAlloc( cmCeps, ctx, ap );
  1422. //cmIFftAllocRR( ctx, &p->ft, 0 );
  1423. if( binCnt > 0 )
  1424. if( cmCepsInit( p, binCnt, outN ) != cmOkRC )
  1425. cmCepsFree(&p);
  1426. return p;
  1427. }
  1428. cmRC_t cmCepsFree( cmCeps** pp )
  1429. {
  1430. cmRC_t rc;
  1431. if( pp== NULL || *pp==NULL)
  1432. return cmOkRC;
  1433. cmCeps* p = *pp;
  1434. if((rc = cmCepsFinal(p)) != cmOkRC )
  1435. return rc;
  1436. //cmObjFreeStatic( cmIFftFreeRR, cmIFftRR, p->ft );
  1437. cmMemPtrFree(&p->dctM);
  1438. cmMemPtrFree(&p->outV);
  1439. cmObjFree(pp);
  1440. return rc;
  1441. }
  1442. cmRC_t cmCepsInit( cmCeps* p, unsigned binCnt, unsigned outN )
  1443. {
  1444. cmRC_t rc;
  1445. if((rc = cmCepsFinal(p)) != cmOkRC )
  1446. return rc;
  1447. //cmIFftInitRR( &p->ft, binCnt );
  1448. p->dct_cn = (binCnt-1)*2;
  1449. p->dctM = cmMemResize( cmReal_t, p->dctM, outN*p->dct_cn );
  1450. p->outN = outN; //p->ft.outN;
  1451. p->outV = cmMemResizeZ( cmReal_t, p->outV, outN ); //p->ft.outV;
  1452. p->binCnt = binCnt;
  1453. assert( outN <= p->dct_cn );
  1454. cmVOR_DctMatrix( p->dctM, outN, p->dct_cn );
  1455. return rc;
  1456. }
  1457. cmRC_t cmCepsFinal( cmCeps* p )
  1458. { return cmOkRC; }
  1459. cmRC_t cmCepsExec( cmCeps* p, const cmReal_t* magV, const cmReal_t* phsV, unsigned binCnt )
  1460. {
  1461. assert( binCnt == p->binCnt );
  1462. cmReal_t v[ p->dct_cn ];
  1463. // guard against zeros in the magn spectrum
  1464. cmVOR_ReplaceLte(v,binCnt,magV,0.0,0.00001);
  1465. // take the log of the spectrum
  1466. cmVOR_LogV(v,binCnt,v);
  1467. // reconstruct the negative frequencies
  1468. int i,j;
  1469. for(i=1,j=p->dct_cn-1; i<binCnt; ++i,--j)
  1470. v[j] = v[i];
  1471. // take the DCT
  1472. cmVOR_MultVMV( p->outV, p->outN, p->dctM, p->dct_cn, v );
  1473. //cmIFftExecPolarRR( &p->ft, v, phsV );
  1474. return cmOkRC;
  1475. }
  1476. //------------------------------------------------------------------------------------------------------------
  1477. cmOla* cmOlaAlloc( cmCtx* ctx, cmOla* ap, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
  1478. {
  1479. cmOla* p = cmObjAlloc( cmOla, ctx, ap );
  1480. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1481. if( wndSmpCnt > 0 )
  1482. if( cmOlaInit(p,wndSmpCnt,hopSmpCnt,procSmpCnt,wndTypeId) != cmOkRC )
  1483. cmOlaFree(&p);
  1484. return p;
  1485. }
  1486. cmRC_t cmOlaFree( cmOla** pp )
  1487. {
  1488. cmRC_t rc;
  1489. if( pp==NULL || *pp==NULL )
  1490. return cmOkRC;
  1491. cmOla* p = *pp;
  1492. if(( rc = cmOlaFinal(p)) != cmOkRC )
  1493. return rc;
  1494. cmMemPtrFree(&p->bufV);
  1495. cmMemPtrFree(&p->outV);
  1496. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1497. cmObjFree(pp);
  1498. return rc;
  1499. }
  1500. cmRC_t cmOlaInit( cmOla* p, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
  1501. {
  1502. cmRC_t rc;
  1503. if((rc = cmOlaFinal(p)) != cmOkRC )
  1504. return rc;
  1505. if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
  1506. return rc;
  1507. p->bufV = cmMemResizeZ( cmSample_t, p->bufV, wndSmpCnt );
  1508. p->outV = cmMemResizeZ( cmSample_t, p->outV, hopSmpCnt );
  1509. p->outPtr = p->outV + hopSmpCnt;
  1510. // hopSmpCnt must be an even multiple of procSmpCnt
  1511. assert( hopSmpCnt % procSmpCnt == 0 );
  1512. assert( wndSmpCnt >= hopSmpCnt );
  1513. p->wndSmpCnt = wndSmpCnt;
  1514. p->hopSmpCnt = hopSmpCnt;
  1515. p->procSmpCnt= procSmpCnt;
  1516. p->idx = 0;
  1517. return rc;
  1518. }
  1519. cmRC_t cmOlaFinal( cmOla* p )
  1520. { return cmOkRC; }
  1521. // The incoming buffer and the ola buf (bufV)
  1522. // can be divided into three logical parts:
  1523. //
  1524. // [head][middle][tail]
  1525. //
  1526. // head = hopSmpCnt values
  1527. // tail = hopSmpCnt values
  1528. // middle = wndSmpCnt - (2*hopSmpCnt) values
  1529. //
  1530. // Each exec can be broken into three phases:
  1531. //
  1532. // outV = bufV[tail] + in[head]
  1533. // bufV[middle] += in[middle]
  1534. // bufV[tail] = in[tail]
  1535. //
  1536. cmRC_t cmOlaExecS( cmOla* p, const cmSample_t* sp, unsigned sN )
  1537. {
  1538. assert( sN == p->wndSmpCnt );
  1539. cmRC_t rc = cmOkRC;
  1540. const cmSample_t* ep = sp + sN;
  1541. const cmSample_t* wp = p->wf.wndV;
  1542. int i,j,k,n;
  1543. // [Sum head of incoming samples with tail of ola buf]
  1544. // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
  1545. for(i=0; i<p->hopSmpCnt; ++i)
  1546. {
  1547. p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
  1548. if( p->idx == p->wndSmpCnt )
  1549. p->idx = 0;
  1550. }
  1551. // [Sum middle of incoming samples with middle of ola buf]
  1552. // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
  1553. n = p->wndSmpCnt - (2*p->hopSmpCnt);
  1554. k = p->idx;
  1555. for(j=0; j<n; ++j)
  1556. {
  1557. p->bufV[k++] += (*sp++ * *wp++);
  1558. if( k == p->wndSmpCnt )
  1559. k = 0;
  1560. }
  1561. // [Assign tail of incoming to tail of ola buf]
  1562. // assign ending samples from sp[] into bufV[]
  1563. while( sp < ep )
  1564. {
  1565. p->bufV[k++] = (*sp++ * *wp++);
  1566. if( k == p->wndSmpCnt )
  1567. k = 0;
  1568. }
  1569. p->outPtr = p->outV;
  1570. return rc;
  1571. }
  1572. cmRC_t cmOlaExecR( cmOla* p, const cmReal_t* sp, unsigned sN )
  1573. {
  1574. assert( sN == p->wndSmpCnt );
  1575. cmRC_t rc = cmOkRC;
  1576. const cmReal_t* ep = sp + sN;
  1577. const cmSample_t* wp = p->wf.wndV;
  1578. int i,j,k,n;
  1579. // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
  1580. for(i=0; i<p->hopSmpCnt; ++i)
  1581. {
  1582. p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
  1583. if( p->idx == p->wndSmpCnt )
  1584. p->idx = 0;
  1585. }
  1586. // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
  1587. n = p->wndSmpCnt - (2*p->hopSmpCnt);
  1588. k = p->idx;
  1589. for(j=0; j<n; ++j)
  1590. {
  1591. p->bufV[k++] += (*sp++ * *wp++);
  1592. if( k == p->wndSmpCnt )
  1593. k = 0;
  1594. }
  1595. // assign ending samples from sp[] into bufV[]
  1596. while( sp < ep )
  1597. {
  1598. p->bufV[k++] = (*sp++ * *wp++);
  1599. if( k == p->wndSmpCnt )
  1600. k = 0;
  1601. }
  1602. p->outPtr = p->outV;
  1603. return rc;
  1604. }
  1605. const cmSample_t* cmOlaExecOut(cmOla* p)
  1606. {
  1607. const cmSample_t* sp = p->outPtr;
  1608. if( sp >= p->outV + p->hopSmpCnt )
  1609. return NULL;
  1610. p->outPtr += p->procSmpCnt;
  1611. return sp;
  1612. }
  1613. //------------------------------------------------------------------------------------------------------------
  1614. cmPhsToFrq* cmPhsToFrqAlloc( cmCtx* c, cmPhsToFrq* ap, double srate, unsigned binCnt, unsigned hopSmpCnt )
  1615. {
  1616. cmPhsToFrq* p = cmObjAlloc( cmPhsToFrq, c, ap );
  1617. if( srate != 0 )
  1618. if( cmPhsToFrqInit( p, srate, binCnt, hopSmpCnt ) != cmOkRC )
  1619. cmPhsToFrqFree(&p);
  1620. return p;
  1621. }
  1622. cmRC_t cmPhsToFrqFree( cmPhsToFrq** pp )
  1623. {
  1624. cmRC_t rc = cmOkRC;
  1625. cmPhsToFrq* p = *pp;
  1626. if( pp==NULL || *pp== NULL )
  1627. return rc;
  1628. if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
  1629. return rc;
  1630. cmMemPtrFree(&p->hzV);
  1631. cmMemPtrFree(&p->phsV);
  1632. cmMemPtrFree(&p->wV);
  1633. cmObjFree(pp);
  1634. return rc;
  1635. }
  1636. cmRC_t cmPhsToFrqInit( cmPhsToFrq* p, double srate, unsigned binCnt, unsigned hopSmpCnt )
  1637. {
  1638. cmRC_t rc;
  1639. unsigned i;
  1640. if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
  1641. return rc;
  1642. p->hzV = cmMemResizeZ( cmReal_t, p->hzV, binCnt );
  1643. p->phsV = cmMemResizeZ( cmReal_t, p->phsV, binCnt );
  1644. p->wV = cmMemResizeZ( cmReal_t, p->wV, binCnt );
  1645. p->srate = srate;
  1646. p->binCnt = binCnt;
  1647. p->hopSmpCnt = hopSmpCnt;
  1648. for(i=0; i<binCnt; ++i)
  1649. p->wV[i] = M_PI * i * hopSmpCnt / (binCnt-1);
  1650. return rc;
  1651. }
  1652. cmRC_t cmPhsToFrqFinal(cmPhsToFrq* p )
  1653. { return cmOkRC; }
  1654. cmRC_t cmPhsToFrqExec( cmPhsToFrq* p, const cmReal_t* phsV )
  1655. {
  1656. cmRC_t rc = cmOkRC;
  1657. unsigned i;
  1658. double twoPi = 2.0 * M_PI;
  1659. double den = twoPi * p->hopSmpCnt;
  1660. for(i=0; i<p->binCnt; ++i)
  1661. {
  1662. cmReal_t dPhs = phsV[i] - p->phsV[i];
  1663. // unwrap phase - see phase_study.m for explanation
  1664. cmReal_t k = round( (p->wV[i] - dPhs) / twoPi);
  1665. // convert phase change to Hz
  1666. p->hzV[i] = (k * twoPi + dPhs) * p->srate / den;
  1667. // store phase for next iteration
  1668. p->phsV[i] = phsV[i];
  1669. }
  1670. return rc;
  1671. }
  1672. //------------------------------------------------------------------------------------------------------------
  1673. cmPvAnl* cmPvAnlAlloc( cmCtx* ctx, cmPvAnl* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
  1674. {
  1675. cmRC_t rc;
  1676. cmPvAnl* p = cmObjAlloc( cmPvAnl, ctx, ap );
  1677. cmShiftBufAlloc(ctx, &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt );
  1678. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1679. cmFftAllocSR( ctx, &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl);
  1680. cmPhsToFrqAlloc(ctx, &p->pf, srate, p->ft.binCnt, hopSmpCnt );
  1681. if( procSmpCnt > 0 )
  1682. if((rc = cmPvAnlInit(p,procSmpCnt,srate,wndSmpCnt,hopSmpCnt,flags)) != cmOkRC )
  1683. cmPvAnlFree(&p);
  1684. return p;
  1685. }
  1686. cmRC_t cmPvAnlFree( cmPvAnl** pp )
  1687. {
  1688. cmRC_t rc;
  1689. if( pp==NULL || *pp==NULL )
  1690. return cmOkRC;
  1691. cmPvAnl* p = *pp;
  1692. if((rc = cmPvAnlFinal(p) ) != cmOkRC )
  1693. return rc;
  1694. cmObjFreeStatic( cmPhsToFrqFree, cmPhsToFrq, p->pf );
  1695. cmObjFreeStatic( cmFftFreeSR, cmFftSR, p->ft );
  1696. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1697. cmObjFreeStatic( cmShiftBufFree, cmShiftBuf, p->sb );
  1698. cmObjFree(pp);
  1699. return rc;
  1700. }
  1701. cmRC_t cmPvAnlInit( cmPvAnl* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
  1702. {
  1703. cmRC_t rc;
  1704. if((rc = cmPvAnlFinal(p)) != cmOkRC )
  1705. return rc;
  1706. if((rc = cmShiftBufInit( &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt )) != cmOkRC )
  1707. return rc;
  1708. if((rc = cmWndFuncInit( &p->wf, kHannWndId | kNormByLengthWndFl, wndSmpCnt, 0)) != cmOkRC )
  1709. return rc;
  1710. if((rc = cmFftInitSR( &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl)) != cmOkRC )
  1711. return rc;
  1712. if((rc = cmPhsToFrqInit( &p->pf, srate, p->ft.binCnt, hopSmpCnt)) != cmOkRC )
  1713. return rc;
  1714. // if the window was just initialized
  1715. // divide the window to indirectly apply the magnitude normalization
  1716. //if( p->wndSmpCnt != wndSmpCnt )
  1717. // cmVOS_DivVS( p->wf.wndV, p->wf.outN, wndSmpCnt );
  1718. p->flags = flags;
  1719. p->procSmpCnt = procSmpCnt;
  1720. p->wndSmpCnt = wndSmpCnt;
  1721. p->hopSmpCnt = hopSmpCnt;
  1722. p->binCnt = p->ft.binCnt;
  1723. p->magV = p->ft.magV;
  1724. p->phsV = p->ft.phsV;
  1725. p->hzV = p->pf.hzV;
  1726. return rc;
  1727. }
  1728. cmRC_t cmPvAnlFinal(cmPvAnl* p )
  1729. { return cmOkRC; }
  1730. bool cmPvAnlExec( cmPvAnl* p, const cmSample_t* x, unsigned xN )
  1731. {
  1732. bool fl = false;
  1733. while( cmShiftBufExec(&p->sb,x,xN) )
  1734. {
  1735. cmWndFuncExec(&p->wf, p->sb.outV, p->sb.wndSmpCnt );
  1736. cmFftExecSR(&p->ft,NULL,0);
  1737. if( cmIsFlag(p->flags,kCalcHzPvaFl) )
  1738. cmPhsToFrqExec(&p->pf,p->phsV);
  1739. fl = true;
  1740. }
  1741. return fl;
  1742. }
  1743. //------------------------------------------------------------------------------------------------------------
  1744. cmPvSyn* cmPvSynAlloc( cmCtx* ctx, cmPvSyn* ap, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
  1745. {
  1746. cmRC_t rc;
  1747. cmPvSyn* p = cmObjAlloc( cmPvSyn, ctx, ap );
  1748. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1749. cmIFftAllocRS( ctx, &p->ft, wndSmpCnt/2+1 );
  1750. cmOlaAlloc( ctx, &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId );
  1751. if( procSmpCnt )
  1752. if((rc = cmPvSynInit(p,procSmpCnt,outSrate,wndSmpCnt,hopSmpCnt,wndTypeId)) != cmOkRC )
  1753. cmPvSynFree(&p);
  1754. return p;
  1755. }
  1756. cmRC_t cmPvSynFree( cmPvSyn** pp )
  1757. {
  1758. cmRC_t rc;
  1759. if( pp==NULL || *pp==NULL )
  1760. return cmOkRC;
  1761. cmPvSyn* p = *pp;
  1762. if((rc = cmPvSynFinal(p)) != cmOkRC )
  1763. return rc;
  1764. cmMemPtrFree(&p->minRphV);
  1765. cmMemPtrFree(&p->maxRphV);
  1766. cmMemPtrFree(&p->itrV);
  1767. cmMemPtrFree(&p->phs0V);
  1768. cmMemPtrFree(&p->phsV);
  1769. cmMemPtrFree(&p->mag0V);
  1770. cmMemPtrFree(&p->magV);
  1771. cmObjFreeStatic( cmOlaFree, cmOla, p->ola);
  1772. cmObjFreeStatic( cmIFftFreeRS, cmIFftRS, p->ft );
  1773. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1774. cmObjFree(pp);
  1775. return cmOkRC;
  1776. }
  1777. cmRC_t cmPvSynInit( cmPvSyn* p, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
  1778. {
  1779. cmRC_t rc;
  1780. int k;
  1781. double twoPi = 2.0 * M_PI;
  1782. bool useHannFl = true;
  1783. int m = useHannFl ? 2 : 1;
  1784. if((rc = cmPvSynFinal(p)) != cmOkRC )
  1785. return rc;
  1786. p->outSrate = outSrate;
  1787. p->procSmpCnt = procSmpCnt;
  1788. p->wndSmpCnt = wndSmpCnt;
  1789. p->hopSmpCnt = hopSmpCnt;
  1790. p->binCnt = wndSmpCnt / 2 + 1;
  1791. p->minRphV = cmMemResizeZ( cmReal_t, p->minRphV, p->binCnt );
  1792. p->maxRphV = cmMemResizeZ( cmReal_t, p->maxRphV, p->binCnt );
  1793. p->itrV = cmMemResizeZ( cmReal_t, p->itrV, p->binCnt );
  1794. p->phs0V = cmMemResizeZ( cmReal_t, p->phs0V, p->binCnt );
  1795. p->phsV = cmMemResizeZ( cmReal_t, p->phsV, p->binCnt );
  1796. p->mag0V = cmMemResizeZ( cmReal_t, p->mag0V, p->binCnt );
  1797. p->magV = cmMemResizeZ( cmReal_t, p->magV, p->binCnt );
  1798. if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
  1799. return rc;
  1800. if((rc = cmIFftInitRS( &p->ft, p->binCnt )) != cmOkRC )
  1801. return rc;
  1802. if((rc = cmOlaInit( &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId )) != cmOkRC )
  1803. return rc;
  1804. for(k=0; k<p->binCnt; ++k)
  1805. {
  1806. // complete revolutions per hop in radians
  1807. p->itrV[k] = twoPi * floor((double)k * hopSmpCnt / wndSmpCnt );
  1808. p->minRphV[k] = ((cmReal_t)(k-m)) * hopSmpCnt * twoPi / wndSmpCnt;
  1809. p->maxRphV[k] = ((cmReal_t)(k+m)) * hopSmpCnt * twoPi / wndSmpCnt;
  1810. //printf("%f %f %f\n",p->itrV[k],p->minRphV[k],p->maxRphV[k]);
  1811. }
  1812. return rc;
  1813. }
  1814. cmRC_t cmPvSynFinal(cmPvSyn* p )
  1815. { return cmOkRC; }
  1816. cmRC_t cmPvSynExec( cmPvSyn* p, const cmReal_t* magV, const cmReal_t* phsV )
  1817. {
  1818. double twoPi = 2.0 * M_PI;
  1819. unsigned k;
  1820. for(k=0; k<p->binCnt; ++k)
  1821. {
  1822. // phase dist between cur and prv frame
  1823. cmReal_t dp = phsV[k] - p->phs0V[k];
  1824. // dist must be positive (accum phase always increases)
  1825. if( dp < -0.00001 )
  1826. dp += twoPi;
  1827. // add in complete revolutions based on the bin frequency
  1828. // (these would have been lost from 'dp' due to phase wrap)
  1829. dp += p->itrV[k];
  1830. // constrain the phase change to lie within the range of the kth bin
  1831. if( dp < p->minRphV[k] )
  1832. dp += twoPi;
  1833. if( dp > p->maxRphV[k] )
  1834. dp -= twoPi;
  1835. p->phsV[k] = p->phs0V[k] + dp;
  1836. p->magV[k] = p->mag0V[k];
  1837. p->phs0V[k] = phsV[k];
  1838. p->mag0V[k] = magV[k];
  1839. }
  1840. cmIFftExecPolarRS( &p->ft, magV, phsV );
  1841. cmOlaExecS( &p->ola, p->ft.outV, p->ft.outN );
  1842. //printf("%i %i\n",p->binCnt,p->ft.binCnt );
  1843. //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, magV );
  1844. //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, p->phsV );
  1845. //cmVOS_Print( p->obj.ctx->outFuncPtr, 1, 10, p->ft.outV );
  1846. return cmOkRC;
  1847. }
  1848. cmRC_t cmPvSynDoIt( cmPvSyn* p, const cmSample_t* v )
  1849. {
  1850. cmOlaExecS( &p->ola, v, p->wndSmpCnt );
  1851. //printf("%f\n",cmVOS_RMS(s,p->wndSmpCnt,p->wndSmpCnt));
  1852. return cmOkRC;
  1853. }
  1854. const cmSample_t* cmPvSynExecOut(cmPvSyn* p )
  1855. { return cmOlaExecOut(&p->ola); }
  1856. //------------------------------------------------------------------------------------------------------------
  1857. cmMidiSynth* cmMidiSynthAlloc( cmCtx* ctx, cmMidiSynth* ap, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
  1858. {
  1859. cmMidiSynth* p = cmObjAlloc( cmMidiSynth, ctx, ap );
  1860. if( pgmArray != NULL )
  1861. if( cmMidiSynthInit( p, pgmArray, pgmCnt, voiceCnt, procSmpCnt, outChCnt, srate ) != cmOkRC )
  1862. cmMidiSynthFree(&p);
  1863. return p;
  1864. }
  1865. cmRC_t cmMidiSynthFree( cmMidiSynth** pp )
  1866. {
  1867. cmRC_t rc;
  1868. if( pp==NULL || *pp==NULL)
  1869. return cmOkRC;
  1870. cmMidiSynth* p = *pp;
  1871. if((rc = cmMidiSynthFinal(p)) != cmOkRC )
  1872. return rc;
  1873. cmMemPtrFree(&p->voiceArray);
  1874. cmMemPtrFree(&p->outM);
  1875. cmMemPtrFree(&p->outChArray);
  1876. cmObjFree(pp);
  1877. return cmOkRC;
  1878. }
  1879. cmRC_t cmMidiSynthInit( cmMidiSynth* p, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
  1880. {
  1881. // at least one pgm must be given
  1882. assert( pgmCnt > 0 );
  1883. unsigned i;
  1884. cmRC_t rc;
  1885. if((rc = cmMidiSynthFinal(p)) != cmOkRC )
  1886. return rc;
  1887. p->voiceArray = cmMemResizeZ( cmMidiVoice, p->voiceArray, voiceCnt );
  1888. p->outM = cmMemResizeZ( cmSample_t, p->outM, outChCnt * procSmpCnt );
  1889. p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
  1890. p->avail = p->voiceArray;
  1891. p->voiceCnt = voiceCnt;
  1892. p->activeVoiceCnt = 0;
  1893. p->voiceStealCnt = 0;
  1894. p->procSmpCnt = procSmpCnt;
  1895. p->outChCnt = outChCnt;
  1896. p->srate = srate;
  1897. for(i=0; i<outChCnt; ++i)
  1898. p->outChArray[i] = p->outM + (i*procSmpCnt);
  1899. for(i=0; i<kMidiChCnt; ++i)
  1900. {
  1901. p->chArray[i].pgm = 0;
  1902. p->chArray[i].active = NULL;
  1903. p->chArray[i].pitchBend = 0;
  1904. p->chArray[i].synthPtr = p;
  1905. memset(p->chArray[i].midiCtl, 0, kMidiCtlCnt * sizeof(cmMidiByte_t));
  1906. }
  1907. for(i=0; i<voiceCnt; ++i)
  1908. {
  1909. p->voiceArray[i].index = i;
  1910. p->voiceArray[i].flags = 0;
  1911. p->voiceArray[i].pitch = kInvalidMidiPitch;
  1912. p->voiceArray[i].velocity = kInvalidMidiVelocity;
  1913. p->voiceArray[i].pgm.pgm = kInvalidMidiPgm;
  1914. p->voiceArray[i].pgm.cbPtr = NULL;
  1915. p->voiceArray[i].pgm.cbDataPtr = NULL;
  1916. p->voiceArray[i].chPtr = NULL;
  1917. p->voiceArray[i].link = i<voiceCnt-1 ? p->voiceArray + i + 1 : NULL;
  1918. }
  1919. for(i=0; i<pgmCnt; ++i)
  1920. {
  1921. unsigned idx = pgmArray[i].pgm;
  1922. if( idx >= kMidiPgmCnt )
  1923. rc = cmCtxRtCondition( &p->obj, cmArgAssertRC, "MIDI program change values must be less than %i.",kMidiPgmCnt);
  1924. else
  1925. {
  1926. p->pgmArray[ idx ].cbPtr = pgmArray[i].cbPtr;
  1927. p->pgmArray[ idx ].cbDataPtr = pgmArray[i].cbDataPtr;
  1928. p->pgmArray[ idx ].pgm = idx;
  1929. }
  1930. }
  1931. return rc;
  1932. }
  1933. cmRC_t cmMidiSynthFinal( cmMidiSynth* p )
  1934. { return cmOkRC; }
  1935. cmRC_t _cmMidiSynthOnNoteOn( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
  1936. {
  1937. assert( ch < kMidiChCnt );
  1938. if( p->activeVoiceCnt == p->voiceCnt )
  1939. {
  1940. ++p->voiceStealCnt;
  1941. return cmOkRC;
  1942. }
  1943. assert( p->avail != NULL );
  1944. cmMidiSynthCh* chPtr = p->chArray + ch;
  1945. cmMidiVoice* vp = p->avail;
  1946. ++p->activeVoiceCnt;
  1947. // update avail
  1948. p->avail = p->avail->link;
  1949. // update active
  1950. vp->flags |= kActiveMsFl | kKeyGateMsFl;
  1951. vp->pitch = pitch;
  1952. vp->velocity = vel;
  1953. vp->pgm = p->pgmArray[ chPtr->pgm ];
  1954. vp->chPtr = chPtr;
  1955. vp->link = chPtr->active;
  1956. chPtr->active = vp;
  1957. vp->pgm.cbPtr( vp, kAttackMsId, NULL, 0 );
  1958. return cmOkRC;
  1959. }
  1960. cmRC_t _cmMidiSynthOnNoteOff( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
  1961. {
  1962. assert( ch < kMidiChCnt );
  1963. cmMidiSynthCh* cp = p->chArray + ch;
  1964. cmMidiVoice* vp = cp->active;
  1965. // find the voice for the given pitch
  1966. while( vp != NULL )
  1967. {
  1968. if( (vp->pitch == pitch) && (cmIsFlag(vp->flags,kKeyGateMsFl)==true) )
  1969. break;
  1970. vp = vp->link;
  1971. }
  1972. // if no voice had a key down on this pitch
  1973. if( vp == NULL )
  1974. {
  1975. return cmOkRC;
  1976. }
  1977. // mark the key as 'up'
  1978. vp->flags = cmClrFlag(vp->flags,kKeyGateMsFl);
  1979. // if the sustain pedal is up
  1980. if( cp->midiCtl[ kSustainCtlMdId ] == 0 )
  1981. vp->pgm.cbPtr( vp, kReleaseMsId, NULL, 0 );
  1982. return cmOkRC;
  1983. }
  1984. cmRC_t _cmMidiSynthOnCtl( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t ctlId, cmMidiByte_t ctlValue )
  1985. {
  1986. assert( ch < kMidiChCnt && ctlId < kMidiCtlCnt );
  1987. cmMidiSynthCh* cp = p->chArray + ch;
  1988. cp->midiCtl[ ctlId ] = ctlValue;
  1989. // if the sustain pedal is going up
  1990. if( ctlId == kSustainCtlMdId && ctlValue == 0 )
  1991. {
  1992. cmMidiVoice* vp = cp->active;
  1993. while(vp != NULL)
  1994. {
  1995. if( cmIsFlag(vp->flags,kKeyGateMsFl)==false )
  1996. vp->pgm.cbPtr(vp, kReleaseMsId, NULL, 0 );
  1997. vp = vp->link;
  1998. }
  1999. }
  2000. //printf("%i %i %f\n",ctlId,ctlValue,ctlValue/127.0);
  2001. return cmOkRC;
  2002. }
  2003. cmRC_t cmMidiSynthOnMidi( cmMidiSynth* p, const cmMidiPacket_t* pktArray, unsigned pktCnt )
  2004. {
  2005. unsigned i=0;
  2006. for(i=0; i<pktCnt; ++i)
  2007. if( pktArray[i].msgArray != NULL )
  2008. {
  2009. unsigned j;
  2010. for(j=0; j<pktArray[i].msgCnt; ++j)
  2011. {
  2012. const cmMidiMsg* mp = pktArray[i].msgArray + j;
  2013. cmMidiByte_t ch = mp->status & 0x0f;
  2014. cmMidiByte_t status = mp->status & 0xf0;
  2015. switch( status )
  2016. {
  2017. case kNoteOnMdId:
  2018. if( mp->d1 != 0 )
  2019. {
  2020. _cmMidiSynthOnNoteOn(p,ch,mp->d0,mp->d1);
  2021. break;
  2022. }
  2023. // fall through
  2024. case kNoteOffMdId:
  2025. _cmMidiSynthOnNoteOff(p,ch,mp->d0,mp->d1);
  2026. break;
  2027. case kPolyPresMdId:
  2028. break;
  2029. case kCtlMdId:
  2030. _cmMidiSynthOnCtl( p, ch, mp->d0, mp->d1 );
  2031. break;
  2032. case kPgmMdId:
  2033. break;
  2034. case kChPresMdId:
  2035. break;
  2036. case kPbendMdId:
  2037. break;
  2038. default:
  2039. printf("Unknown MIDI status:%i %i\n",(int)status,(int)mp->status);
  2040. break;
  2041. }
  2042. }
  2043. }
  2044. return cmOkRC;
  2045. }
  2046. cmRC_t cmMidiSynthExec( cmMidiSynth* p, cmSample_t* outChArray[], unsigned outChCnt )
  2047. {
  2048. unsigned i;
  2049. cmSample_t** chArray = outChArray == NULL ? p->outChArray : outChArray;
  2050. unsigned chCnt = outChArray == NULL ? p->outChCnt : outChCnt;
  2051. // FIX: make one active chain attached to cmMidiSynth rather than many
  2052. // active chains attached to each channel - this will avoid the extra
  2053. // iterations below.
  2054. // for each channel
  2055. for(i=0; i<kMidiChCnt; ++i)
  2056. {
  2057. cmMidiVoice* vp = p->chArray[i].active;
  2058. cmMidiVoice* prv = NULL;
  2059. // for each voice assigned to this channel
  2060. while(vp != NULL)
  2061. {
  2062. // tell the voice to perform its DSP function - returns 0 if the voice is no longer active
  2063. if( vp->pgm.cbPtr( vp, kDspMsId, chArray, chCnt ) )
  2064. {
  2065. prv = vp;
  2066. vp = vp->link;
  2067. }
  2068. else
  2069. {
  2070. cmMidiVoice* nvp = vp->link;
  2071. // remove vp from the active chain
  2072. if( prv != NULL )
  2073. prv->link = vp->link;
  2074. else
  2075. {
  2076. assert( vp == p->chArray[i].active );
  2077. // vp is first recd on active chain, nvp becomes first ...
  2078. p->chArray[i].active = vp->link;
  2079. prv = NULL; // ... so prv must be NULL
  2080. }
  2081. // insert this voice on the available chain
  2082. vp->link = p->avail;
  2083. p->avail = vp;
  2084. --p->activeVoiceCnt;
  2085. vp = nvp;
  2086. }
  2087. }
  2088. }
  2089. return cmOkRC;
  2090. }
  2091. //------------------------------------------------------------------------------------------------------------
  2092. cmWtVoice* cmWtVoiceAlloc( cmCtx* ctx, cmWtVoice* ap, unsigned procSmpCnt, cmReal_t hz )
  2093. {
  2094. cmWtVoice* p = cmObjAlloc( cmWtVoice, ctx, ap );
  2095. if( procSmpCnt != 0 )
  2096. if( cmWtVoiceInit( p, procSmpCnt, hz ) != cmOkRC )
  2097. cmWtVoiceFree(&p);
  2098. return p;
  2099. }
  2100. cmRC_t cmWtVoiceFree( cmWtVoice** pp )
  2101. {
  2102. cmRC_t rc = cmOkRC;
  2103. if( pp==NULL || *pp==NULL )
  2104. return cmOkRC;
  2105. cmWtVoice* p = *pp;
  2106. if((rc = cmWtVoiceFinal(p)) != cmOkRC )
  2107. return rc;
  2108. cmMemPtrFree(&p->outV);
  2109. cmObjFree(pp);
  2110. return rc;
  2111. }
  2112. cmRC_t cmWtVoiceInit( cmWtVoice* p, unsigned procSmpCnt, cmReal_t hz )
  2113. {
  2114. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  2115. p->outN = procSmpCnt;
  2116. p->hz = hz;
  2117. p->level = 0;
  2118. p->durSmpCnt = 0;
  2119. p->phase = 0;
  2120. p->state = kOffWtId;
  2121. return cmOkRC;
  2122. }
  2123. cmRC_t cmWtVoiceFinal( cmWtVoice* p )
  2124. { return cmOkRC; }
  2125. int cmWtVoiceExec( cmWtVoice* p, struct cmMidiVoice_str* mvp, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
  2126. {
  2127. switch( sel )
  2128. {
  2129. case kAttackMsId:
  2130. p->state = kAtkWtId;
  2131. p->hz = (13.75 * pow(2,(-9.0/12.0))) * pow(2,((double)mvp->pitch / 12));
  2132. //printf("%fhz\n",p->hz);
  2133. break;
  2134. case kReleaseMsId:
  2135. p->state = kRlsWtId;
  2136. //printf("rls:%f\n",p->phase);
  2137. break;
  2138. case kDspMsId:
  2139. {
  2140. if( p->state == kRlsWtId )
  2141. {
  2142. p->state = kOffWtId;
  2143. return 0;
  2144. }
  2145. cmMidiSynth* sp = mvp->chPtr->synthPtr;
  2146. cmSample_t* dp = outChCnt == 0 ? p->outV : outChArray[0];
  2147. cmSample_t* ep = dp + p->outN;
  2148. cmReal_t rps = (2.0 * M_PI * p->hz) / sp->srate;
  2149. cmReal_t sum=0;
  2150. unsigned i=0;
  2151. for(; dp < ep; ++dp)
  2152. {
  2153. *dp += (cmSample_t)(0.5 * sin( p->phase ));
  2154. sum += *dp;
  2155. ++i;
  2156. p->phase += rps;
  2157. }
  2158. //printf("(%f %f %i %i %p) ",p->phase,sum,i,p->outN,outChArray[0] );
  2159. }
  2160. break;
  2161. default:
  2162. assert(0);
  2163. break;
  2164. }
  2165. return 1;
  2166. }
  2167. //------------------------------------------------------------------------------------------------------------
  2168. cmWtVoiceBank* cmWtVoiceBankAlloc( cmCtx* ctx, cmWtVoiceBank* ap, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
  2169. {
  2170. cmWtVoiceBank* p = cmObjAlloc( cmWtVoiceBank, ctx, ap );
  2171. if( srate != 0 )
  2172. if( cmWtVoiceBankInit( p, srate, procSmpCnt, voiceCnt, chCnt ) != cmOkRC )
  2173. cmWtVoiceBankFree(&p);
  2174. return p;
  2175. }
  2176. cmRC_t cmWtVoiceBankFree( cmWtVoiceBank** pp )
  2177. {
  2178. cmRC_t rc;
  2179. if( pp==NULL || *pp==NULL)
  2180. return cmOkRC;
  2181. cmWtVoiceBank* p = *pp;
  2182. if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
  2183. return rc;
  2184. cmMemPtrFree(&p->voiceArray);
  2185. cmMemPtrFree(&p->chArray);
  2186. cmMemPtrFree(&p->buf);
  2187. cmObjFree(pp);
  2188. return rc;
  2189. }
  2190. cmRC_t cmWtVoiceBankInit( cmWtVoiceBank* p, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
  2191. {
  2192. cmRC_t rc;
  2193. unsigned i;
  2194. if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
  2195. return rc;
  2196. p->voiceArray = cmMemResizeZ( cmWtVoice*, p->voiceArray, voiceCnt );
  2197. for(i=0; i<voiceCnt; ++i)
  2198. p->voiceArray[i] = cmWtVoiceAlloc(p->obj.ctx,NULL,procSmpCnt,0);
  2199. p->voiceCnt = voiceCnt;
  2200. p->buf = cmMemResizeZ( cmSample_t, p->buf, chCnt * procSmpCnt );
  2201. p->chArray = cmMemResizeZ( cmSample_t*, p->chArray, chCnt );
  2202. for(i=0; i<chCnt; ++i)
  2203. p->chArray[i] = p->buf + (i*procSmpCnt);
  2204. p->chCnt = chCnt;
  2205. p->procSmpCnt = procSmpCnt;
  2206. return cmOkRC;
  2207. }
  2208. cmRC_t cmWtVoiceBankFinal( cmWtVoiceBank* p )
  2209. {
  2210. unsigned i;
  2211. for(i=0; i<p->voiceCnt; ++i)
  2212. cmWtVoiceFree(&p->voiceArray[i]);
  2213. return cmOkRC;
  2214. }
  2215. int cmWtVoiceBankExec( cmWtVoiceBank* p, struct cmMidiVoice_str* voicePtr, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
  2216. {
  2217. cmWtVoice* vp = p->voiceArray[ voicePtr->index ];
  2218. bool fl = outChArray==NULL || outChCnt==0;
  2219. cmSample_t** chArray = fl ? p->chArray : outChArray;
  2220. unsigned chCnt = fl ? p->chCnt : outChCnt;
  2221. return cmWtVoiceExec( vp, voicePtr, sel, chArray, chCnt );
  2222. }
  2223. //------------------------------------------------------------------------------------------------------------
  2224. cmAudioFileBuf* cmAudioFileBufAlloc( cmCtx* ctx, cmAudioFileBuf* ap, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
  2225. {
  2226. cmAudioFileBuf* p = cmObjAlloc( cmAudioFileBuf, ctx, ap );
  2227. if( procSmpCnt != 0 )
  2228. if( cmAudioFileBufInit( p, procSmpCnt, fn, audioChIdx, begSmpIdx, durSmpCnt ) != cmOkRC )
  2229. cmAudioFileBufFree(&p);
  2230. return p;
  2231. }
  2232. cmRC_t cmAudioFileBufFree( cmAudioFileBuf** pp )
  2233. {
  2234. cmRC_t rc;
  2235. if( pp==NULL || *pp==NULL)
  2236. return cmOkRC;
  2237. cmAudioFileBuf* p = *pp;
  2238. if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
  2239. return rc;
  2240. cmMemPtrFree(&p->bufV);
  2241. cmMemPtrFree(&p->fn);
  2242. cmObjFree(pp);
  2243. return rc;
  2244. }
  2245. cmRC_t cmAudioFileBufInit( cmAudioFileBuf* p, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
  2246. {
  2247. cmAudioFileH_t afH;
  2248. cmRC_t rc;
  2249. if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
  2250. return rc;
  2251. // open the audio file for reading
  2252. if( cmAudioFileIsValid( afH = cmAudioFileNewOpen( fn, &p->info, &rc, p->obj.err.rpt ))==false || rc != kOkAfRC )
  2253. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file '%s' could not be opend.",fn );
  2254. // validate the audio channel
  2255. if( audioChIdx >= p->info.chCnt )
  2256. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file channel index %i is out of range for the audio file '%s'.",audioChIdx,fn);
  2257. // validate the start sample index
  2258. if( begSmpIdx > p->info.frameCnt )
  2259. return cmCtxRtCondition(&p->obj, cmOkRC, "The start sample index %i is past the end of the audio file '%s'.",begSmpIdx,fn);
  2260. if( durSmpCnt == cmInvalidCnt )
  2261. durSmpCnt = p->info.frameCnt - begSmpIdx;
  2262. // validate the duration
  2263. if( begSmpIdx + durSmpCnt > p->info.frameCnt )
  2264. {
  2265. unsigned newDurSmpCnt = p->info.frameCnt - begSmpIdx;
  2266. cmCtxRtCondition(&p->obj, cmOkRC, "The selected sample duration %i is past the end of the audio file '%s' and has been shorted to %i samples.",durSmpCnt,fn,newDurSmpCnt);
  2267. durSmpCnt = newDurSmpCnt;
  2268. }
  2269. // seek to the starting sample
  2270. if( cmAudioFileSeek( afH, begSmpIdx ) != kOkAfRC )
  2271. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"Seek to sample index %i failed on the audio file '%s'.",begSmpIdx,fn);
  2272. // allocate the buffer memory
  2273. p->bufV = cmMemResizeZ( cmSample_t, p->bufV, durSmpCnt );
  2274. p->fn = cmMemResize( char, p->fn, strlen(fn)+1 );
  2275. p->bufN = durSmpCnt;
  2276. p->begSmpIdx = begSmpIdx;
  2277. p->chIdx = audioChIdx;
  2278. strcpy(p->fn,fn);
  2279. cmSample_t* outV = p->bufV;
  2280. // read the file into the buffer
  2281. unsigned rdSmpCnt = cmMin(4096,durSmpCnt);
  2282. unsigned cmc = 0;
  2283. while( cmc < durSmpCnt )
  2284. {
  2285. unsigned actualReadCnt = 0;
  2286. unsigned n = rdSmpCnt;
  2287. cmSample_t* chArray[] = {outV};
  2288. if( cmc + n > durSmpCnt )
  2289. n = durSmpCnt - cmc;
  2290. if((rc=cmAudioFileReadSample( afH, n, audioChIdx, 1, chArray, &actualReadCnt)) != kOkAfRC )
  2291. break;
  2292. cmc += actualReadCnt;
  2293. outV += actualReadCnt;
  2294. }
  2295. if( rc==kOkAfRC || (rc != kOkAfRC && cmAudioFileIsEOF(afH)))
  2296. rc = cmOkRC;
  2297. return rc;
  2298. }
  2299. cmRC_t cmAudioFileBufFinal(cmAudioFileBuf* p )
  2300. { return cmOkRC; }
  2301. unsigned cmAudioFileBufExec( cmAudioFileBuf* p, unsigned smpIdx, cmSample_t* outV, unsigned outN, bool sumIntoOutFl )
  2302. {
  2303. if( outV == NULL || outN == 0 || smpIdx >= p->bufN )
  2304. return 0;
  2305. unsigned n = cmMin(outN,p->bufN-smpIdx);
  2306. if( sumIntoOutFl )
  2307. cmVOS_AddVV(outV,n,p->bufV + smpIdx);
  2308. else
  2309. cmVOS_Copy(outV,n,p->bufV + smpIdx );
  2310. if( n < outN )
  2311. memset(outV+n,0,(outN-n)*sizeof(cmSample_t));
  2312. return n;
  2313. }
  2314. //------------------------------------------------------------------------------------------------------------
  2315. cmMDelay* cmMDelayAlloc( cmCtx* ctx, cmMDelay* ap, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
  2316. {
  2317. cmMDelay* p = cmObjAlloc( cmMDelay, ctx, ap );
  2318. if( procSmpCnt != 0 )
  2319. if( cmMDelayInit( p, procSmpCnt, srate, fbCoeff, delayCnt, delayMsArray, delayGainArray ) != cmOkRC )
  2320. cmMDelayFree(&p);
  2321. return p;
  2322. }
  2323. cmRC_t cmMDelayFree( cmMDelay** pp )
  2324. {
  2325. cmRC_t rc;
  2326. if( pp == NULL || *pp==NULL)
  2327. return cmOkRC;
  2328. cmMDelay* p = *pp;
  2329. if((rc = cmMDelayFinal(p)) != cmOkRC )
  2330. return rc;
  2331. unsigned i;
  2332. for(i=0; i<p->delayCnt; ++i)
  2333. cmMemPtrFree(&p->delayArray[i].delayBuf);
  2334. cmMemPtrFree(&p->delayArray);
  2335. cmMemPtrFree(&p->outV);
  2336. cmObjFree(pp);
  2337. return cmOkRC;
  2338. }
  2339. cmRC_t cmMDelayInit( cmMDelay* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
  2340. {
  2341. cmRC_t rc;
  2342. if((rc = cmMDelayFinal(p)) != cmOkRC )
  2343. return rc;
  2344. if( delayCnt <= 0 )
  2345. return rc;
  2346. p->delayArray = cmMemResizeZ( cmMDelayHead, p->delayArray, delayCnt );
  2347. unsigned i;
  2348. for(i=0; i<delayCnt; ++i)
  2349. {
  2350. p->delayArray[i].delayGain = delayGainArray == NULL ? 1.0 : delayGainArray[i];
  2351. p->delayArray[i].delayMs = delayMsArray[i];
  2352. p->delayArray[i].delaySmpFrac = delayMsArray[i] * srate / 1000.0;
  2353. p->delayArray[i].delayBufSmpCnt = ceil(delayMsArray[i] * srate / 1000)+2;
  2354. p->delayArray[i].delayBuf = cmMemResizeZ( cmSample_t, p->delayArray[i].delayBuf, p->delayArray[i].delayBufSmpCnt );
  2355. p->delayArray[i].inIdx = 0;
  2356. }
  2357. p->delayCnt= delayCnt;
  2358. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  2359. p->outN = procSmpCnt;
  2360. p->fbCoeff = fbCoeff;
  2361. p->srate = srate;
  2362. return cmOkRC;
  2363. }
  2364. cmRC_t cmMDelayFinal( cmMDelay* p )
  2365. { return cmOkRC; }
  2366. void _cmMDelayExec( cmMDelay* p, cmMDelayHead* hp, const cmSample_t inV[], cmSample_t outV[], unsigned sigN )
  2367. {
  2368. cmSample_t* dl = hp->delayBuf; // ptr to the base of the delay line
  2369. cmReal_t dfi = (cmReal_t)(hp->inIdx - hp->delaySmpFrac) + hp->delayBufSmpCnt; // fractional delay in samples
  2370. int dii0 = ((int)dfi) % hp->delayBufSmpCnt; // index to the sample just before the delay position
  2371. int dii1 = (dii0 + 1) % hp->delayBufSmpCnt; // index to the sample just after the delay position
  2372. //cmReal_t frac = 0; //dfi - dii0; // interpolation coeff.
  2373. unsigned i;
  2374. for(i=0; i<sigN; i++)
  2375. {
  2376. /*
  2377. outPtr[i] = -(((f+0)*(f-1)*(f-2)/6) * _wtPtr[iPhs0])
  2378. +(((f+1)*(f-1)*(f-2)/2) * _wtPtr[iPhs0+1])
  2379. -(((f+1)*(f-0)*(f-2)/2) * _wtPtr[iPhs0+2])
  2380. +(((f+1)*(f-0)*(f-1)/6) * _wtPtr[iPhs0+3]);
  2381. */
  2382. cmSample_t outSmp = dl[dii0]; // + (frac * (dl[dii1]-dl[dii0]));
  2383. outV[i] += outSmp/p->delayCnt;
  2384. dl[hp->inIdx] = (p->fbCoeff * outSmp) + inV[i];
  2385. hp->inIdx = (hp->inIdx+1) % hp->delayBufSmpCnt;
  2386. dii0 = (dii0+1) % hp->delayBufSmpCnt;
  2387. dii1 = (dii1+1) % hp->delayBufSmpCnt;
  2388. }
  2389. }
  2390. cmRC_t cmMDelayExec( cmMDelay* p, const cmSample_t* inV, cmSample_t* outV, unsigned sigN, bool bypassFl )
  2391. {
  2392. assert( sigN <= p->outN);
  2393. if( outV == NULL )
  2394. {
  2395. outV = p->outV;
  2396. sigN = cmMin(sigN,p->outN);
  2397. cmVOS_Fill(outV,sigN,0);
  2398. }
  2399. else
  2400. {
  2401. cmVOS_Zero(outV,sigN);
  2402. }
  2403. if( inV == NULL )
  2404. return cmOkRC;
  2405. if( bypassFl )
  2406. {
  2407. memcpy(outV,inV,sigN*sizeof(cmSample_t));
  2408. return cmOkRC;
  2409. }
  2410. unsigned di;
  2411. for( di=0; di<p->delayCnt; ++di)
  2412. {
  2413. cmMDelayHead* hp = p->delayArray + di;
  2414. hp->delaySmpFrac = hp->delayMs * p->srate / 1000.0;
  2415. _cmMDelayExec(p,hp,inV,outV,sigN);
  2416. }
  2417. return cmOkRC;
  2418. }
  2419. void cmMDelaySetTapMs( cmMDelay* p, unsigned tapIdx, cmReal_t ms )
  2420. {
  2421. assert( tapIdx < p->delayCnt );
  2422. p->delayArray[tapIdx].delayMs = ms;
  2423. }
  2424. void cmMDelaySetTapGain(cmMDelay* p, unsigned tapIdx, cmReal_t gain )
  2425. {
  2426. assert( tapIdx < p->delayCnt );
  2427. p->delayArray[tapIdx].delayGain = gain;
  2428. }
  2429. void cmMDelayReport( cmMDelay* p, cmRpt_t* rpt )
  2430. {
  2431. cmRptPrintf(rpt,"tap cnt:%i fb:%f sr:%f\n",p->delayCnt,p->fbCoeff,p->srate);
  2432. }
  2433. //------------------------------------------------------------------------------------------------------------
  2434. cmAudioSegPlayer* cmAudioSegPlayerAlloc( cmCtx* ctx, cmAudioSegPlayer* ap, unsigned procSmpCnt, unsigned outChCnt )
  2435. {
  2436. cmAudioSegPlayer* p = cmObjAlloc( cmAudioSegPlayer, ctx, ap );
  2437. if( procSmpCnt != 0 )
  2438. if( cmAudioSegPlayerInit( p, procSmpCnt, outChCnt ) != cmOkRC )
  2439. cmAudioSegPlayerFree(&p);
  2440. return p;
  2441. }
  2442. cmRC_t cmAudioSegPlayerFree( cmAudioSegPlayer** pp )
  2443. {
  2444. if( pp == NULL || *pp == NULL )
  2445. return cmOkRC;
  2446. cmAudioSegPlayer* p = *pp;
  2447. cmMemPtrFree(&p->segArray);
  2448. cmMemPtrFree(&p->outM);
  2449. cmObjFree(pp);
  2450. return cmOkRC;
  2451. }
  2452. cmRC_t cmAudioSegPlayerInit( cmAudioSegPlayer* p, unsigned procSmpCnt, unsigned outChCnt )
  2453. {
  2454. cmRC_t rc = cmOkRC;
  2455. if((rc = cmAudioSegPlayerFinal(p)) != cmOkRC )
  2456. return rc;
  2457. p->procSmpCnt = procSmpCnt;
  2458. p->outChCnt = outChCnt;
  2459. p->segCnt = 0;
  2460. if( outChCnt )
  2461. {
  2462. unsigned i;
  2463. p->outM = cmMemResizeZ( cmSample_t, p->outM, procSmpCnt * outChCnt );
  2464. p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
  2465. for(i=0; i<outChCnt; ++i)
  2466. p->outChArray[i] = p->outM + (i*procSmpCnt);
  2467. }
  2468. return rc;
  2469. }
  2470. cmRC_t cmAudioSegPlayerFinal( cmAudioSegPlayer* p )
  2471. { return cmOkRC; }
  2472. cmRC_t _cmAudioSegPlayerSegSetup( cmAudioSeg* sp, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2473. {
  2474. sp->bufPtr = bufPtr;
  2475. sp->id = id;
  2476. sp->smpIdx = smpIdx;
  2477. sp->smpCnt = smpCnt;
  2478. sp->outChIdx = outChIdx;
  2479. sp->outSmpIdx = 0;
  2480. sp->flags = 0;
  2481. return cmOkRC;
  2482. }
  2483. cmAudioSeg* _cmAudioSegPlayerIdToSegPtr( cmAudioSegPlayer* p, unsigned id, bool ignoreErrFl )
  2484. {
  2485. unsigned i = 0;
  2486. for(i=0; i<p->segCnt; ++i)
  2487. if( p->segArray[i].id == id )
  2488. return p->segArray + i;
  2489. if( !ignoreErrFl )
  2490. cmCtxRtCondition(&p->obj, cmArgAssertRC,"Unable to locate an audio segment with id=%i.",id);
  2491. return NULL;
  2492. }
  2493. cmRC_t cmAudioSegPlayerInsert( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2494. {
  2495. cmRC_t rc;
  2496. assert( _cmAudioSegPlayerIdToSegPtr( p, id, true ) == NULL );
  2497. p->segArray = cmMemResizePZ( cmAudioSeg, p->segArray, p->segCnt + 1 );
  2498. cmAudioSeg* sp = p->segArray + p->segCnt;
  2499. if((rc = _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx )) == cmOkRC )
  2500. ++p->segCnt;
  2501. return rc;
  2502. }
  2503. cmRC_t cmAudioSegPlayerEdit( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2504. {
  2505. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2506. return _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx );
  2507. }
  2508. cmRC_t cmAudioSegPlayerRemove( cmAudioSegPlayer* p, unsigned id, bool delFl )
  2509. {
  2510. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2511. if( sp == NULL )
  2512. return cmArgAssertRC;
  2513. sp->flags = cmEnaFlag( sp->flags, kDelAspFl, delFl );
  2514. return cmOkRC;
  2515. }
  2516. cmRC_t cmAudioSegPlayerEnable( cmAudioSegPlayer* p, unsigned id, bool enableFl, unsigned outSmpIdx )
  2517. {
  2518. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2519. if( sp == NULL )
  2520. return cmArgAssertRC;
  2521. if( outSmpIdx != cmInvalidIdx )
  2522. sp->outSmpIdx = outSmpIdx;
  2523. sp->flags = cmEnaFlag( sp->flags, kEnableAspFl, enableFl );
  2524. return cmOkRC;
  2525. }
  2526. void _cmAudioSegPlayerResetSeg( cmAudioSeg* sp )
  2527. {
  2528. sp->outSmpIdx = 0;
  2529. sp->flags = cmClrFlag(sp->flags, kEnableAspFl );
  2530. }
  2531. cmRC_t cmAudioSegPlayerReset( cmAudioSegPlayer* p )
  2532. {
  2533. unsigned i;
  2534. for(i=0; i<p->segCnt; ++i)
  2535. {
  2536. cmAudioSeg* sp = p->segArray + i;
  2537. _cmAudioSegPlayerResetSeg(sp);
  2538. }
  2539. return cmOkRC;
  2540. }
  2541. cmRC_t cmAudioSegPlayerExec( cmAudioSegPlayer* p, cmSample_t** outChPtr, unsigned outChCnt, unsigned procSmpCnt )
  2542. {
  2543. unsigned i;
  2544. if( outChPtr == NULL || outChCnt == 0 )
  2545. {
  2546. assert( p->outChCnt > 0 );
  2547. outChPtr = p->outChArray;
  2548. outChCnt = p->outChCnt;
  2549. assert( p->procSmpCnt <= procSmpCnt );
  2550. }
  2551. for(i=0; i<p->segCnt; ++i)
  2552. {
  2553. cmAudioSeg* sp = p->segArray + i;
  2554. // if the output channel is valid and the segment is enabled and not deleted
  2555. if( sp->outChIdx < outChCnt && (sp->flags & (kEnableAspFl | kDelAspFl)) == kEnableAspFl )
  2556. {
  2557. unsigned bufSmpIdx = sp->smpIdx + sp->outSmpIdx;
  2558. unsigned bufSmpCnt = 0;
  2559. // if all the samples have been played
  2560. if( sp->bufPtr->bufN <= bufSmpIdx )
  2561. _cmAudioSegPlayerResetSeg(sp);
  2562. else
  2563. {
  2564. // prevent playing past the end of the buffer
  2565. bufSmpCnt = cmMin( procSmpCnt, sp->bufPtr->bufN - bufSmpIdx );
  2566. // limit the number of samples to the segment length
  2567. bufSmpCnt = cmMin( bufSmpCnt, sp->smpCnt - sp->outSmpIdx );
  2568. // sum the samples into the output channel
  2569. cmVOS_AddVV( outChPtr[ sp->outChIdx ], bufSmpCnt, sp->bufPtr->bufV + bufSmpIdx );
  2570. // incr the next output sample index
  2571. sp->outSmpIdx += bufSmpCnt;
  2572. }
  2573. if( bufSmpCnt < procSmpCnt )
  2574. cmVOS_Zero( outChPtr[ sp->outChIdx ] + bufSmpCnt, procSmpCnt - bufSmpCnt );
  2575. }
  2576. }
  2577. return cmOkRC;
  2578. }
  2579. //------------------------------------------------------------------------------------------------------------
  2580. /*
  2581. cmCluster0* cmCluster0Alloc( cmCtx* ctx, cmCluster0* ap, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* dstUserPtr )
  2582. {
  2583. cmCluster0* p = cmObjAlloc( cmCluster0, ctx, ap );
  2584. if( stateCnt != 0 )
  2585. if( cmCluster0Init( p, stateCnt, binCnt, flags, distFunc, distUserPtr ) != cmOkRC )
  2586. cmCluster0Free(&p);
  2587. return p;
  2588. }
  2589. cmRC_t cmCluster0Free( cmCluster0** pp )
  2590. {
  2591. if( pp == NULL || *pp == NULL )
  2592. return cmOkRC;
  2593. cmCluster0* p = *pp;
  2594. cmMemPtrFree(&p->oM);
  2595. cmMemPtrFree(&p->tM);
  2596. cmMemPtrFree(&p->dV);
  2597. cmObjFree(pp);
  2598. return cmOkRC;
  2599. }
  2600. cmRC_t cmCluster0Init( cmCluster0* p, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* distUserPtr )
  2601. {
  2602. cmRC_t rc;
  2603. if((rc = cmCluster0Final(p)) != cmOkRC )
  2604. return rc;
  2605. p->oM = cmMemResizeZ( cmReal_t, p->oM, binCnt * stateCnt );
  2606. p->tM = cmMemResizeZ( cmReal_t, p->tM, stateCnt * stateCnt );
  2607. p->stateCnt = stateCnt;
  2608. p->binCnt = binCnt;
  2609. p->flags = flags;
  2610. p->distFunc = distFunc;
  2611. p->distUserPtr = distUserPtr;
  2612. p->cnt = 0;
  2613. }
  2614. cmRC_t cmCluster0Final( cmCluster0* p )
  2615. { return cmOkRC; }
  2616. cmRC_t cmCluster0Exec( cmCluster0* p, const cmReal_t* v, unsigned vn )
  2617. {
  2618. assert( vn <= p->binCnt );
  2619. ++cnt;
  2620. if( cnt <= stateCnt )
  2621. {
  2622. cmVOR_Copy( p->oM + ((cnt-1)*binCnt), vn, v );
  2623. return cmOkRC;
  2624. }
  2625. return cmOkRC;
  2626. }
  2627. */
  2628. cmNmf_t* cmNmfAlloc( cmCtx* ctx, cmNmf_t* ap, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
  2629. {
  2630. cmNmf_t* p = cmObjAlloc( cmNmf_t, ctx, ap );
  2631. if( n != 0 )
  2632. if( cmNmfInit( p, n, m, r, maxIterCnt, convergeCnt ) != cmOkRC )
  2633. cmNmfFree(&p);
  2634. return p;
  2635. }
  2636. cmRC_t cmNmfFree( cmNmf_t** pp )
  2637. {
  2638. if( pp== NULL || *pp == NULL )
  2639. return cmOkRC;
  2640. cmNmf_t* p = *pp;
  2641. cmMemPtrFree(&p->V);
  2642. cmMemPtrFree(&p->W);
  2643. cmMemPtrFree(&p->H);
  2644. cmMemPtrFree(&p->tr);
  2645. cmMemPtrFree(&p->x);
  2646. cmMemPtrFree(&p->t0nm);
  2647. cmMemPtrFree(&p->t1nm);
  2648. cmMemPtrFree(&p->Wt);
  2649. cmMemPtrFree(&p->trm);
  2650. cmMemPtrFree(&p->crm);
  2651. cmMemPtrFree(&p->c0);
  2652. cmMemPtrFree(&p->c1);
  2653. cmMemPtrFree(&p->idxV);
  2654. cmObjFree(pp);
  2655. return cmOkRC;
  2656. }
  2657. cmRC_t cmNmfInit( cmNmf_t* p, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
  2658. {
  2659. cmRC_t rc;
  2660. if((rc = cmNmfFinal(p)) != cmOkRC )
  2661. return rc;
  2662. p->n = n;
  2663. p->m = m;
  2664. p->r = r;
  2665. p->maxIterCnt = maxIterCnt;
  2666. p->convergeCnt= convergeCnt;
  2667. p->V = cmMemResizeZ(cmReal_t, p->V, n*m );
  2668. p->W = cmMemResize( cmReal_t, p->W, n*r );
  2669. p->H = cmMemResize( cmReal_t, p->H, r*m );
  2670. p->tr = cmMemResize( cmReal_t, p->tr, r );
  2671. p->x = cmMemResize( cmReal_t, p->x, r*cmMax(m,n) );
  2672. p->t0nm = cmMemResize( cmReal_t, p->t0nm, cmMax(r,n)*m );
  2673. p->Ht = p->t0nm;
  2674. p->t1nm = cmMemResize( cmReal_t, p->t1nm, n*m );
  2675. p->Wt = cmMemResize( cmReal_t, p->Wt, r*n );
  2676. p->trm = cmMemResize( cmReal_t, p->trm, r*cmMax(m,n) );
  2677. p->crm = cmMemResizeZ(unsigned, p->crm, r*m);
  2678. p->tnr = p->trm;
  2679. p->c0 = cmMemResizeZ(unsigned, p->c0, m*m);
  2680. p->c1 = cmMemResizeZ(unsigned, p->c1, m*m);
  2681. p->idxV = cmMemResizeZ(unsigned, p->idxV, m );
  2682. p->c0m = p->c0;
  2683. p->c1m = p->c1;
  2684. cmVOR_Random(p->W,n*r,0.0,1.0);
  2685. cmVOR_Random(p->H,r*m,0.0,1.0);
  2686. return rc;
  2687. }
  2688. cmRC_t cmNmfFinal(cmNmf_t* p )
  2689. { return cmOkRC; }
  2690. // NMF base on: Lee and Seung, 2001, Algo's for Non-negative Matrix Fcmtorization
  2691. // Connectivity stopping technique based on: http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m
  2692. cmRC_t cmNmfExec( cmNmf_t* p, const cmReal_t* vM, unsigned cn )
  2693. {
  2694. cmRC_t rc = cmOkRC;
  2695. unsigned i,j,k;
  2696. unsigned n = p->n;
  2697. unsigned m = p->m;
  2698. unsigned r = p->r;
  2699. unsigned stopIter = 0;
  2700. assert(cn <= m );
  2701. // shift in the incoming columns of V[]
  2702. if( cn < m )
  2703. cmVOR_Shift(p->V, n*m, n*cn,0);
  2704. cmVOR_Copy( p->V, n*cn,vM );
  2705. // shift H[] by the same amount as V[]
  2706. if( cn < m )
  2707. cmVOR_Shift( p->H, r*m, r*cn,0);
  2708. cmVOR_Random(p->H, r*cn, 0.0, 1.0 );
  2709. cmVOU_Zero( p->c1m, m*m );
  2710. for(i=0,j=0; i<p->maxIterCnt && stopIter<p->convergeCnt; ++i)
  2711. {
  2712. // x[r,m] =repmat(sum(W,1)',1,m);
  2713. cmVOR_SumM( p->W, n, r, p->tr );
  2714. for(j=0; j<m; ++j)
  2715. cmVOR_Copy( p->x + (j*r), r, p->tr );
  2716. cmVOR_Transpose(p->Wt,p->W,n,r);
  2717. //H=H.*(W'*(V./(W*H)))./x;
  2718. cmVOR_MultMMM(p->t0nm,n,m,p->W,p->H,r); // t0nm[n,m] = W*H
  2719. cmVOR_DivVVV( p->t1nm,n*m,p->V,p->t0nm); // t1nm[n,m] = V./(W*H)
  2720. cmVOR_MultMMM(p->trm,r,m,p->Wt,p->t1nm,n); // trm[r,m] = W'*(V./(W*H))
  2721. cmVOR_MultVV(p->H,r*m,p->trm); // H[r,m] = H .* (W'*(V./(W*H)))
  2722. cmVOR_DivVV(p->H,r*m, p->x ); // H[r,m] = (H .* (W'*(V./(W*H)))) ./ x
  2723. // x[n,r]=repmat(sum(H,2)',n,1);
  2724. cmVOR_SumMN(p->H, r, m, p->tr );
  2725. for(j=0; j<n; ++j)
  2726. cmVOR_CopyN(p->x + j, r, n, p->tr, 1 );
  2727. cmVOR_Transpose(p->Ht,p->H,r,m);
  2728. // W=W.*((V./(W*H))*H')./x;
  2729. cmVOR_MultMMM(p->tnr,n,r,p->t1nm,p->Ht,m); // tnr[n,r] = (V./(W*H))*Ht
  2730. cmVOR_MultVV(p->W,n*r,p->tnr); // W[n,r] = W.*(V./(W*H))*Ht
  2731. cmVOR_DivVV(p->W,n*r,p->x); // W[n,r] = W.*(V./(W*H))*Ht ./x
  2732. if( i % 10 == 0 )
  2733. {
  2734. cmVOR_ReplaceLte( p->H, r*m, p->H, 2.2204e-16, 2.2204e-16 );
  2735. cmVOR_ReplaceLte( p->W, n*r, p->W, 2.2204e-16, 2.2204e-16 );
  2736. cmVOR_MaxIndexM( p->idxV, p->H, r, m );
  2737. unsigned mismatchCnt = 0;
  2738. for(j=0; j<m; ++j)
  2739. for(k=0; k<m; ++k)
  2740. {
  2741. unsigned c_idx = (j*m)+k;
  2742. p->c0m[ c_idx ] = p->idxV[j] == p->idxV[k];
  2743. mismatchCnt += p->c0m[ c_idx ] != p->c1m[ c_idx ];
  2744. }
  2745. if( mismatchCnt == 0 )
  2746. ++stopIter;
  2747. else
  2748. stopIter = 0;
  2749. printf("%i %i %i\n",i,stopIter,mismatchCnt);
  2750. fflush(stdout);
  2751. unsigned* tcm = p->c0m;
  2752. p->c0m = p->c1m;
  2753. p->c1m = tcm;
  2754. }
  2755. }
  2756. return rc;
  2757. }
  2758. //------------------------------------------------------------------------------------------------------------
  2759. unsigned _cmVectArrayTypeByteCnt( cmVectArray_t* p, unsigned flags )
  2760. {
  2761. switch( flags & kVaMask )
  2762. {
  2763. case kFloatVaFl: return sizeof(float);
  2764. case kDoubleVaFl: return sizeof(double);
  2765. case kIntVaFl: return sizeof(int);
  2766. case kUIntVaFl: return sizeof(unsigned);
  2767. }
  2768. if( p != NULL )
  2769. cmCtxRtCondition(&p->obj,cmInvalidArgRC,"Unknown data type.");
  2770. return 0;
  2771. }
  2772. cmRC_t _cmVectArrayAppend( cmVectArray_t* p, const void* v, unsigned typeByteCnt, unsigned valCnt )
  2773. {
  2774. cmRC_t rc = cmSubSysFailRC;
  2775. cmVectArrayVect_t* ep = NULL;
  2776. unsigned byteCnt = typeByteCnt * valCnt;
  2777. if( byteCnt == 0 || v == NULL )
  2778. return rc;
  2779. // verify that all vectors written to this vector array contain the same data type.
  2780. if( typeByteCnt != _cmVectArrayTypeByteCnt(p,p->flags) )
  2781. return cmCtxRtCondition(&p->obj,cmInvalidArgRC,"All data stored to a cmVectArray_t must be a consistent type.");
  2782. // allocate space for the link record
  2783. if((ep = cmMemAllocZ(cmVectArrayVect_t,1)) == NULL )
  2784. goto errLabel;
  2785. // allocate space for the vector data
  2786. if((ep->u.v = cmMemAlloc(char,typeByteCnt*valCnt)) == NULL )
  2787. goto errLabel;
  2788. // append the link recd to the end of the element list
  2789. if( p->ep != NULL )
  2790. p->ep->link = ep;
  2791. else
  2792. {
  2793. p->bp = ep;
  2794. p->cur = p->bp;
  2795. }
  2796. p->ep = ep;
  2797. // store the length of the vector
  2798. ep->n = valCnt;
  2799. // copy in the vector data
  2800. memcpy(ep->u.v,v,byteCnt);
  2801. // track the number of vectors stored
  2802. p->vectCnt += 1;
  2803. // track the longest data vector
  2804. if( valCnt > p->maxEleCnt )
  2805. p->maxEleCnt = valCnt;
  2806. rc = cmOkRC;
  2807. errLabel:
  2808. if(rc != cmOkRC )
  2809. {
  2810. cmMemFree(ep->u.v);
  2811. cmMemFree(ep);
  2812. }
  2813. return rc;
  2814. }
  2815. cmVectArray_t* cmVectArrayAlloc( cmCtx* ctx, unsigned flags )
  2816. {
  2817. cmRC_t rc = cmOkRC;
  2818. cmVectArray_t* p = cmObjAlloc(cmVectArray_t,ctx,NULL);
  2819. assert(p != NULL);
  2820. switch( flags & kVaMask )
  2821. {
  2822. case kIntVaFl:
  2823. p->flags |= kIntVaFl;
  2824. p->typeByteCnt = sizeof(int);
  2825. break;
  2826. case kUIntVaFl:
  2827. p->flags |= kUIntVaFl;
  2828. p->typeByteCnt = sizeof(unsigned);
  2829. break;
  2830. case kFloatVaFl:
  2831. p->flags |= kFloatVaFl;
  2832. p->typeByteCnt = sizeof(float);
  2833. break;
  2834. case kDoubleVaFl:
  2835. p->flags |= kDoubleVaFl;
  2836. p->typeByteCnt = sizeof(double);
  2837. break;
  2838. default:
  2839. rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
  2840. }
  2841. if(rc != cmOkRC)
  2842. cmVectArrayFree(&p);
  2843. return p;
  2844. }
  2845. cmVectArray_t* cmVectArrayAllocFromFile(cmCtx* ctx, const char* fn )
  2846. {
  2847. cmRC_t rc = cmOkRC;
  2848. FILE* fp = NULL;
  2849. char* buf = NULL;
  2850. cmVectArray_t* p = NULL;
  2851. unsigned hn = 4;
  2852. unsigned hdr[hn];
  2853. // create the file
  2854. if((fp = fopen(fn,"rb")) == NULL )
  2855. {
  2856. rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file '%s' could not be opened.",cmStringNullGuard(fn));
  2857. goto errLabel;
  2858. }
  2859. if( fread(hdr,sizeof(unsigned),hn,fp) != hn )
  2860. {
  2861. rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file header could not be read from '%s'.",cmStringNullGuard(fn));
  2862. goto errLabel;
  2863. }
  2864. unsigned flags = hdr[0];
  2865. unsigned typeByteCnt = hdr[1];
  2866. unsigned vectCnt = hdr[2];
  2867. unsigned maxEleCnt = hdr[3];
  2868. unsigned i;
  2869. buf = cmMemAlloc(char,maxEleCnt*typeByteCnt);
  2870. if((p = cmVectArrayAlloc(ctx, flags )) == NULL )
  2871. goto errLabel;
  2872. for(i=0; i<vectCnt; ++i)
  2873. {
  2874. unsigned vn;
  2875. if( fread(&vn,sizeof(unsigned),1,fp) != 1 )
  2876. {
  2877. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file element count read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2878. goto errLabel;
  2879. }
  2880. assert( vn <= maxEleCnt );
  2881. if( fread(buf,typeByteCnt,vn,fp) != vn )
  2882. {
  2883. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array data read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2884. goto errLabel;
  2885. }
  2886. if((rc = _cmVectArrayAppend(p,buf, typeByteCnt, vn )) != cmOkRC )
  2887. {
  2888. rc = cmCtxRtCondition(&p->obj,rc,"The vector array data store failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2889. goto errLabel;
  2890. }
  2891. }
  2892. errLabel:
  2893. if( fp != NULL )
  2894. fclose(fp);
  2895. cmMemFree(buf);
  2896. if(rc != cmOkRC && p != NULL)
  2897. cmVectArrayFree(&p);
  2898. return p;
  2899. }
  2900. cmRC_t cmVectArrayFree( cmVectArray_t** pp )
  2901. {
  2902. cmRC_t rc = cmOkRC;
  2903. if( pp == NULL || *pp == NULL )
  2904. return rc;
  2905. cmVectArray_t* p = *pp;
  2906. if((rc = cmVectArrayClear(p)) != cmOkRC )
  2907. return rc;
  2908. cmMemFree(p->tempV);
  2909. cmObjFree(pp);
  2910. return rc;
  2911. }
  2912. cmRC_t cmVectArrayClear( cmVectArray_t* p )
  2913. {
  2914. cmVectArrayVect_t* ep = p->bp;
  2915. while( ep!=NULL )
  2916. {
  2917. cmVectArrayVect_t* np = ep->link;
  2918. cmMemFree(ep->u.v);
  2919. cmMemFree(ep);
  2920. ep = np;
  2921. }
  2922. p->bp = NULL;
  2923. p->ep = NULL;
  2924. p->maxEleCnt = 0;
  2925. p->vectCnt = 0;
  2926. return cmOkRC;
  2927. }
  2928. unsigned cmVectArrayCount( const cmVectArray_t* p )
  2929. { return p->vectCnt; }
  2930. unsigned cmVectArrayMaxRowCount( const cmVectArray_t* p )
  2931. {
  2932. const cmVectArrayVect_t* np = p->bp;
  2933. unsigned maxN = 0;
  2934. for(; np!=NULL; np=np->link)
  2935. if( np->n > maxN )
  2936. maxN = np->n;
  2937. return maxN;
  2938. }
  2939. cmRC_t cmVectArrayAppendV( cmVectArray_t* p, const void* v, unsigned vn )
  2940. { return _cmVectArrayAppend(p,v,_cmVectArrayTypeByteCnt(p,p->flags), vn); }
  2941. cmRC_t cmVectArrayAppendS( cmVectArray_t* p, const cmSample_t* v, unsigned vn )
  2942. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2943. cmRC_t cmVectArrayAppendR( cmVectArray_t* p, const cmReal_t* v, unsigned vn )
  2944. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2945. cmRC_t cmVectArrayAppendF( cmVectArray_t* p, const float* v, unsigned vn )
  2946. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2947. cmRC_t cmVectArrayAppendD( cmVectArray_t* p, const double* v, unsigned vn )
  2948. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2949. cmRC_t cmVectArrayAppendI( cmVectArray_t* p, const int* v, unsigned vn )
  2950. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2951. cmRC_t cmVectArrayAppendU( cmVectArray_t* p, const unsigned* v, unsigned vn )
  2952. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2953. cmRC_t cmVectArrayWrite( cmVectArray_t* p, const char* fn )
  2954. {
  2955. cmRC_t rc = cmOkRC;
  2956. FILE* fp = NULL;
  2957. cmVectArrayVect_t* ep;
  2958. unsigned i;
  2959. unsigned hn = 4;
  2960. unsigned hdr[hn];
  2961. hdr[0] = p->flags;
  2962. hdr[1] = p->typeByteCnt;
  2963. hdr[2] = p->vectCnt;
  2964. hdr[3] = p->maxEleCnt;
  2965. // create the file
  2966. if((fp = fopen(fn,"wb")) == NULL )
  2967. return cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file '%s' could not be created.",cmStringNullGuard(fn));
  2968. // write the header
  2969. if( fwrite(hdr,sizeof(unsigned),hn,fp) != hn )
  2970. {
  2971. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file header write failed in '%s'.",cmStringNullGuard(fn));
  2972. goto errLabel;
  2973. }
  2974. // write each vector element
  2975. for(ep=p->bp,i=0; ep!=NULL; ep=ep->link,++i)
  2976. {
  2977. // write the count of data values in the vector
  2978. if( fwrite(&ep->n,sizeof(ep->n),1,fp) != 1 )
  2979. {
  2980. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on element header %i in '%s'.",i,cmStringNullGuard(fn));
  2981. goto errLabel;
  2982. }
  2983. // write the vector
  2984. if(fwrite(ep->u.v,p->typeByteCnt,ep->n,fp) != ep->n )
  2985. {
  2986. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on data vector %i in '%s'.",i,cmStringNullGuard(fn));
  2987. goto errLabel;
  2988. }
  2989. }
  2990. errLabel:
  2991. if( fp != NULL )
  2992. fclose(fp);
  2993. return rc;
  2994. }
  2995. cmRC_t cmVectArrayPrint( cmVectArray_t* p, cmRpt_t* rpt )
  2996. {
  2997. cmRC_t rc = cmOkRC;
  2998. cmVectArrayVect_t* rp = p->bp;
  2999. for(; rp!=NULL; rp=rp->link)
  3000. {
  3001. switch( p->flags & kVaMask )
  3002. {
  3003. case kFloatVaFl:
  3004. cmVOF_Print(rpt,1,rp->n,rp->u.fV);
  3005. break;
  3006. case kDoubleVaFl:
  3007. cmVOD_Print(rpt,1,rp->n,rp->u.dV);
  3008. break;
  3009. case kIntVaFl:
  3010. cmVOI_Print(rpt,1,rp->n,rp->u.iV);
  3011. break;
  3012. case kUIntVaFl:
  3013. cmVOU_Print(rpt,1,rp->n,rp->u.uV);
  3014. break;
  3015. default:
  3016. rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
  3017. break;
  3018. }
  3019. }
  3020. return rc;
  3021. }
  3022. unsigned cmVectArrayForEachS( cmVectArray_t* p, unsigned idx, unsigned cnt, cmVectArrayForEachFuncS_t func, void* arg )
  3023. {
  3024. cmVectArrayVect_t* ep = p->bp;
  3025. unsigned i = 0;
  3026. unsigned n = 0;
  3027. // for each sub-array
  3028. for(; ep!=NULL && n<cnt; ep=ep->link )
  3029. {
  3030. // if the cur sub-array is in the range of idx:idx+cnt
  3031. if( i <= idx && idx < i + ep->n )
  3032. {
  3033. unsigned j = idx - i; // starting idx into cur sub-array
  3034. assert(j<ep->n);
  3035. unsigned m = cmMin(ep->n - j,cnt-n); // cnt of ele's to send from cur sub-array
  3036. // do callback
  3037. if( func(arg, idx, ep->u.sV + j, m ) != cmOkRC )
  3038. break;
  3039. idx += m;
  3040. n += m;
  3041. }
  3042. i += ep->n;
  3043. }
  3044. return n;
  3045. }
  3046. cmRC_t _cmVectArrayWriteMatrix( cmCtx* ctx, const char* fn, unsigned flags, const void* m, unsigned rn, unsigned cn )
  3047. {
  3048. cmRC_t rc = cmOkRC;
  3049. cmVectArray_t* p;
  3050. const char* b = (const char*)m;
  3051. unsigned tbc = _cmVectArrayTypeByteCnt( NULL, flags );
  3052. unsigned ri = 0;
  3053. char* vv = cmMemAlloc(char,cn*tbc);
  3054. if((p = cmVectArrayAlloc(ctx,flags)) == NULL )
  3055. return cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to allocate a cmVectArray_t in %s().",__FUNCTION__);
  3056. for(ri=0; ri<rn; ++ri)
  3057. {
  3058. // get ptr to first element in row 'ri' or m[]
  3059. const char* v = b + ri*tbc;
  3060. unsigned ci;
  3061. // for each column in m[ri,:]
  3062. for(ci=0; ci<cn; ++ci)
  3063. memcpy(vv + ci*tbc, v + ci*rn*tbc, tbc );
  3064. // append the row to the VectArray
  3065. if((rc = cmVectArrayAppendV(p,vv,cn)) != cmOkRC )
  3066. {
  3067. rc = cmCtxRtCondition(&p->obj,rc,"Vector append failed in %s().",__FUNCTION__);
  3068. goto errLabel;
  3069. }
  3070. }
  3071. if((rc = cmVectArrayWrite(p,fn)) != cmOkRC )
  3072. rc = cmCtxRtCondition(&p->obj,rc,"Vector array write failed in %s().",__FUNCTION__);
  3073. errLabel:
  3074. if((rc = cmVectArrayFree(&p)) != cmOkRC )
  3075. rc = cmCtxRtCondition(&ctx->obj,rc,"Vector array free failed in %s().",__FUNCTION__);
  3076. cmMemFree(vv);
  3077. return rc;
  3078. }
  3079. cmRC_t cmVectArrayWriteVectorV( cmCtx* ctx, const char* fn, const void* v, unsigned vn, unsigned flags )
  3080. { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, 1, vn ); }
  3081. cmRC_t cmVectArrayWriteVectorS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned vn )
  3082. { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, 1, vn ); }
  3083. cmRC_t cmVectArrayWriteVectorR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned vn )
  3084. { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, 1, vn ); }
  3085. cmRC_t cmVectArrayWriteVectorD( cmCtx* ctx, const char* fn, const double* v, unsigned vn )
  3086. { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, 1, vn ); }
  3087. cmRC_t cmVectArrayWriteVectorF( cmCtx* ctx, const char* fn, const float* v, unsigned vn )
  3088. { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, 1, vn ); }
  3089. cmRC_t cmVectArrayWriteVectorI( cmCtx* ctx, const char* fn, const int* v, unsigned vn )
  3090. { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, 1, vn ); }
  3091. cmRC_t cmVectArrayWriteVectorU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned vn )
  3092. { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, 1, vn ); }
  3093. cmRC_t cmVectArrayWriteMatrixV( cmCtx* ctx, const char* fn, const void* v, unsigned rn, unsigned cn, unsigned flags )
  3094. { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, rn, cn); }
  3095. cmRC_t cmVectArrayWriteMatrixS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned rn, unsigned cn )
  3096. { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, rn, cn); }
  3097. cmRC_t cmVectArrayWriteMatrixR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned rn, unsigned cn )
  3098. { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, rn, cn); }
  3099. cmRC_t cmVectArrayWriteMatrixD( cmCtx* ctx, const char* fn, const double* v, unsigned rn, unsigned cn )
  3100. { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, rn, cn); }
  3101. cmRC_t cmVectArrayWriteMatrixF( cmCtx* ctx, const char* fn, const float* v, unsigned rn, unsigned cn )
  3102. { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, rn, cn); }
  3103. cmRC_t cmVectArrayWriteMatrixI( cmCtx* ctx, const char* fn, const int* v, unsigned rn, unsigned cn )
  3104. { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, rn, cn); }
  3105. cmRC_t cmVectArrayWriteMatrixU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned rn, unsigned cn )
  3106. { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, rn, cn); }
  3107. // Fill v[(*vnRef)*tbc] with the data from the current row of p.
  3108. // Return the count of elements copied to v[] in *vnRef.
  3109. cmRC_t _cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef, unsigned tbc )
  3110. {
  3111. assert( tbc == p->typeByteCnt );
  3112. if( cmVectArrayIsEOL(p) )
  3113. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"%s failed because the state is EOL.",__FUNCTION__);
  3114. unsigned n = cmMin((*vnRef)*tbc, p->cur->n * p->typeByteCnt );
  3115. memcpy(v, p->cur->u.v, n );
  3116. *vnRef = n/tbc;
  3117. return cmOkRC;
  3118. }
  3119. cmRC_t _cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
  3120. {
  3121. assert( mRef != NULL );
  3122. assert( cnRef != NULL );
  3123. assert( rnRef != NULL );
  3124. *mRef = NULL;
  3125. *cnRef = 0;
  3126. *rnRef = 0;
  3127. cmRC_t rc = cmOkRC;
  3128. cmVectArray_t* va;
  3129. if((va = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  3130. rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the vectarray from the file '%s'.", cmStringNullGuard(fn));
  3131. else
  3132. {
  3133. unsigned rn = cmVectArrayCount(va); // count of rows
  3134. unsigned cn = cmVectArrayMaxRowCount(va); // max count of ele's among all rows
  3135. char* m = cmMemAllocZ(char,va->typeByteCnt*rn*cn); // allocate the matrix
  3136. unsigned ci = 0;
  3137. cmVectArrayRewind(va);
  3138. // read each vector into a column of m[]
  3139. for(; !cmVectArrayIsEOL(va); ++ci)
  3140. {
  3141. unsigned n = cmVectArrayEleCount(va);
  3142. assert( m+(ci*rn+n)*va->typeByteCnt <= m + rn*cn*va->typeByteCnt );
  3143. if( _cmVectArrayGetV(va, m + ci*rn*va->typeByteCnt, &n, va->typeByteCnt) != cmOkRC )
  3144. goto errLabel;
  3145. cmVectArrayAdvance(va,1);
  3146. }
  3147. *mRef = m;
  3148. *cnRef = cn;
  3149. *rnRef = rn;
  3150. }
  3151. errLabel:
  3152. if( va != NULL )
  3153. cmVectArrayFree(&va);
  3154. return rc;
  3155. }
  3156. cmRC_t cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
  3157. { return _cmVectArrayReadMatrixV(ctx, fn, mRef, rnRef, cnRef ); }
  3158. cmRC_t cmVectArrayReadMatrixS( cmCtx* ctx, const char* fn, cmSample_t** mRef, unsigned* rnRef, unsigned* cnRef )
  3159. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3160. cmRC_t cmVectArrayReadMatrixR( cmCtx* ctx, const char* fn, cmReal_t** mRef, unsigned* rnRef, unsigned* cnRef )
  3161. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3162. cmRC_t cmVectArrayReadMatrixD( cmCtx* ctx, const char* fn, double** mRef, unsigned* rnRef, unsigned* cnRef )
  3163. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3164. cmRC_t cmVectArrayReadMatrixF( cmCtx* ctx, const char* fn, float** mRef, unsigned* rnRef, unsigned* cnRef )
  3165. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3166. cmRC_t cmVectArrayReadMatrixI( cmCtx* ctx, const char* fn, int** mRef, unsigned* rnRef, unsigned* cnRef )
  3167. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3168. cmRC_t cmVectArrayReadMatrixU( cmCtx* ctx, const char* fn, unsigned** mRef, unsigned* rnRef, unsigned* cnRef )
  3169. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3170. cmRC_t cmVectArrayForEachTextFuncS( void* arg, unsigned idx, const cmSample_t* xV, unsigned xN )
  3171. {
  3172. assert(0);
  3173. return cmOkRC;
  3174. }
  3175. cmRC_t cmVectArrayRewind( cmVectArray_t* p )
  3176. {
  3177. p->cur = p->bp;
  3178. return cmOkRC;
  3179. }
  3180. cmRC_t cmVectArrayAdvance( cmVectArray_t* p, unsigned n )
  3181. {
  3182. unsigned i;
  3183. for(i=0; i<n; ++i)
  3184. {
  3185. if( p->cur == NULL )
  3186. break;
  3187. p->cur = p->cur->link;
  3188. }
  3189. return cmOkRC;
  3190. }
  3191. bool cmVectArrayIsEOL( const cmVectArray_t* p )
  3192. { return p->cur == NULL; }
  3193. unsigned cmVectArrayEleCount( const cmVectArray_t* p )
  3194. {
  3195. if( p->cur == NULL )
  3196. return 0;
  3197. return p->cur->n;
  3198. }
  3199. cmRC_t cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef )
  3200. { return _cmVectArrayGetV(p,v,vnRef,_cmVectArrayTypeByteCnt(p,p->flags)); }
  3201. cmRC_t cmVectArrayGetS( cmVectArray_t* p, cmSample_t* v, unsigned* vnRef )
  3202. {
  3203. assert( cmIsFlag(p->flags,kSampleVaFl) );
  3204. return _cmVectArrayGetV(p,v,vnRef,sizeof(cmSample_t));
  3205. }
  3206. cmRC_t cmVectArrayGetR( cmVectArray_t* p, cmReal_t* v, unsigned* vnRef )
  3207. {
  3208. assert( cmIsFlag(p->flags,kRealVaFl) );
  3209. return _cmVectArrayGetV(p,v,vnRef,sizeof(cmReal_t));
  3210. }
  3211. cmRC_t cmVectArrayGetD( cmVectArray_t* p, double* v, unsigned* vnRef )
  3212. {
  3213. assert( cmIsFlag(p->flags,kDoubleVaFl) );
  3214. return _cmVectArrayGetV(p,v,vnRef,sizeof(double));
  3215. }
  3216. cmRC_t cmVectArrayGetF( cmVectArray_t* p, float* v, unsigned* vnRef )
  3217. {
  3218. assert( cmIsFlag(p->flags,kFloatVaFl) );
  3219. return _cmVectArrayGetV(p,v,vnRef,sizeof(float));
  3220. }
  3221. cmRC_t cmVectArrayGetI( cmVectArray_t* p, int* v, unsigned* vnRef )
  3222. {
  3223. assert( cmIsFlag(p->flags,kIntVaFl) );
  3224. return _cmVectArrayGetV(p,v,vnRef,sizeof(int));
  3225. }
  3226. cmRC_t cmVectArrayGetU( cmVectArray_t* p, unsigned* v, unsigned* vnRef )
  3227. {
  3228. assert( cmIsFlag(p->flags,kUIntVaFl) );
  3229. return _cmVectArrayGetV(p,v,vnRef,sizeof(unsigned));
  3230. }
  3231. cmRC_t _cmVectArrayMatrixIsEqual( cmCtx* ctx, const char* fn, const void* mm, unsigned rn, unsigned cn, unsigned flags, bool* resultFlRef )
  3232. {
  3233. assert( resultFlRef != NULL );
  3234. cmRC_t rc = cmOkRC;
  3235. cmVectArray_t* p = NULL;
  3236. const char* m = (const char*)mm;
  3237. unsigned tbc = _cmVectArrayTypeByteCnt(NULL,flags);
  3238. unsigned ri = 0;
  3239. char* vv = cmMemAlloc(char,cn*tbc);
  3240. *resultFlRef = false;
  3241. // read the vector array
  3242. if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL)
  3243. {
  3244. rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the VectArray from the file '%s'.", cmStringNullGuard(fn));
  3245. goto errLabel;
  3246. }
  3247. // verify that the matrix type matches the vector array type
  3248. if( (p->flags & kVaMask) != (flags & kVaMask) )
  3249. {
  3250. rc = cmCtxRtCondition(&ctx->obj,cmInvalidArgRC,"Invalid type conversion in '%s'.",__FUNCTION__);
  3251. goto errLabel;
  3252. }
  3253. // the row count of the VectArray and m[] must be the same
  3254. if( cmVectArrayCount(p) != rn )
  3255. {
  3256. *resultFlRef = false;
  3257. goto errLabel;
  3258. }
  3259. // for each row in VectArray
  3260. for(; !cmVectArrayIsEOL(p); ++ri )
  3261. {
  3262. unsigned vn = cmVectArrayEleCount(p);
  3263. char v[ vn*p->typeByteCnt ];
  3264. unsigned ci;
  3265. // get the current row from the VectArray into v[vn]
  3266. if( _cmVectArrayGetV(p,v,&vn,p->typeByteCnt) != cmOkRC )
  3267. goto errLabel;
  3268. // if the size of the current row does not match the row element count of the matrix
  3269. if( vn != cn )
  3270. goto errLabel;
  3271. for(ci=0; ci<cn; ++ci)
  3272. memcpy(vv + ci*tbc, m + (ri*tbc) + (ci*rn*tbc), tbc );
  3273. // the current row does not match the matrix column vector
  3274. if( memcmp(v, vv, vn*p->typeByteCnt ) != 0 )
  3275. goto errLabel;
  3276. cmVectArrayAdvance(p,1);
  3277. }
  3278. *resultFlRef = true;
  3279. errLabel:
  3280. if( p != NULL )
  3281. cmVectArrayFree(&p);
  3282. cmMemFree(vv);
  3283. return rc;
  3284. }
  3285. cmRC_t cmVectArrayMatrixIsEqualV( cmCtx* ctx, const char* fn, const void* m, unsigned rn, unsigned cn, bool* resultFlRef, unsigned flags )
  3286. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, flags, resultFlRef); }
  3287. cmRC_t cmVectArrayMatrixIsEqualS( cmCtx* ctx, const char* fn, const cmSample_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3288. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kSampleVaFl, resultFlRef ); }
  3289. cmRC_t cmVectArrayMatrixIsEqualR( cmCtx* ctx, const char* fn, const cmReal_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3290. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kRealVaFl, resultFlRef ); }
  3291. cmRC_t cmVectArrayMatrixIsEqualD( cmCtx* ctx, const char* fn, const double* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3292. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kDoubleVaFl, resultFlRef ); }
  3293. cmRC_t cmVectArrayMatrixIsEqualF( cmCtx* ctx, const char* fn, const float* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3294. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kFloatVaFl, resultFlRef ); }
  3295. cmRC_t cmVectArrayMatrixIsEqualI( cmCtx* ctx, const char* fn, const int* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3296. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kIntVaFl, resultFlRef ); }
  3297. cmRC_t cmVectArrayMatrixIsEqualU( cmCtx* ctx, const char* fn, const unsigned* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3298. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kUIntVaFl, resultFlRef ); }
  3299. unsigned cmVectArrayVectEleCount( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt )
  3300. {
  3301. unsigned n = 0;
  3302. cmVectArrayVect_t* pos = p->cur;
  3303. if( cmVectArrayRewind(p) != cmOkRC )
  3304. goto errLabel;
  3305. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3306. goto errLabel;
  3307. while( !cmVectArrayIsEOL(p) )
  3308. {
  3309. n += cmVectArrayEleCount(p);
  3310. if(cmVectArrayAdvance(p,groupCnt) != cmOkRC )
  3311. goto errLabel;
  3312. }
  3313. errLabel:
  3314. p->cur = pos;
  3315. return n;
  3316. }
  3317. cmRC_t cmVectArrayFormVectF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, float** vRef, unsigned* vnRef )
  3318. {
  3319. cmRC_t rc = cmOkRC;
  3320. *vRef = NULL;
  3321. *vnRef = 0;
  3322. unsigned N = cmVectArrayVectEleCount(p,groupIdx,groupCnt);
  3323. if( N == 0 )
  3324. return rc;
  3325. float* v = cmMemAllocZ(float,N);
  3326. unsigned i = 0;
  3327. cmVectArrayVect_t* pos = p->cur;
  3328. if( cmVectArrayRewind(p) != cmOkRC )
  3329. goto errLabel;
  3330. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3331. goto errLabel;
  3332. while( !cmVectArrayIsEOL(p) )
  3333. {
  3334. unsigned n = cmVectArrayEleCount(p);
  3335. assert(i+n <= N);
  3336. cmVectArrayGetF(p,v+i,&n);
  3337. i += n;
  3338. cmVectArrayAdvance(p,groupCnt);
  3339. }
  3340. *vRef = v;
  3341. *vnRef = i;
  3342. errLabel:
  3343. p->cur = pos;
  3344. return rc;
  3345. }
  3346. cmRC_t cmVectArrayFormVectColF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, float** vRef, unsigned* vnRef )
  3347. {
  3348. cmRC_t rc = cmOkRC;
  3349. *vRef = NULL;
  3350. *vnRef = 0;
  3351. // assume there will be one output element for each group
  3352. unsigned N = cmVectArrayCount(p)/groupCnt + 1;
  3353. if( N == 0 )
  3354. return rc;
  3355. float* v = cmMemAllocZ(float,N);
  3356. unsigned i = 0;
  3357. cmVectArrayVect_t* pos = p->cur;
  3358. if( cmVectArrayRewind(p) != cmOkRC )
  3359. goto errLabel;
  3360. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3361. goto errLabel;
  3362. while( i<N && !cmVectArrayIsEOL(p) )
  3363. {
  3364. unsigned tn = cmVectArrayEleCount(p);
  3365. float tv[tn];
  3366. // read the sub-vector
  3367. cmVectArrayGetF(p,tv,&tn);
  3368. // store the output value
  3369. if( colIdx < tn )
  3370. {
  3371. v[i] = tv[colIdx];
  3372. i += 1;
  3373. }
  3374. cmVectArrayAdvance(p,groupCnt);
  3375. }
  3376. *vRef = v;
  3377. *vnRef = i;
  3378. errLabel:
  3379. p->cur = pos;
  3380. return rc;
  3381. }
  3382. cmRC_t cmVectArrayFormVectColU( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, unsigned** vRef, unsigned* vnRef )
  3383. {
  3384. cmRC_t rc = cmOkRC;
  3385. *vRef = NULL;
  3386. *vnRef = 0;
  3387. // assume there will be one output element for each group
  3388. unsigned N = cmVectArrayCount(p)/groupCnt + 1;
  3389. if( N == 0 )
  3390. return rc;
  3391. unsigned* v = cmMemAllocZ(unsigned,N);
  3392. unsigned i = 0;
  3393. cmVectArrayVect_t* pos = p->cur;
  3394. if( cmVectArrayRewind(p) != cmOkRC )
  3395. goto errLabel;
  3396. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3397. goto errLabel;
  3398. while( i<N && !cmVectArrayIsEOL(p) )
  3399. {
  3400. unsigned tn = cmVectArrayEleCount(p);
  3401. unsigned tv[tn];
  3402. // read the sub-vector
  3403. cmVectArrayGetU(p,tv,&tn);
  3404. assert( colIdx < tn );
  3405. // store the output value
  3406. if( colIdx < tn )
  3407. v[i++] = tv[colIdx];
  3408. cmVectArrayAdvance(p,groupCnt);
  3409. }
  3410. *vRef = v;
  3411. *vnRef = i;
  3412. errLabel:
  3413. p->cur = pos;
  3414. return rc;
  3415. }
  3416. cmRC_t cmVectArrayTest( cmCtx* ctx, const char* fn, bool genFl )
  3417. {
  3418. cmRC_t rc = cmOkRC;
  3419. cmVectArray_t* p = NULL;
  3420. if( fn == NULL || strlen(fn)==0 )
  3421. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Invalid test output file name.");
  3422. if( genFl )
  3423. {
  3424. unsigned flags = kSampleVaFl;
  3425. cmSample_t v[] = { 0, 1, 2, 3, 4, 5 };
  3426. if( (p = cmVectArrayAlloc(ctx,flags)) == NULL )
  3427. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array object allocation failed.");
  3428. if( cmVectArrayAppendS(p,v,1) != cmOkRC )
  3429. {
  3430. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 1 failed.");
  3431. goto errLabel;
  3432. }
  3433. if( cmVectArrayAppendS(p,v+1,2) != cmOkRC )
  3434. {
  3435. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 2 failed.");
  3436. goto errLabel;
  3437. }
  3438. if( cmVectArrayAppendS(p,v+3,3) != cmOkRC )
  3439. {
  3440. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 3 failed.");
  3441. goto errLabel;
  3442. }
  3443. if( cmVectArrayWrite(p,fn) != cmOkRC )
  3444. {
  3445. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector array write failed.");
  3446. goto errLabel;
  3447. }
  3448. //cmVectArrayForEachS(p,0,cmVectArrayEleCount(p),cmVectArrayForEachTextFuncS,&ctx->printRpt);
  3449. //if( cmVectArrayFree(&p) != cmOkRC )
  3450. //{
  3451. // rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array release failed.");
  3452. // goto errLabel;
  3453. //}
  3454. }
  3455. else
  3456. {
  3457. if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  3458. {
  3459. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArray alloc from file failed.");
  3460. goto errLabel;
  3461. }
  3462. while(!cmVectArrayIsEOL(p))
  3463. {
  3464. unsigned n = cmVectArrayEleCount(p);
  3465. cmSample_t v[n];
  3466. if( cmVectArrayGetS(p,v,&n) != cmOkRC )
  3467. {
  3468. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArrayGetS() failed.");
  3469. goto errLabel;
  3470. }
  3471. //cmVOS_PrintL("v:",NULL,1,n,v);
  3472. cmVectArrayAdvance(p,1);
  3473. }
  3474. // Test matrix reading
  3475. cmSample_t* m;
  3476. unsigned rn,cn;
  3477. if( cmVectArrayReadMatrixS(ctx, fn, &m, &rn, &cn ) != cmOkRC )
  3478. goto errLabel;
  3479. else
  3480. {
  3481. //cmVOS_PrintL("v:",NULL,rn,cn,m);
  3482. cmMemFree(m);
  3483. }
  3484. }
  3485. errLabel:
  3486. if( cmVectArrayFree(&p) != cmOkRC )
  3487. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vector array release failed.");
  3488. return rc;
  3489. }
  3490. //-----------------------------------------------------------------------------------------------------------------------
  3491. cmWhFilt* cmWhFiltAlloc( cmCtx* c, cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
  3492. {
  3493. cmWhFilt* op = cmObjAlloc(cmWhFilt,c,p);
  3494. if( binCnt > 0 )
  3495. if( cmWhFiltInit(op,binCnt,binHz,coeff,maxHz) != cmOkRC )
  3496. cmWhFiltFree(&op);
  3497. return op;
  3498. }
  3499. cmRC_t cmWhFiltFree( cmWhFilt** pp )
  3500. {
  3501. cmRC_t rc = cmOkRC;
  3502. if( pp==NULL || *pp==NULL )
  3503. return rc;
  3504. cmWhFilt* p = *pp;
  3505. if((rc = cmWhFiltFinal(p)) != cmOkRC )
  3506. return rc;
  3507. cmMemFree(p->whM);
  3508. cmMemFree(p->whiV);
  3509. cmMemFree(p->iV);
  3510. cmObjFree(pp);
  3511. return rc;
  3512. }
  3513. cmRC_t cmWhFiltInit( cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
  3514. {
  3515. cmRC_t rc;
  3516. if((rc = cmWhFiltFinal(p)) != cmOkRC )
  3517. return rc;
  3518. p->binCnt = binCnt;
  3519. p->binHz = binHz;
  3520. p->bandCnt = maxHz == 0 ? 34 : ceil(log10(maxHz/229.0 + 1) * 21.4 - 1)-1;
  3521. if( p->bandCnt <= 0 )
  3522. return cmCtxRtCondition(&p->obj, cmInvalidArgRC, "Max. Hz too low to form any frequency bands.");
  3523. cmReal_t flV[ p->bandCnt ];
  3524. cmReal_t fcV[ p->bandCnt ];
  3525. cmReal_t fhV[ p->bandCnt ];
  3526. int i;
  3527. for(i=0; i<p->bandCnt; ++i)
  3528. {
  3529. fcV[i] = 229.0 * (pow(10.0,(i+2)/21.4) - 1.0);
  3530. flV[i] = i==0 ? 0 : fcV[i-1];
  3531. }
  3532. for(i=0; i<p->bandCnt-1; ++i)
  3533. fhV[i] = fcV[i+1];
  3534. fhV[p->bandCnt-1] = fcV[p->bandCnt-1] + (fcV[p->bandCnt-1] - fcV[p->bandCnt-2]);
  3535. //cmVOR_PrintL("flV",NULL,1,p->bandCnt,flV);
  3536. //cmVOR_PrintL("fcV",NULL,1,p->bandCnt,fcV);
  3537. //cmVOR_PrintL("fhV",NULL,1,p->bandCnt,fhV);
  3538. cmReal_t* tM = cmMemAlloc(cmReal_t,p->bandCnt * p->binCnt);
  3539. p->whM = cmMemResizeZ(cmReal_t,p->whM,p->binCnt * p->bandCnt);
  3540. p->iV = cmMemResizeZ(cmReal_t,p->iV,p->binCnt);
  3541. // generate the bin index values
  3542. for(i=0; i<p->binCnt; ++i)
  3543. p->iV[i] = i;
  3544. cmReal_t stSpread = 0; // set stSpread to 0 to use flV/fhV[]
  3545. cmVOR_TriangleMask(tM, p->bandCnt, p->binCnt, fcV, p->binHz, stSpread, flV, fhV );
  3546. cmVOR_Transpose(p->whM, tM, p->bandCnt, p->binCnt );
  3547. cmMemFree(tM);
  3548. //cmVOR_PrintL("whM",NULL,p->bandCnt,p->binCnt,p->whM);
  3549. //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whM.va", p->whM, p->binCnt, p->bandCnt );
  3550. unsigned whiN = p->bandCnt+2;
  3551. p->whiV = cmMemResizeZ(cmReal_t,p->whiV,whiN);
  3552. for(i=0; i<whiN; ++i)
  3553. {
  3554. if( i == 0 )
  3555. p->whiV[i] = 0;
  3556. else
  3557. if( i == whiN-1 )
  3558. p->whiV[i] = fhV[p->bandCnt-1]/binHz;
  3559. else
  3560. p->whiV[i] = fcV[i-1]/binHz;
  3561. }
  3562. //cmVOR_PrintL("whiV",NULL,1,whiN,p->whiV);
  3563. //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whiV.va", p->whiV, whiN, 1 );
  3564. return rc;
  3565. }
  3566. cmRC_t cmWhFiltFinal( cmWhFilt* p )
  3567. { return cmOkRC; }
  3568. cmRC_t cmWhFiltExec( cmWhFilt* p, const cmReal_t* xV, cmReal_t* yV, unsigned xyN )
  3569. {
  3570. assert( xyN == p->binCnt);
  3571. cmRC_t rc = cmOkRC;
  3572. unsigned whiN = p->bandCnt + 2;
  3573. unsigned mbi = cmMin(xyN, floor(p->whiV[whiN-1]));
  3574. // calculate the level in each band to form a composite filter
  3575. cmReal_t y0V[ whiN ];
  3576. cmReal_t* b0V = y0V + 1;
  3577. cmVOR_MultVVM(b0V, p->bandCnt, xV, p->binCnt, p->whM );
  3578. //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
  3579. // BEWARE: zeros in b0V will generate Inf's when sent
  3580. // through the cmVOR_PowVS() function.
  3581. int i;
  3582. for(i=0; i<p->bandCnt; ++i)
  3583. if( b0V[i] < 0.000001 )
  3584. b0V[i] = 0.000001;
  3585. // apply a non-linear expansion function to each band
  3586. cmVOR_PowVS(b0V,p->bandCnt,p->coeff-1);
  3587. //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
  3588. // add edge values to the filter
  3589. y0V[0] = b0V[0];
  3590. y0V[whiN-1] = b0V[p->bandCnt-1];
  3591. //cmVOR_PrintL("y0V",NULL,1,whiN,y0V);
  3592. cmVOR_Interp1(yV,p->iV,p->binCnt,p->whiV,y0V,whiN);
  3593. cmVOR_Fill(yV+mbi,xyN-mbi,1.0);
  3594. //cmVOR_PrintL("yV",NULL,1,p->binCnt,yV);
  3595. cmVOR_MultVV(yV,xyN,xV);
  3596. return rc;
  3597. }
  3598. //-----------------------------------------------------------------------------------------------------------------------
  3599. cmFrqTrk* cmFrqTrkAlloc( cmCtx* c, cmFrqTrk* p, const cmFrqTrkArgs_t* a )
  3600. {
  3601. cmFrqTrk* op = cmObjAlloc(cmFrqTrk,c,p);
  3602. op->logVa = cmVectArrayAlloc(c,kRealVaFl);
  3603. op->levelVa = cmVectArrayAlloc(c,kRealVaFl);
  3604. op->specVa = cmVectArrayAlloc(c,kRealVaFl);
  3605. op->attenVa = cmVectArrayAlloc(c,kRealVaFl);
  3606. op->wf = cmWhFiltAlloc(c,NULL,0,0,0,0);
  3607. if( a != NULL )
  3608. if( cmFrqTrkInit(op,a) != cmOkRC )
  3609. cmFrqTrkFree(&op);
  3610. return op;
  3611. }
  3612. cmRC_t cmFrqTrkFree( cmFrqTrk** pp )
  3613. {
  3614. cmRC_t rc = cmOkRC;
  3615. if( pp==NULL || *pp==NULL )
  3616. return rc;
  3617. cmFrqTrk* p = *pp;
  3618. if((rc = cmFrqTrkFinal(p)) != cmOkRC )
  3619. return rc;
  3620. unsigned i;
  3621. for(i=0; i<p->a.chCnt; ++i)
  3622. {
  3623. cmMemFree(p->ch[i].dbV);
  3624. cmMemFree(p->ch[i].hzV);
  3625. }
  3626. cmMemFree(p->ch);
  3627. cmMemFree(p->dbM);
  3628. cmMemFree(p->pkiV);
  3629. cmMemFree(p->dbV);
  3630. cmMemFree(p->aV);
  3631. cmVectArrayFree(&p->logVa);
  3632. cmVectArrayFree(&p->levelVa);
  3633. cmVectArrayFree(&p->specVa);
  3634. cmVectArrayFree(&p->attenVa);
  3635. cmWhFiltFree(&p->wf);
  3636. cmMemFree(p->logFn);
  3637. cmMemFree(p->levelFn);
  3638. cmMemFree(p->specFn);
  3639. cmMemFree(p->attenFn);
  3640. cmObjFree(pp);
  3641. return rc;
  3642. }
  3643. cmRC_t cmFrqTrkInit( cmFrqTrk* p, const cmFrqTrkArgs_t* a )
  3644. {
  3645. cmRC_t rc;
  3646. if((rc = cmFrqTrkFinal(p)) != cmOkRC )
  3647. return rc;
  3648. p->a = *a;
  3649. p->ch = cmMemResizeZ(cmFrqTrkCh_t,p->ch,a->chCnt );
  3650. p->hN = cmMax(1,a->wndSecs * a->srate / a->hopSmpCnt );
  3651. p->sN = 4*p->hN;
  3652. p->binHz = a->srate / ((p->a.binCnt-1)*2);
  3653. p->bN = cmMin( p->a.binCnt, ceil(p->a.pkMaxHz / p->binHz ));
  3654. p->dbM = cmMemResizeZ(cmReal_t,p->dbM,p->hN*p->bN);
  3655. p->hi = 0;
  3656. p->fN = 0;
  3657. p->dbV = cmMemResizeZ(cmReal_t,p->dbV,p->bN);
  3658. p->pkiV = cmMemResizeZ(unsigned,p->pkiV,p->bN);
  3659. p->deadN_max = a->maxTrkDeadSec * a->srate / a->hopSmpCnt;
  3660. p->minTrkN = a->minTrkSec * a->srate / a->hopSmpCnt;
  3661. p->nextTrkId = 1;
  3662. p->aV = cmMemResizeZ(cmReal_t,p->aV,p->a.binCnt);
  3663. p->attenDlyPhsMax = cmMax(3,a->attenDlySec * a->srate / a->hopSmpCnt );
  3664. p->attenPhsMax = cmMax(3,a->attenAtkSec * a->srate / a->hopSmpCnt );
  3665. if( a->logFn != NULL )
  3666. p->logFn = cmMemResizeStr(p->logFn,a->logFn);
  3667. if( a->levelFn != NULL )
  3668. p->levelFn = cmMemResizeStr(p->levelFn,a->levelFn);
  3669. if( a->specFn != NULL )
  3670. p->specFn = cmMemResizeStr(p->specFn,a->specFn);
  3671. if( a->attenFn != NULL )
  3672. p->attenFn = cmMemResizeStr(p->attenFn,a->attenFn);
  3673. if(cmWhFiltInit(p->wf,p->bN,p->binHz,p->a.whFiltCoeff,p->a.pkMaxHz) != cmOkRC )
  3674. cmCtxRtCondition(&p->obj, cmSubSysFailRC, "Whitening filter intitialization failed.");
  3675. unsigned i;
  3676. for(i=0; i<p->a.chCnt; ++i)
  3677. {
  3678. p->ch[i].dbV = cmMemResizeZ(cmReal_t,p->ch[i].dbV,p->sN);
  3679. p->ch[i].hzV = cmMemResizeZ(cmReal_t,p->ch[i].hzV,p->sN);
  3680. }
  3681. return rc;
  3682. }
  3683. cmRC_t cmFrqTrkFinal( cmFrqTrk* p )
  3684. {
  3685. cmRC_t rc = cmOkRC;
  3686. if( p->logFn != NULL )
  3687. cmVectArrayWrite(p->logVa,p->logFn);
  3688. if( p->levelFn != NULL )
  3689. cmVectArrayWrite(p->levelVa,p->levelFn);
  3690. if( p->specFn != NULL )
  3691. cmVectArrayWrite(p->specVa,p->specFn);
  3692. if( p->attenFn != NULL )
  3693. cmVectArrayWrite(p->attenVa,p->attenFn);
  3694. cmWhFiltFinal(p->wf);
  3695. return rc;
  3696. }
  3697. // Return an available channel record or NULL if all channel records are in use.
  3698. cmFrqTrkCh_t* _cmFrqTrkFindAvailCh( cmFrqTrk* p )
  3699. {
  3700. unsigned i;
  3701. for(i=0; i<p->a.chCnt; ++i)
  3702. if( p->ch[i].activeFl == false )
  3703. return p->ch + i;
  3704. return NULL;
  3705. }
  3706. // Estimate the peak frequency by parabolic interpolotion into hzV[p->bN]
  3707. void _cmFrqTrkMagnToHz( cmFrqTrk* p, const cmReal_t* dbV, unsigned* pkiV, unsigned pkN, cmReal_t* hzV )
  3708. {
  3709. unsigned i;
  3710. for(i=0; i<pkN; ++i)
  3711. if( pkiV[i] != cmInvalidIdx )
  3712. {
  3713. unsigned pki = pkiV[i];
  3714. cmReal_t y0 = pki>0 ? dbV[ pki-1 ] : dbV[pki];
  3715. cmReal_t y1 = dbV[ pki ];
  3716. cmReal_t y2 = pki<p->bN-1 ? dbV[ pki+1 ] : dbV[pki];
  3717. cmReal_t den = y0 - (2.*y1) + y2;
  3718. cmReal_t offs = den==0 ? 0 : 0.5 * ((y0 - y2) / den);
  3719. hzV[pki] = p->binHz * (pki+offs);
  3720. //if( hzV[pki] < 0 )
  3721. //{
  3722. // printf("%f : %f %f %f : %f %f\n",hzV[pki],y0,y1,y2,den,offs);
  3723. //}
  3724. }
  3725. }
  3726. unsigned _cmFrqTrkActiveChCount( cmFrqTrk* p )
  3727. {
  3728. unsigned n = 0;
  3729. unsigned i;
  3730. for(i=0; i<p->a.chCnt; ++i)
  3731. if( p->ch[i].activeFl )
  3732. ++n;
  3733. return n;
  3734. }
  3735. void _cmFrqTrkWriteLevel( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned bN )
  3736. {
  3737. if( p->levelFn != NULL )
  3738. {
  3739. double maxHz = 5000.0;
  3740. unsigned maxBinIdx = cmMin(bN,maxHz / p->binHz);
  3741. unsigned vn = 3;
  3742. cmReal_t v[vn];
  3743. unsigned idx = cmVOR_MaxIndex(dbV,maxBinIdx,1);
  3744. v[0] = cmVOR_Mean(dbV,maxBinIdx);
  3745. v[1] = dbV[idx];
  3746. v[2] = hzV[idx];
  3747. cmVectArrayAppendR(p->levelVa,v,vn);
  3748. }
  3749. }
  3750. void _cmFrqTrkWriteLog( cmFrqTrk* p )
  3751. {
  3752. unsigned n;
  3753. cmReal_t* vb = NULL;
  3754. if( p->logFn == NULL )
  3755. return;
  3756. if((n = _cmFrqTrkActiveChCount(p)) > 0 )
  3757. {
  3758. unsigned i,j;
  3759. // sn = count of elements in the summary sub-vector
  3760. unsigned sn = 3;
  3761. // each active channel will emit 7 values
  3762. unsigned nn = 1 + n*7 + sn;
  3763. // allocate the row vector
  3764. vb = cmMemResize(cmReal_t,vb,nn);
  3765. // row format
  3766. // [ nn idV[n] hzV[n] ... hsV[n] smV[sn] ]
  3767. // n = (nn - (1 + sn)) / 7
  3768. *vb = nn; // the first element in the vector contains the length of the row
  3769. cmReal_t* v = vb + 1;
  3770. // setup the base pointer to each sub-vector
  3771. cmReal_t* idV = v + n * 0;
  3772. cmReal_t* hzV = v + n * 1;
  3773. cmReal_t* dbV = v + n * 2;
  3774. cmReal_t* stV = v + n * 3;
  3775. cmReal_t* dsV = v + n * 4;
  3776. cmReal_t* hsV = v + n * 5;
  3777. cmReal_t* agV = v + n * 6;
  3778. cmReal_t* smV = v + n * 7; // summary information
  3779. smV[0] = p->newTrkCnt;
  3780. smV[1] = p->curTrkCnt;
  3781. smV[2] = p->deadTrkCnt;
  3782. // for each active channel
  3783. for(i=0,j=0; i<p->a.chCnt; ++i)
  3784. if( p->ch[i].activeFl )
  3785. {
  3786. assert(j < n);
  3787. // elements of each sub-vector associated with a given
  3788. // index refer to the same track record - element i therefore
  3789. // refers to active track index i.
  3790. idV[j] = p->ch[i].id;
  3791. hzV[j] = p->ch[i].hz;
  3792. dbV[j] = p->ch[i].db;
  3793. stV[j] = p->ch[i].dN;
  3794. dsV[j] = p->ch[i].db_std;
  3795. hsV[j] = p->ch[i].hz_std;
  3796. agV[j] = p->ch[i].attenGain;
  3797. ++j;
  3798. }
  3799. cmVectArrayAppendR(p->logVa, vb, nn );
  3800. }
  3801. cmMemFree(vb);
  3802. }
  3803. void _cmFrqTrkPrintChs( const cmFrqTrk* p )
  3804. {
  3805. unsigned i;
  3806. for(i=0; i<p->a.chCnt; ++i)
  3807. {
  3808. cmFrqTrkCh_t* c = p->ch + i;
  3809. printf("%i : %i tN:%i hz:%f db:%f\n",i,c->activeFl,c->tN,c->hz,c->db);
  3810. }
  3811. }
  3812. // Used to sort the channels into descending dB order.
  3813. int _cmFrqTrkChCompare( const void* p0, const void* p1 )
  3814. { return ((cmFrqTrkCh_t*)p0)->db - ((cmFrqTrkCh_t*)p1)->db; }
  3815. // Return the index of the peak associated with pkiV[i] which best matches the tracker 'c'
  3816. // or cmInvalidIdx if no valid peaks were found.
  3817. // pkiV[ pkN ] holds the indexes into dbV[] and hzV[] which are peaks.
  3818. // Some elements of pkiV[] may be set to cmInvalidIdx if the associated peak has already
  3819. // been selected by another tracker.
  3820. unsigned _cmFrqTrkFindPeak( cmFrqTrk* p, const cmFrqTrkCh_t* c, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3821. {
  3822. unsigned i,pki;
  3823. cmReal_t d_max = p->a.pkThreshDb;
  3824. unsigned d_idx = cmInvalidIdx;
  3825. cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
  3826. cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
  3827. // find the peak with the most energy inside the frequency range hz_min to hz_max.
  3828. for(i=0; i<pkN; ++i)
  3829. if( ((pki = pkiV[i]) != cmInvalidIdx) && hz_min <= hzV[pki] && hzV[pki] <= hz_max && dbV[pki]>d_max )
  3830. {
  3831. d_max= dbV[pki];
  3832. d_idx = i;
  3833. }
  3834. return d_idx;
  3835. }
  3836. void _cmFrqTrkScoreChs( cmFrqTrk* p )
  3837. {
  3838. unsigned i;
  3839. for(i=0; i<p->a.chCnt; ++i)
  3840. if( p->ch[i].activeFl )
  3841. {
  3842. cmFrqTrkCh_t* c = p->ch + i;
  3843. c->dbV[ c->si ] = c->db;
  3844. c->hzV[ c->si ] = c->hz;
  3845. c->si = (c->si + 1) % p->sN;
  3846. c->sn += 1;
  3847. unsigned n = cmMin(c->sn,p->sN);
  3848. c->db_mean = cmVOR_Mean(c->dbV,n);
  3849. c->db_std = sqrt(cmVOR_Variance( c->dbV,n,&c->db_mean));
  3850. c->hz_mean = cmVOR_Mean(c->hzV,n);
  3851. c->hz_std = sqrt(cmVOR_Variance( c->hzV,n,&c->hz_mean));
  3852. //c->score = c->db / ((cmMax(0.1,c->db_std) + cmMax(0.1,c->hz_std))/2);
  3853. c->score = c->db - (c->db_std * 5) - (c->hz_std/50);
  3854. //printf("%f %f %f %f %f\n",c->db,cmMin(0.1,c->db_std),c->hz,cmMin(0.1,c->hz_std),c->score);
  3855. }
  3856. }
  3857. // Generate a filter that is wider for higher frequencies than lower frequencies.
  3858. unsigned _cmFrqTrkFillMap( cmFrqTrk* p, cmReal_t* map, unsigned maxN, cmReal_t hz )
  3859. {
  3860. assert( maxN % 2 == 1 );
  3861. unsigned i;
  3862. cmReal_t maxHz = p->a.srate/2;
  3863. unsigned mapN = cmMin(maxN,ceil(hz/maxHz * maxN));
  3864. if( mapN % 2 == 0 )
  3865. mapN += 1;
  3866. mapN = cmMin(maxN,mapN);
  3867. unsigned N = floor(mapN/2);
  3868. double COEFF = 0.3;
  3869. for(i=0; i<N; ++i)
  3870. {
  3871. map[i] = pow(((double)i+1)/(N+1),COEFF);
  3872. map[mapN-(i+1)] = map[i];
  3873. }
  3874. map[N] = 1.0;
  3875. return mapN;
  3876. }
  3877. void _cmFrqTrkApplyAtten( cmFrqTrk* p, cmReal_t* aV, cmReal_t gain, cmReal_t hz )
  3878. {
  3879. int cbi = cmMin(p->a.binCnt,cmMax(0,round(hz/p->binHz)));
  3880. //cmReal_t map[] = { .25, .5, 1, .5, .25 };
  3881. //int mapN = sizeof(map)/sizeof(map[0]);
  3882. unsigned maxN = 30; // must be odd
  3883. cmReal_t map[ maxN ];
  3884. int mapN = _cmFrqTrkFillMap(p, map, maxN, hz );
  3885. int j;
  3886. int ai = cbi - mapN/2;
  3887. for(j=0; j<mapN; ++j,++ai)
  3888. if( 0 <= ai && ai < p->a.binCnt )
  3889. aV[ai] *= 1.0 - (map[j] * gain);
  3890. }
  3891. void _cmFrqTrkUpdateFilter( cmFrqTrk* p )
  3892. {
  3893. unsigned i;
  3894. cmVOR_Fill(p->aV,p->a.binCnt,1.0);
  3895. for(i=0; i<p->a.chCnt; ++i)
  3896. if( p->ch[i].activeFl )
  3897. {
  3898. cmFrqTrkCh_t* c = p->ch + i;
  3899. //
  3900. if( c->score >= p->a.attenThresh && c->state == kNoStateFrqTrkId )
  3901. {
  3902. //printf("%f\n",c->score);
  3903. c->attenPhsIdx = 0;
  3904. c->state = kDlyFrqTrkId;
  3905. }
  3906. switch( c->state )
  3907. {
  3908. case kNoStateFrqTrkId:
  3909. break;
  3910. case kDlyFrqTrkId:
  3911. c->attenPhsIdx += 1;
  3912. if( c->attenPhsIdx >= p->attenDlyPhsMax && c->dN == 0 )
  3913. c->state = kAtkFrqTrkId;
  3914. break;
  3915. case kAtkFrqTrkId:
  3916. if( c->attenPhsIdx < p->attenDlyPhsMax + p->attenPhsMax )
  3917. {
  3918. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3919. _cmFrqTrkApplyAtten(p, p->aV, c->attenGain, c->hz);
  3920. }
  3921. c->attenPhsIdx += 1;
  3922. if( c->attenPhsIdx >= p->attenDlyPhsMax + p->attenPhsMax )
  3923. c->state = kSusFrqTrkId;
  3924. break;
  3925. case kSusFrqTrkId:
  3926. if( c->dN > 0 )
  3927. {
  3928. if( c->attenPhsIdx > 0 )
  3929. {
  3930. c->attenPhsIdx -= 1;
  3931. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3932. }
  3933. }
  3934. _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
  3935. if( c->dN >= p->deadN_max )
  3936. c->state = kDcyFrqTrkId;
  3937. break;
  3938. case kDcyFrqTrkId:
  3939. if( c->attenPhsIdx > 0 )
  3940. {
  3941. c->attenPhsIdx -= 1;
  3942. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3943. _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
  3944. }
  3945. if( c->attenPhsIdx == 0 )
  3946. c->activeFl = false;
  3947. break;
  3948. }
  3949. }
  3950. }
  3951. // Extend the existing trackers
  3952. void _cmFrqTrkExtendChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3953. {
  3954. unsigned i;
  3955. p->curTrkCnt = 0;
  3956. p->deadTrkCnt = 0;
  3957. // sort the channels in descending order
  3958. qsort(p->ch,p->a.chCnt,sizeof(cmFrqTrkCh_t),_cmFrqTrkChCompare);
  3959. // for each active channel
  3960. for(i=0; i<p->a.chCnt; ++i)
  3961. {
  3962. cmFrqTrkCh_t* c = p->ch + i;
  3963. if( c->activeFl )
  3964. {
  3965. unsigned pki;
  3966. // find the best peak to extend tracker 'c'.
  3967. if((pki = _cmFrqTrkFindPeak(p,c,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
  3968. {
  3969. // no valid track was found to extend tracker 'c'
  3970. c->dN += 1;
  3971. c->tN += 1;
  3972. if( c->dN >= p->deadN_max )
  3973. {
  3974. if( c->attenPhsIdx == 0 )
  3975. c->activeFl = false;
  3976. p->deadTrkCnt += 1;
  3977. }
  3978. }
  3979. else // ... update the tracker using the matching peak
  3980. {
  3981. unsigned j = pkiV[pki];
  3982. c->dN = 0;
  3983. c->db = dbV[ j ];
  3984. c->hz = hzV[ j ];
  3985. c->tN += 1;
  3986. pkiV[pki] = cmInvalidIdx; // mark the peak as unavailable.
  3987. p->curTrkCnt += 1;
  3988. }
  3989. }
  3990. }
  3991. }
  3992. // disable peaks which are within 'stRange' semitones of the frequency of active trackers.
  3993. void _cmFrqTrkDisableClosePeaks( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3994. {
  3995. unsigned i;
  3996. for(i=0; i<p->a.chCnt; ++i)
  3997. {
  3998. const cmFrqTrkCh_t* c = p->ch + i;
  3999. if( !c->activeFl )
  4000. continue;
  4001. cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
  4002. cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
  4003. unsigned j;
  4004. // find all peaks within the frequency range hz_min to hz_max.
  4005. for(j=0; j<pkN; ++j)
  4006. if( pkiV[j] != cmInvalidIdx && hz_min <= c->hz && c->hz <= hz_max )
  4007. pkiV[j] = cmInvalidIdx;
  4008. }
  4009. }
  4010. // Return the index into pkiV[] of the maximum energy peak in dbV[]
  4011. // that is also above kAtkThreshDb.
  4012. unsigned _cmFrqTrkMaxEnergyPeakIndex( const cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, const unsigned* pkiV, unsigned pkN )
  4013. {
  4014. cmReal_t mv = p->a.pkAtkThreshDb;
  4015. unsigned mi = cmInvalidIdx;
  4016. unsigned i;
  4017. for(i=0; i<pkN; ++i)
  4018. if( pkiV[i] != cmInvalidIdx && dbV[pkiV[i]] >= mv && hzV[pkiV[i]] < p->a.pkMaxHz )
  4019. {
  4020. mi = i;
  4021. mv = dbV[pkiV[i]];
  4022. }
  4023. return mi;
  4024. }
  4025. // start new trackers
  4026. void _cmFrqTrkNewChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  4027. {
  4028. p->newTrkCnt = 0;
  4029. while(1)
  4030. {
  4031. unsigned db_max_idx;
  4032. cmFrqTrkCh_t* c;
  4033. // find an inactive channel
  4034. if((c = _cmFrqTrkFindAvailCh(p)) == NULL )
  4035. break;
  4036. // find the largest peak that is above pkAtkThreshDb && less than pkAtkHz.
  4037. if((db_max_idx = _cmFrqTrkMaxEnergyPeakIndex(p,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
  4038. break;
  4039. // activate a new channel
  4040. c->activeFl = true;
  4041. c->tN = 1;
  4042. c->dN = 0;
  4043. c->hz = hzV[ pkiV[ db_max_idx ] ];
  4044. c->db = dbV[ pkiV[ db_max_idx ] ];
  4045. c->id = p->nextTrkId++;
  4046. c->si = 0;
  4047. c->sn = 0;
  4048. c->score = 0;
  4049. c->state = kNoStateFrqTrkId;
  4050. c->attenPhsIdx = cmInvalidIdx;
  4051. c->attenGain = 1.0;
  4052. // mark the peak as unavailable
  4053. pkiV[ db_max_idx ] = cmInvalidIdx;
  4054. p->newTrkCnt += 1;
  4055. }
  4056. }
  4057. void _cmFrqTrkApplyFrqBias( cmFrqTrk* p, cmReal_t* xV )
  4058. {
  4059. // convert to decibel scale (0.0 - 100.0) and then scale to (0.0 to 1.0)
  4060. unsigned i;
  4061. for(i=0; i<p->bN; ++i)
  4062. xV[i] = cmMax(0.0, (20*log10( cmMax(xV[i]/1.5,0.00001)) + 100.0)/100.0);
  4063. }
  4064. cmRC_t cmFrqTrkExec( cmFrqTrk* p, const cmReal_t* magV, const cmReal_t* phsV, const cmReal_t* hertzV )
  4065. {
  4066. cmRC_t rc = cmOkRC;
  4067. cmReal_t hzV[ p->bN ];
  4068. //cmReal_t powV[ p->bN ];
  4069. //cmReal_t yV[ p->bN];
  4070. //cmVOR_MultVVV(powV,p->bN,magV,magV);
  4071. //cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
  4072. // convert magV to Decibels
  4073. //cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
  4074. // copy p->dbV to dbM[hi,:]
  4075. //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
  4076. //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, whV, 1 );
  4077. if( 1 )
  4078. {
  4079. cmReal_t powV[ p->bN ];
  4080. cmVOR_MultVVV(powV,p->bN,magV,magV);
  4081. cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
  4082. _cmFrqTrkApplyFrqBias(p,p->dbV);
  4083. }
  4084. else
  4085. {
  4086. // convert magV to Decibels
  4087. cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
  4088. }
  4089. // copy p->dbV to dbM[hi,:]
  4090. cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
  4091. // increment hi to next column to fill in dbM[]
  4092. p->hi = (p->hi + 1) % p->hN;
  4093. // Set dbV[] to spectral magnitude profile by taking the mean over time
  4094. // of the last hN magnitude vectors
  4095. cmVOR_MeanM2(p->dbV, p->dbM, p->hN, p->bN, 0, cmMin(p->fN+1,p->hN));
  4096. //cmVOR_MeanM(p->dbV, p->dbM, p->hN, p->bN, 0);
  4097. if( p->fN >= p->hN )
  4098. {
  4099. // set pkiV[] to the indexes of the peaks above pkThreshDb in i0[]
  4100. unsigned pkN = cmVOR_PeakIndexes(p->pkiV, p->bN, p->dbV, p->bN, p->a.pkThreshDb );
  4101. // set hzV[] to the peak frequencies assoc'd with peaks at dbV[ pkiV[] ].
  4102. _cmFrqTrkMagnToHz(p, p->dbV, p->pkiV, pkN, hzV );
  4103. // extend the existing trackers
  4104. _cmFrqTrkExtendChs(p, p->dbV, hzV, p->pkiV, pkN );
  4105. //_cmFrqTrkDisableClosePeaks(p, p->dbV, hzV, p->pkiV, pkN );
  4106. // create new trackers
  4107. _cmFrqTrkNewChs(p,p->dbV,hzV,p->pkiV,pkN);
  4108. //
  4109. _cmFrqTrkScoreChs(p);
  4110. //
  4111. _cmFrqTrkUpdateFilter(p);
  4112. /*
  4113. // write the log file
  4114. _cmFrqTrkWriteLog(p);
  4115. // write the spectrum output file
  4116. if( p->specFn != NULL )
  4117. cmVectArrayAppendR(p->specVa,p->dbV,p->bN);
  4118. // write the atten output file
  4119. if( p->attenFn != NULL )
  4120. cmVectArrayAppendR(p->attenVa,p->aV,p->bN);
  4121. // write the the level file
  4122. _cmFrqTrkWriteLevel(p,p->dbV,hzV,p->bN);
  4123. */
  4124. }
  4125. p->fN += 1;
  4126. return rc;
  4127. }
  4128. void cmFrqTrkPrint( cmFrqTrk* p )
  4129. {
  4130. printf("srate: %f\n",p->a.srate);
  4131. printf("chCnt: %i\n",p->a.chCnt);
  4132. printf("binCnt: %i (bN=%i)\n",p->a.binCnt,p->bN);
  4133. printf("hopSmpCnt: %i\n",p->a.hopSmpCnt);
  4134. printf("stRange: %f\n",p->a.stRange);
  4135. printf("wndSecs: %f (%i)\n",p->a.wndSecs,p->hN);
  4136. printf("minTrkSec: %f (%i)\n",p->a.minTrkSec,p->minTrkN);
  4137. printf("maxTrkDeadSec: %f (%i)\n",p->a.maxTrkDeadSec,p->deadN_max);
  4138. printf("pkThreshDb: %f\n",p->a.pkThreshDb);
  4139. printf("pkAtkThreshDb: %f\n",p->a.pkAtkThreshDb);
  4140. }
  4141. //------------------------------------------------------------------------------------------------------------
  4142. cmFbCtl_t* cmFbCtlAlloc( cmCtx* c, cmFbCtl_t* ap, const cmFbCtlArgs_t* a )
  4143. {
  4144. cmFbCtl_t* p = cmObjAlloc( cmFbCtl_t, c, ap );
  4145. p->sva = cmVectArrayAlloc(c,kRealVaFl);
  4146. p->uva = cmVectArrayAlloc(c,kRealVaFl);
  4147. if( a != NULL )
  4148. {
  4149. if( cmFbCtlInit( p, a ) != cmOkRC )
  4150. cmFbCtlFree(&p);
  4151. }
  4152. return p;
  4153. }
  4154. cmRC_t cmFbCtlFree( cmFbCtl_t** pp )
  4155. {
  4156. if( pp == NULL || *pp == NULL )
  4157. return cmOkRC;
  4158. cmFbCtl_t* p = *pp;
  4159. cmVectArrayWrite(p->sva, "/home/kevin/temp/frqtrk/fb_ctl_s.va");
  4160. cmVectArrayWrite(p->uva, "/home/kevin/temp/frqtrk/fb_ctl_u.va");
  4161. cmMemFree(p->bM);
  4162. cmMemFree(p->rmsV);
  4163. cmVectArrayFree(&p->sva);
  4164. cmVectArrayFree(&p->uva);
  4165. cmObjFree(pp);
  4166. return cmOkRC;
  4167. }
  4168. cmRC_t cmFbCtlInit( cmFbCtl_t* p, const cmFbCtlArgs_t* a )
  4169. {
  4170. cmRC_t rc;
  4171. if((rc = cmFbCtlFinal(p)) != cmOkRC )
  4172. return rc;
  4173. double binHz = a->srate / ((a->binCnt-1)*2);
  4174. p->a = *a;
  4175. p->frmCnt = (a->bufMs * a->srate / 1000.0) /a->hopSmpCnt;
  4176. p->binCnt = cmMin(p->a.binCnt, a->maxHz/binHz);
  4177. p->bM = cmMemResizeZ(cmReal_t, p->bM, p->binCnt*p->frmCnt);
  4178. p->rmsV = cmMemResizeZ(cmReal_t, p->rmsV, p->frmCnt);
  4179. p->sV = cmMemResizeZ(cmReal_t, p->sV, p->binCnt);
  4180. p->uV = cmMemResizeZ(cmReal_t, p->uV, p->binCnt);
  4181. printf("cmFbCtl: frmCnt:%i binCnt:%i \n",p->frmCnt,p->binCnt);
  4182. return rc;
  4183. }
  4184. cmRC_t cmFbCtlFinal(cmFbCtl_t* p )
  4185. { return cmOkRC; }
  4186. cmRC_t cmFbCtlExec( cmFbCtl_t* p, const cmReal_t* x0V )
  4187. {
  4188. unsigned i;
  4189. cmRC_t rc = cmOkRC;
  4190. cmReal_t xV[ p->binCnt ];
  4191. cmVOR_AmplToDbVV(xV, p->binCnt, x0V, -1000.0 );
  4192. cmVOR_Shift( p->rmsV, p->frmCnt, -1, 0 );
  4193. p->rmsV[0] = cmVOR_Mean(xV,p->binCnt);
  4194. cmVOR_CopyN(p->bM + p->bfi, p->binCnt, p->frmCnt, xV, 1 );
  4195. p->bfi = (p->bfi + 1) % p->frmCnt;
  4196. p->bfN = cmMin(p->bfN+1,p->frmCnt);
  4197. for(i=0; i<p->binCnt; ++i)
  4198. {
  4199. const cmReal_t* v = p->bM + i * p->frmCnt;
  4200. cmReal_t u = cmVOR_Mean(v, p->bfN );
  4201. cmReal_t s = sqrt(cmVOR_Variance(v, p->bfN,&u));
  4202. p->sV[i] = (0.0002 - s);
  4203. p->uV[i] = u;
  4204. }
  4205. cmVectArrayAppendR(p->sva,p->sV,p->binCnt);
  4206. cmVectArrayAppendR(p->uva,p->uV,p->binCnt);
  4207. return rc;
  4208. }
  4209. //=======================================================================================================================
  4210. cmExpander* cmExpanderAlloc( cmCtx* c, cmExpander* p,
  4211. double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
  4212. double threshMs, double rmsMs, double atkMs, double rlsMs )
  4213. {
  4214. cmExpander* op = cmObjAlloc(cmExpander,c,p);
  4215. if( srate > 0 )
  4216. if( cmExpanderInit(op,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
  4217. cmExpanderFree(&op);
  4218. return op;
  4219. }
  4220. cmRC_t cmExpanderFree( cmExpander** pp )
  4221. {
  4222. cmRC_t rc = cmOkRC;
  4223. if( pp==NULL || *pp==NULL )
  4224. return rc;
  4225. cmExpander* p = *pp;
  4226. if((rc = cmExpanderFinal(p)) != cmOkRC )
  4227. return rc;
  4228. cmMemFree(p->rmsV);
  4229. cmMemFree(p->envV);
  4230. cmObjFree(pp);
  4231. return rc;
  4232. }
  4233. cmRC_t cmExpanderInit( cmExpander* p,
  4234. double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
  4235. double threshMs, double rmsMs, double atkMs, double rlsMs )
  4236. {
  4237. cmRC_t rc;
  4238. unsigned i;
  4239. if((rc = cmExpanderFinal(p)) != cmOkRC )
  4240. return rc;
  4241. unsigned atkN = cmMax(1,ceil( atkMs / (srate * 1000.0)));
  4242. unsigned rlsN = cmMax(1,ceil( rlsMs / (srate * 1000.0)));
  4243. p->rmsN = cmMax(1,ceil(rmsMs / (srate * 1000.0)));
  4244. p->rmsV = cmMemResizeZ(cmReal_t,p->rmsV,p->rmsN);
  4245. p->rmsIdx = 0;
  4246. p->envN = atkN + rlsN;
  4247. p->envV = cmMemResizeZ(cmSample_t,p->envV,p->envN);
  4248. p->envIdx = p->envN;
  4249. p->threshN = cmMax(1,ceil(threshMs / (srate * 1000.0)));
  4250. p->threshIdx = 0;
  4251. p->threshLvl = pow(10.0,(threshDb/20.0));
  4252. p->rlsLvl = pow(10.0,(rlsDb/20.0));
  4253. p->gain = 1.0;
  4254. p->atkCnt = 0;
  4255. cmSample_t G = (1.0 - p->rlsLvl);
  4256. for(i=0; i<atkN; ++i)
  4257. {
  4258. p->envV[i] = 1.0 - G*i/atkN;
  4259. }
  4260. for(i=0; i<rlsN; ++i)
  4261. {
  4262. p->envV[atkN+i] = p->rlsLvl + (G*i/rlsN);
  4263. }
  4264. //printf("rmsN:%i atkN:%i rlsN:%i thr:%f %f rls:%f %f\n",p->rmsN,atkN,rlsN,threshDb,p->threshLvl,rlsDb,p->rlsLvl);
  4265. //for(i=0; i<p->envN; ++i)
  4266. // printf("%i %f\n",i,p->envV[i]);
  4267. //printf("\n");
  4268. return cmOkRC;
  4269. }
  4270. cmRC_t cmExpanderFinal( cmExpander* p )
  4271. { return cmOkRC; }
  4272. cmRC_t cmExpanderExec( cmExpander* p, cmSample_t* x, cmSample_t* y, unsigned xyN )
  4273. {
  4274. unsigned i;
  4275. // update the RMS buffer
  4276. for(i=0; i<xyN; ++i)
  4277. {
  4278. // NOTE: using abs() instead of pow(x,2)
  4279. p->rmsV[p->rmsIdx] = fabsf(x[i]);
  4280. if( ++p->rmsIdx >= p->rmsN )
  4281. p->rmsIdx = 0;
  4282. }
  4283. // calculate the RMS
  4284. double rms = cmVOR_Mean(p->rmsV,p->rmsN);
  4285. // update the duration that the signal has been above the threshold
  4286. if( rms > p->threshLvl )
  4287. p->threshIdx += 1;
  4288. else
  4289. p->threshIdx = 0;
  4290. // begin the atk phase?
  4291. if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
  4292. {
  4293. p->envIdx = 0;
  4294. }
  4295. // update the output
  4296. if( p->envIdx >= p->envN )
  4297. {
  4298. if( y != NULL )
  4299. cmVOS_Copy(y,xyN,x);
  4300. }
  4301. else
  4302. {
  4303. if( y == NULL )
  4304. y = x;
  4305. for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
  4306. y[i] = p->envV[p->envIdx] * x[i];
  4307. }
  4308. return cmOkRC;
  4309. }
  4310. cmRC_t cmExpanderExecD( cmExpander* p, double* x, double* y, unsigned xyN )
  4311. {
  4312. unsigned i;
  4313. // update the RMS buffer
  4314. for(i=0; i<xyN; ++i)
  4315. {
  4316. // NOTE: using abs() instead of pow(x,2)
  4317. p->rmsV[p->rmsIdx] = x[i];
  4318. p->rmsIdx += 1;
  4319. if( p->rmsIdx >= p->rmsN )
  4320. p->rmsIdx = 0;
  4321. }
  4322. // calculate the RMS
  4323. p->rmsValue = cmVOR_Mean(p->rmsV,p->rmsN);
  4324. // update the duration that the signal has been above the threshold
  4325. if( p->rmsValue > p->threshLvl )
  4326. p->threshIdx += 1;
  4327. else
  4328. p->threshIdx = 0;
  4329. // begin the atk phase?
  4330. if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
  4331. {
  4332. p->envIdx = 0;
  4333. p->atkCnt += 1;
  4334. }
  4335. /*
  4336. if( p->envIdx >= p->envN )
  4337. p->gain = 1.0;
  4338. else
  4339. {
  4340. p->gain = p->envV[p->envIdx];
  4341. p->envIdx += 1;
  4342. }
  4343. */
  4344. // update the output
  4345. if( p->envIdx >= p->envN )
  4346. {
  4347. if( y != NULL )
  4348. cmVOD_Copy(y,xyN,x);
  4349. }
  4350. else
  4351. {
  4352. if( y == NULL )
  4353. y = x;
  4354. for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
  4355. y[i] = p->envV[p->envIdx] * x[i];
  4356. }
  4357. return cmOkRC;
  4358. }
  4359. //=======================================================================================================================
  4360. cmExpanderBank* cmExpanderBankAlloc( cmCtx* c, cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
  4361. {
  4362. cmExpanderBank* op = cmObjAlloc(cmExpanderBank,c,p);
  4363. if( bandN > 0 )
  4364. if( cmExpanderBankInit(op,bandN,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
  4365. cmExpanderBankFree(&op);
  4366. return op;
  4367. }
  4368. cmRC_t cmExpanderBankFree( cmExpanderBank** pp )
  4369. {
  4370. cmRC_t rc = cmOkRC;
  4371. if( pp==NULL || *pp==NULL )
  4372. return rc;
  4373. cmExpanderBank* p = *pp;
  4374. if((rc = cmExpanderBankFinal(p)) != cmOkRC )
  4375. return rc;
  4376. cmMemFree(p->b);
  4377. cmObjFree(pp);
  4378. return rc;
  4379. }
  4380. cmRC_t cmExpanderBankInit( cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
  4381. {
  4382. cmRC_t rc;
  4383. unsigned i;
  4384. if((rc = cmExpanderBankFinal(p)) != cmOkRC )
  4385. return rc;
  4386. p->bandN = bandN;
  4387. p->b = cmMemResizeZ(cmExpander*,p->b,p->bandN);
  4388. for(i=0; i<bandN; ++i)
  4389. p->b[i] = cmExpanderAlloc(p->obj.ctx,NULL,srate, procSmpCnt,threshDb,rlsDb,threshMs,rmsMs,atkMs,rlsMs);
  4390. return cmOkRC;
  4391. }
  4392. cmRC_t cmExpanderBankFinal( cmExpanderBank* p )
  4393. {
  4394. unsigned i;
  4395. for(i=0; i<p->bandN; ++i)
  4396. cmExpanderFree(&p->b[i]);
  4397. return cmOkRC;
  4398. }
  4399. cmRC_t cmExpanderBankExec( cmExpanderBank* p, cmSample_t* x, unsigned bandN )
  4400. {
  4401. assert( bandN <= p->bandN);
  4402. unsigned i;
  4403. for(i=0; i<bandN; ++i)
  4404. {
  4405. cmExpanderExec(p->b[i],&x[i],NULL,1);
  4406. }
  4407. return cmOkRC;
  4408. }
  4409. /*
  4410. cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned binN )
  4411. {
  4412. unsigned i;
  4413. p->rmsValue = 0;
  4414. for(i=0; i<p->bandN; ++i)
  4415. {
  4416. double sum = cmVOD_Sum(x,binN);
  4417. cmExpanderExecD(p->b[i],&sum,NULL,1);
  4418. //printf("%f %f\n",sum, p->b[i]->rmsValue);
  4419. p->rmsValue += p->b[i]->rmsValue;
  4420. cmVOR_MultVS(x,binN,p->b[i]->gain);
  4421. }
  4422. p->rmsValue /= p->bandN;
  4423. return cmOkRC;
  4424. }
  4425. */
  4426. cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned bandN )
  4427. {
  4428. unsigned i;
  4429. //unsigned n = 3;
  4430. //unsigned no2 = n/2;
  4431. double xx;
  4432. p->rmsValue = 0;
  4433. p->atkCnt = 0;
  4434. for(i=0; i<p->bandN; ++i)
  4435. {
  4436. unsigned atkCnt = p->b[i]->atkCnt;
  4437. //if( i >= no2 && i < bandN-no2 )
  4438. // xx = cmVOR_Mean(x-no2,n);
  4439. //else
  4440. xx = x[i];
  4441. cmExpanderExecD(p->b[i],&xx,NULL,1);
  4442. p->rmsValue += p->b[i]->rmsValue;
  4443. p->atkCnt += p->b[i]->atkCnt != atkCnt;
  4444. }
  4445. p->rmsValue /= p->bandN;
  4446. return cmOkRC;
  4447. }
  4448. //------------------------------------------------------------------------------------------------------------
  4449. cmSpecDist_t* cmSpecDistAlloc( cmCtx* ctx,cmSpecDist_t* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
  4450. {
  4451. cmSpecDist_t* p = cmObjAlloc( cmSpecDist_t, ctx, ap );
  4452. //p->iSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
  4453. //p->oSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
  4454. if( procSmpCnt != 0 )
  4455. {
  4456. if( cmSpecDistInit( p, procSmpCnt, srate, wndSmpCnt, hopFcmt, olaWndTypeId ) != cmOkRC )
  4457. cmSpecDistFree(&p);
  4458. }
  4459. return p;
  4460. }
  4461. cmRC_t cmSpecDistFree( cmSpecDist_t** pp )
  4462. {
  4463. if( pp == NULL || *pp == NULL )
  4464. return cmOkRC;
  4465. cmSpecDist_t* p = *pp;
  4466. cmSpecDistFinal(p);
  4467. //cmVectArrayFree(&p->iSpecVa);
  4468. //cmVectArrayFree(&p->oSpecVa);
  4469. cmMemPtrFree(&p->hzV);
  4470. cmMemPtrFree(&p->iSpecM);
  4471. cmMemPtrFree(&p->oSpecM);
  4472. cmMemPtrFree(&p->iSpecV);
  4473. cmMemPtrFree(&p->oSpecV);
  4474. cmObjFree(pp);
  4475. return cmOkRC;
  4476. }
  4477. cmRC_t cmSpecDistInit( cmSpecDist_t* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
  4478. {
  4479. //cmFrqTrkArgs_t fta;
  4480. cmRC_t rc;
  4481. if((rc = cmSpecDistFinal(p)) != cmOkRC )
  4482. return rc;
  4483. unsigned flags = 0;
  4484. p->srate = srate;
  4485. p->wndSmpCnt = wndSmpCnt;
  4486. p->hopSmpCnt = (unsigned)floor(wndSmpCnt/hopFcmt);
  4487. p->procSmpCnt = procSmpCnt;
  4488. p->mode = kBasicModeSdId;
  4489. p->thresh = 60;
  4490. p->offset = 0;
  4491. p->invertFl = false;
  4492. p->uprSlope = 0.0;
  4493. p->lwrSlope = 2.0;
  4494. p->pva = cmPvAnlAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, flags );
  4495. p->pvs = cmPvSynAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, olaWndTypeId );
  4496. /*
  4497. fta.srate = srate;
  4498. fta.chCnt = 50;
  4499. fta.binCnt = p->pva->binCnt;
  4500. fta.hopSmpCnt = p->pva->hopSmpCnt;
  4501. fta.stRange = 0.25;
  4502. fta.wndSecs = 0.25;
  4503. fta.minTrkSec = 0.25;
  4504. fta.maxTrkDeadSec = 0.25;
  4505. fta.pkThreshDb = 0.1; //-110.0;
  4506. fta.pkAtkThreshDb = 0.4; //-60.0;
  4507. fta.pkMaxHz = 20000;
  4508. fta.whFiltCoeff = 0.33;
  4509. fta.attenThresh = 0.4;
  4510. fta.attenGain = 0.5;
  4511. fta.attenDlySec = 1.0;
  4512. fta.attenAtkSec = 1.0;
  4513. fta.logFn = "/home/kevin/temp/frqtrk/trk_log.va";
  4514. fta.levelFn = "/home/kevin/temp/frqtrk/level.va";
  4515. fta.specFn = "/home/kevin/temp/frqtrk/spec.va";
  4516. fta.attenFn = "/home/kevin/temp/frqtrk/atten.va";
  4517. */
  4518. //p->ft = cmFrqTrkAlloc( p->obj.ctx, NULL, &fta );
  4519. /*
  4520. cmFbCtlArgs_t fba;
  4521. fba.srate = srate;
  4522. fba.binCnt = p->pva->binCnt;
  4523. fba.hopSmpCnt = p->hopSmpCnt;
  4524. fba.bufMs = 500;
  4525. fba.maxHz = 5000;
  4526. */
  4527. //p->fbc = cmFbCtlAlloc( p->obj.ctx, NULL, &fba );
  4528. //unsigned expBandN = 1; //
  4529. unsigned expBandN = 20000.0 / (p->srate / p->pva->binCnt);
  4530. double expSrate = p->pva->hopSmpCnt / srate;
  4531. unsigned expProcSmpCnt = 1;
  4532. double expThreshDb = -80.0;
  4533. double expRlsDb = -18.0;
  4534. double expThreshMs = 250.0;
  4535. double expRmsMs = 100.0;
  4536. double expAtkMs = 25.0;
  4537. double expRlsMs = 1000.0;
  4538. p->exb = cmExpanderBankAlloc( p->obj.ctx, NULL, expBandN, expSrate, expProcSmpCnt, expThreshDb, expRlsDb, expThreshMs, expRmsMs, expAtkMs, expRlsMs );
  4539. p->spcBwHz = cmMin(srate/2,10000);
  4540. p->spcSmArg = 0.05;
  4541. p->spcMin = p->spcBwHz;
  4542. p->spcMax = 0.0;
  4543. p->spcSum = 0.0;
  4544. p->spcCnt = 0;
  4545. double binHz = srate / p->pva->wndSmpCnt;
  4546. p->spcBinCnt = (unsigned)floor(p->spcBwHz / binHz);
  4547. p->hzV = cmMemResizeZ(cmReal_t,p->hzV,p->spcBinCnt);
  4548. cmVOR_Seq( p->hzV, p->spcBinCnt, 0, 1 );
  4549. cmVOR_MultVS( p->hzV, p->spcBinCnt, binHz );
  4550. p->aeUnit = 0;
  4551. p->aeMin = 1000;
  4552. p->aeMax = -1000;
  4553. double histSecs = 0.05;
  4554. p->hN = cmMax(1,histSecs * p->srate / p->hopSmpCnt );
  4555. p->iSpecM = cmMemResizeZ(cmReal_t,p->iSpecM,p->hN*p->pva->binCnt);
  4556. p->oSpecM = cmMemResizeZ(cmReal_t,p->oSpecM,p->hN*p->pva->binCnt);
  4557. p->iSpecV = cmMemResizeZ(cmReal_t,p->iSpecV, p->pva->binCnt);
  4558. p->oSpecV = cmMemResizeZ(cmReal_t,p->oSpecV, p->pva->binCnt);
  4559. p->hi = 0;
  4560. //p->bypOut = cmMemResizeZ(cmSample_t, p->bypOut, procSmpCnt );
  4561. return rc;
  4562. }
  4563. cmRC_t cmSpecDistFinal(cmSpecDist_t* p )
  4564. {
  4565. cmRC_t rc = cmOkRC;
  4566. //cmVectArrayWrite(p->iSpecVa, "/home/kevin/temp/frqtrk/iSpec.va");
  4567. //cmVectArrayWrite(p->oSpecVa, "/home/kevin/temp/expand/oSpec.va");
  4568. cmPvAnlFree(&p->pva);
  4569. cmPvSynFree(&p->pvs);
  4570. //cmFrqTrkFree(&p->ft);
  4571. //cmFbCtlFree(&p->fbc);
  4572. cmExpanderBankFree(&p->exb);
  4573. return rc;
  4574. }
  4575. void _cmSpecDistBasicMode0(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
  4576. {
  4577. // octavez> thresh = 60;
  4578. // octave> X1m = [-62 -61 -60 -59];
  4579. // octave> -abs(abs(X1m+thresh)-(X1m+thresh)) - thresh
  4580. // octave> ans = -64 -62 -60 -60
  4581. unsigned i=0;
  4582. for(i=0; i<binCnt; ++i)
  4583. {
  4584. cmReal_t a = fabs(X1m[i]);
  4585. cmReal_t d = a - thresh;
  4586. X1m[i] = -thresh;
  4587. if( d > 0 )
  4588. X1m[i] -= 2*d;
  4589. }
  4590. }
  4591. void _cmSpecDistBasicMode(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
  4592. {
  4593. unsigned i=0;
  4594. if( p->lwrSlope < 0.3 )
  4595. p->lwrSlope = 0.3;
  4596. for(i=0; i<binCnt; ++i)
  4597. {
  4598. cmReal_t a = fabs(X1m[i]);
  4599. cmReal_t d = a - thresh;
  4600. X1m[i] = -thresh;
  4601. if( d > 0 )
  4602. X1m[i] -= (p->lwrSlope*d);
  4603. else
  4604. X1m[i] -= (p->uprSlope*d);
  4605. }
  4606. }
  4607. cmReal_t _cmSpecDistCentMode( cmSpecDist_t* p, cmReal_t* X1m )
  4608. {
  4609. // calc the spectral centroid
  4610. double num = cmVOR_MultSumVV( p->pva->magV, p->hzV, p->spcBinCnt );
  4611. double den = cmVOR_Sum( p->pva->magV, p->spcBinCnt );
  4612. double result = 0;
  4613. if( den != 0 )
  4614. result = num/den;
  4615. // apply smoothing filter to spectral centroid
  4616. p->spc = (result * p->spcSmArg) + (p->spc * (1.0-p->spcSmArg));
  4617. // track spec. cetr. min and max
  4618. p->spcMin = cmMin(p->spcMin,p->spc);
  4619. p->spcMax = cmMax(p->spcMax,p->spc);
  4620. //-----------------------------------------------------
  4621. ++p->spcCnt;
  4622. p->spcSum += p->spc;
  4623. p->spcSqSum += p->spc * p->spc;
  4624. // use the one-pass std-dev calc. trick
  4625. //double mean = p->spcSum / p->spcCnt;
  4626. //double variance = p->spcSqSum / p->spcCnt - mean * mean;
  4627. //double std_dev = sqrt(variance);
  4628. double smin = p->spcMin;
  4629. double smax = p->spcMax;
  4630. //smin = mean - std_dev;
  4631. //smax = mean + std_dev;
  4632. //-----------------------------------------------------
  4633. // convert spec. cent. to unit range
  4634. double spcUnit = (p->spc - smin) / (smax - smin);
  4635. spcUnit = cmMin(1.0,cmMax(0.0,spcUnit));
  4636. if( p->invertFl )
  4637. spcUnit = 1.0 - spcUnit;
  4638. //if( p->spcMin==p->spc || p->spcMax==p->spc )
  4639. // printf("min:%f avg:%f sd:%f max:%f\n",p->spcMin,p->spcSum/p->spcCnt,std_dev,p->spcMax);
  4640. return spcUnit;
  4641. }
  4642. void _cmSpecDistBump( cmSpecDist_t* p, cmReal_t* x, unsigned binCnt, double thresh)
  4643. {
  4644. /*
  4645. thresh *= -1;
  4646. minDb = -100;
  4647. if db < minDb
  4648. db = minDb;
  4649. endif
  4650. if db > thresh
  4651. y = 1;
  4652. else
  4653. x = (minDb - db)/(minDb - thresh);
  4654. y = x + (x - (x.^coeff));
  4655. endif
  4656. y = minDb + abs(minDb) * y;
  4657. */
  4658. unsigned i=0;
  4659. //printf("%f %f %f\n",thresh,p->lwrSlope,x[0]);
  4660. double minDb = -100.0;
  4661. thresh = -thresh;
  4662. for(i=0; i<binCnt; ++i)
  4663. {
  4664. double y;
  4665. if( x[i] < minDb )
  4666. x[i] = minDb;
  4667. if( x[i] > thresh )
  4668. y = 1;
  4669. else
  4670. {
  4671. y = (minDb - x[i])/(minDb - thresh);
  4672. y += y - pow(y,p->lwrSlope);
  4673. }
  4674. x[i] = minDb + (-minDb) * y;
  4675. }
  4676. }
  4677. void _cmSpecDistAmpEnvMode( cmSpecDist_t* p, cmReal_t* X1m )
  4678. {
  4679. cmReal_t smCoeff = 0.1;
  4680. //
  4681. cmReal_t mx = cmVOR_Max(X1m,p->pva->binCnt,1);
  4682. p->aeSmMax = (mx * smCoeff) + (p->aeSmMax * (1.0-smCoeff));
  4683. cmReal_t a = cmVOR_Mean(X1m,p->pva->binCnt);
  4684. p->ae = (a * smCoeff) + (p->ae * (1.0-smCoeff));
  4685. p->aeMin = cmMin(p->ae,p->aeMin);
  4686. p->aeMax = cmMax(p->ae,p->aeMax);
  4687. p->aeUnit = (p->ae - p->aeMin) / (p->aeMax-p->aeMin);
  4688. p->aeUnit = cmMin(1.0,cmMax(0.0,p->aeUnit));
  4689. if( p->invertFl )
  4690. p->aeUnit = 1.0 - p->aeUnit;
  4691. //printf("%f\n",p->aeSmMax);
  4692. }
  4693. void _cmSpecDistPhaseMod( cmSpecDist_t* p, cmReal_t* phsV, unsigned binCnt )
  4694. {
  4695. unsigned i;
  4696. cmReal_t offs = sin( 0.1 * 2.0 * M_PI * (p->phaseModIndex++) / (p->srate/p->hopSmpCnt) );
  4697. //printf("offs %f %i %i %f\n",offs,p->phaseModIndex,p->hopSmpCnt,p->srate);
  4698. cmReal_t new_phs = phsV[0] + offs;
  4699. for(i=0; i<binCnt-1; ++i)
  4700. {
  4701. while( new_phs > M_PI )
  4702. new_phs -= 2.0*M_PI;
  4703. while( new_phs < -M_PI )
  4704. new_phs += 2.0*M_PI;
  4705. cmReal_t d = phsV[i+1] - phsV[i];
  4706. phsV[i] = new_phs;
  4707. new_phs += d;
  4708. }
  4709. }
  4710. cmRC_t cmSpecDistExec( cmSpecDist_t* p, const cmSample_t* sp, unsigned sn )
  4711. {
  4712. assert( sn == p->procSmpCnt );
  4713. bool recordFl = false;
  4714. // cmPvAnlExec() returns true when it calc's a new spectral output frame
  4715. if( cmPvAnlExec( p->pva, sp, sn ) )
  4716. {
  4717. cmReal_t X1m[p->pva->binCnt];
  4718. // take the mean of the the input magntitude spectrum
  4719. cmReal_t u0 = cmVOR_Mean(p->pva->magV,p->pva->binCnt);
  4720. if(recordFl)
  4721. {
  4722. // store a time windowed average of the input spectrum to p->iSpecV
  4723. cmVOR_CopyN(p->iSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
  4724. cmVOR_MeanM2(p->iSpecV, p->iSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
  4725. }
  4726. cmVOR_AmplToDbVV(X1m, p->pva->binCnt, p->pva->magV, -1000.0 );
  4727. //cmVOR_AmplToDbVV(X1m, p->pva->binCnt, X1m, -1000.0 );
  4728. switch( p->mode )
  4729. {
  4730. case kBypassModeSdId:
  4731. break;
  4732. case kBasicModeSdId:
  4733. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
  4734. break;
  4735. case kSpecCentSdId:
  4736. {
  4737. _cmSpecDistAmpEnvMode(p,X1m);
  4738. double spcUnit = _cmSpecDistCentMode(p,X1m);
  4739. double thresh = fabs(p->aeSmMax) - (spcUnit*p->offset);
  4740. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
  4741. }
  4742. break;
  4743. case kAmpEnvSdId:
  4744. {
  4745. _cmSpecDistAmpEnvMode(p,X1m);
  4746. //double thresh = fabs(p->aeSmMax) - p->offset;
  4747. double thresh = fabs(p->aeSmMax) - (p->aeUnit*p->offset);
  4748. thresh = fabs(p->thresh) - (p->aeUnit*p->offset);
  4749. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
  4750. }
  4751. break;
  4752. case kBumpSdId:
  4753. _cmSpecDistBump(p,X1m, p->pva->binCnt, p->offset);
  4754. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
  4755. break;
  4756. case 5:
  4757. break;
  4758. default:
  4759. break;
  4760. }
  4761. cmVOR_DbToAmplVV(X1m, p->pva->binCnt, X1m );
  4762. // run and apply the tracker/supressor
  4763. //cmFrqTrkExec(p->ft, X1m, p->pva->phsV, NULL );
  4764. //cmVOR_MultVV(X1m, p->pva->binCnt,p->ft->aV );
  4765. // convert the mean input magnitude to db
  4766. cmReal_t idb = 20*log10(u0);
  4767. // get the mean output magnitude spectra
  4768. cmReal_t u1 = cmVOR_Mean(X1m,p->pva->binCnt);
  4769. if( idb > -150.0 )
  4770. {
  4771. // set the output gain such that the mean output magnitude
  4772. // will match the mean input magnitude
  4773. p->ogain = u0/u1;
  4774. }
  4775. else
  4776. {
  4777. cmReal_t a0 = 0.9;
  4778. p->ogain *= a0;
  4779. }
  4780. cmVOR_MultVS(X1m,p->pva->binCnt,cmMin(4.0,p->ogain));
  4781. //cmFbCtlExec(p->fbc,X1m);
  4782. //cmReal_t v[ p->pva->binCnt ];
  4783. //cmVOR_Copy(v,p->pva->binCnt,p->pva->phsV);
  4784. //_cmSpecDistPhaseMod(p, v, p->pva->binCnt );
  4785. if(recordFl)
  4786. {
  4787. // store a time windowed average of the output spectrum to p->iSpecV
  4788. cmVOR_CopyN(p->oSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
  4789. cmVOR_MeanM2(p->oSpecV, p->oSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
  4790. // store iSpecV and oSpecV to iSpecVa and oSpecVa to create debugging files
  4791. //cmVectArrayAppendR(p->iSpecVa,p->iSpecV,p->pva->binCnt);
  4792. //cmVectArrayAppendR(p->oSpecVa,p->oSpecV,p->pva->binCnt);
  4793. p->hi = (p->hi + 1) % p->hN;
  4794. }
  4795. //unsigned binN = 12500.0 / (p->srate / p->pva->binCnt);
  4796. //cmExpanderBankExecD(p->exb, X1m, binN );
  4797. /*
  4798. cmExpanderBankExecD(p->exb, X1m, p->exb->bandN );
  4799. cmReal_t mean = cmVOR_Mean(X1m,p->exb->bandN);
  4800. cmReal_t arr[3] = { p->exb->rmsValue, mean, p->exb->atkCnt };
  4801. cmVectArrayAppendR(p->oSpecVa,arr,3);
  4802. */
  4803. cmPvSynExec(p->pvs, X1m, p->pva->phsV );
  4804. p->fi += 1;
  4805. }
  4806. return cmOkRC;
  4807. }
  4808. const cmSample_t* cmSpecDistOut( cmSpecDist_t* p )
  4809. {
  4810. return cmPvSynExecOut(p->pvs);
  4811. }
  4812. //------------------------------------------------------------------------------------------------------------
  4813. cmRC_t _cmBinMtxFileWriteHdr( cmBinMtxFile_t* p )
  4814. {
  4815. cmFileRC_t fileRC;
  4816. unsigned n = 3;
  4817. unsigned hdr[n];
  4818. hdr[0] = p->rowCnt;
  4819. hdr[1] = p->maxRowEleCnt;
  4820. hdr[2] = p->eleByteCnt;
  4821. if((fileRC = cmFileSeek(p->fh,kBeginFileFl,0)) != kOkFileRC )
  4822. return cmCtxRtCondition(&p->obj, fileRC, "File seek failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)));
  4823. if((fileRC = cmFileWriteUInt(p->fh,hdr,n)) != kOkFileRC )
  4824. return cmCtxRtCondition( &p->obj, fileRC, "Header write failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)) );
  4825. return cmOkRC;
  4826. }
  4827. cmBinMtxFile_t* cmBinMtxFileAlloc( cmCtx* ctx, cmBinMtxFile_t* ap, const cmChar_t* fn )
  4828. {
  4829. cmBinMtxFile_t* p = cmObjAlloc( cmBinMtxFile_t, ctx, ap );
  4830. if( fn != NULL )
  4831. if( cmBinMtxFileInit( p, fn ) != cmOkRC )
  4832. cmBinMtxFileFree(&p);
  4833. return p;
  4834. }
  4835. cmRC_t cmBinMtxFileFree( cmBinMtxFile_t** pp )
  4836. {
  4837. cmRC_t rc;
  4838. if( pp==NULL || *pp == NULL )
  4839. return cmOkRC;
  4840. cmBinMtxFile_t* p = *pp;
  4841. if((rc = cmBinMtxFileFinal(p)) == cmOkRC )
  4842. {
  4843. cmObjFree(pp);
  4844. }
  4845. return rc;
  4846. }
  4847. cmRC_t cmBinMtxFileInit( cmBinMtxFile_t* p, const cmChar_t* fn )
  4848. {
  4849. cmRC_t rc;
  4850. cmFileRC_t fileRC;
  4851. if((rc = cmBinMtxFileFinal(p)) != cmOkRC )
  4852. return rc;
  4853. // open the output file for writing
  4854. if((fileRC = cmFileOpen(&p->fh,fn,kWriteFileFl | kBinaryFileFl, p->obj.err.rpt)) != kOkFileRC )
  4855. return cmCtxRtCondition( &p->obj, fileRC, "Unable to open the matrix file:'%s'", cmStringNullGuard(fn) );
  4856. // iniitlaize the object
  4857. p->rowCnt = 0;
  4858. p->maxRowEleCnt = 0;
  4859. p->eleByteCnt = 0;
  4860. // write the blank header as place holder
  4861. if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
  4862. return rc;
  4863. return rc;
  4864. }
  4865. cmRC_t cmBinMtxFileFinal( cmBinMtxFile_t* p )
  4866. {
  4867. cmRC_t rc;
  4868. cmFileRC_t fileRC;
  4869. if( p != NULL && cmFileIsValid(p->fh))
  4870. {
  4871. // re-write the file header
  4872. if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
  4873. return rc;
  4874. // close the file
  4875. if((fileRC = cmFileClose(&p->fh)) != kOkFileRC )
  4876. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file close failed on:'%s'",cmStringNullGuard(cmFileName(p->fh)));
  4877. }
  4878. return cmOkRC;
  4879. }
  4880. bool cmBinMtxFileIsValid( cmBinMtxFile_t* p )
  4881. { return p != NULL && cmFileIsValid(p->fh); }
  4882. cmRC_t _cmBinMtxFileWriteRow( cmBinMtxFile_t* p, const void* buf, unsigned eleCnt, unsigned eleByteCnt )
  4883. {
  4884. cmFileRC_t fileRC;
  4885. if((fileRC = cmFileWrite(p->fh,&eleCnt,sizeof(eleCnt))) != kOkFileRC )
  4886. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i element count write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
  4887. if((fileRC = cmFileWrite(p->fh,buf,eleCnt*eleByteCnt)) != kOkFileRC )
  4888. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i data write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
  4889. if( eleCnt > p->maxRowEleCnt )
  4890. p->maxRowEleCnt = eleCnt;
  4891. ++p->rowCnt;
  4892. return cmOkRC;
  4893. }
  4894. cmRC_t cmBinMtxFileExecS( cmBinMtxFile_t* p, const cmSample_t* x, unsigned xn )
  4895. {
  4896. // verify that all rows are written as cmSample_t
  4897. assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmSample_t));
  4898. p->eleByteCnt = sizeof(cmSample_t);
  4899. return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
  4900. }
  4901. cmRC_t cmBinMtxFileExecR( cmBinMtxFile_t* p, const cmReal_t* x, unsigned xn )
  4902. {
  4903. // verify that all rows are written as cmReal_t
  4904. assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmReal_t));
  4905. p->eleByteCnt = sizeof(cmReal_t);
  4906. return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
  4907. }
  4908. cmRC_t cmBinMtxFileWrite( const cmChar_t* fn, unsigned rowCnt, unsigned colCnt, const cmSample_t* sp, const cmReal_t* rp, cmCtx* ctx, cmRpt_t* rpt )
  4909. {
  4910. assert( sp == NULL || rp == NULL );
  4911. cmCtx* ctxp = NULL;
  4912. cmBinMtxFile_t* bp = NULL;
  4913. if( ctx == NULL )
  4914. ctx = ctxp = cmCtxAlloc(NULL,rpt,cmLHeapNullHandle,cmSymTblNullHandle);
  4915. if((bp = cmBinMtxFileAlloc(ctx,NULL,fn)) != NULL )
  4916. {
  4917. unsigned i = 0;
  4918. cmSample_t* sbp = sp == NULL ? NULL : cmMemAlloc(cmSample_t,colCnt);
  4919. cmReal_t* rbp = rp == NULL ? NULL : cmMemAlloc(cmReal_t,colCnt);
  4920. for(i=0; i<rowCnt; ++i)
  4921. {
  4922. if( sp!=NULL )
  4923. {
  4924. cmVOS_CopyN(sbp,colCnt,1,sp+i,rowCnt);
  4925. cmBinMtxFileExecS(bp,sbp,colCnt);
  4926. }
  4927. if( rp!=NULL )
  4928. {
  4929. cmVOR_CopyN(rbp,colCnt,1,rp+i,rowCnt);
  4930. cmBinMtxFileExecR(bp,rbp,colCnt);
  4931. }
  4932. }
  4933. cmMemPtrFree(&sbp);
  4934. cmMemPtrFree(&rbp);
  4935. cmBinMtxFileFree(&bp);
  4936. }
  4937. if( ctxp != NULL )
  4938. cmCtxFree(&ctxp);
  4939. return cmOkRC;
  4940. }
  4941. cmRC_t _cmBinMtxFileReadHdr( cmCtx_t* ctx, cmFileH_t h, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr, const cmChar_t* fn )
  4942. {
  4943. cmRC_t rc = cmOkRC;
  4944. unsigned hdr[3];
  4945. if( cmFileRead(h,&hdr,sizeof(hdr)) != kOkFileRC )
  4946. {
  4947. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file header read failed on '%s'.",cmStringNullGuard(fn));
  4948. goto errLabel;
  4949. }
  4950. if( rowCntPtr != NULL )
  4951. *rowCntPtr = hdr[0];
  4952. if( colCntPtr != NULL )
  4953. *colCntPtr = hdr[1];
  4954. if( eleByteCntPtr != NULL )
  4955. *eleByteCntPtr = hdr[2];
  4956. errLabel:
  4957. return rc;
  4958. }
  4959. cmRC_t cmBinMtxFileSize( cmCtx_t* ctx, const cmChar_t* fn, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr )
  4960. {
  4961. cmFileH_t h = cmFileNullHandle;
  4962. cmRC_t rc = cmOkRC;
  4963. if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, ctx->err.rpt) != kOkFileRC )
  4964. {
  4965. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
  4966. goto errLabel;
  4967. }
  4968. rc = _cmBinMtxFileReadHdr(ctx,h,rowCntPtr,colCntPtr,eleByteCntPtr,fn);
  4969. errLabel:
  4970. cmFileClose(&h);
  4971. return rc;
  4972. }
  4973. cmRC_t cmBinMtxFileRead( cmCtx_t* ctx, const cmChar_t* fn, unsigned mRowCnt, unsigned mColCnt, unsigned mEleByteCnt, void* retBuf, unsigned* colCntV )
  4974. {
  4975. cmFileH_t h = cmFileNullHandle;
  4976. cmRC_t rc = cmOkRC;
  4977. char* rowBuf = NULL;
  4978. unsigned rowCnt,colCnt,eleByteCnt,i;
  4979. cmErr_t err;
  4980. cmErrSetup(&err,ctx->err.rpt,"Binary Matrix File Reader");
  4981. if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, err.rpt) != kOkFileRC )
  4982. {
  4983. rc = cmErrMsg(&err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
  4984. goto errLabel;
  4985. }
  4986. if((rc = _cmBinMtxFileReadHdr(ctx,h,&rowCnt,&colCnt,&eleByteCnt,fn)) != cmOkRC )
  4987. goto errLabel;
  4988. if( mRowCnt != rowCnt )
  4989. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file row count and the return buffer row count are not the same.");
  4990. if( mColCnt != colCnt )
  4991. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file column count and the return buffer column count are not the same.");
  4992. if( mEleByteCnt != eleByteCnt )
  4993. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file element byte count and the return buffer element byte count are not the same.");
  4994. if( rc == cmOkRC )
  4995. {
  4996. rowBuf = cmMemAllocZ(char,colCnt*eleByteCnt);
  4997. for(i=0; i<rowCnt; ++i)
  4998. {
  4999. unsigned cn;
  5000. // read the row length
  5001. if( cmFileReadUInt(h,&cn,1) != kOkFileRC )
  5002. {
  5003. rc = cmErrMsg(&err,cmSubSysFailRC,"Error reading row length at row index:%i.",i);
  5004. goto errLabel;
  5005. }
  5006. if( colCntV != NULL )
  5007. colCntV[i] = cn;
  5008. // verify the actual col count does not exceed the max col count
  5009. if( cn > colCnt )
  5010. {
  5011. rc = cmErrMsg(&err,cmSubSysFailRC,"The actual column count:%i exceeds the max column count:%i.",cn,colCnt);
  5012. goto errLabel;
  5013. }
  5014. //read the row data
  5015. if( cmFileReadChar(h,rowBuf,cn*eleByteCnt) != kOkFileRC )
  5016. {
  5017. rc = cmErrMsg(&err,cmSubSysFailRC,"File read failed at row index:%i.",i);
  5018. goto errLabel;
  5019. }
  5020. char* dp = ((char*)retBuf) + i * eleByteCnt;
  5021. // the data is read in row-major order but the matrix must be
  5022. // returned on col major order - rearrange the columns here.
  5023. switch(eleByteCnt)
  5024. {
  5025. case sizeof(cmSample_t):
  5026. cmVOS_CopyN(((cmSample_t*)dp), cn, rowCnt, (cmSample_t*)rowBuf, 1 );
  5027. break;
  5028. case sizeof(cmReal_t):
  5029. cmVOR_CopyN(((cmReal_t*)dp), cn, rowCnt, (cmReal_t*)rowBuf, 1 );
  5030. break;
  5031. default:
  5032. rc = cmErrMsg(&err,cmSubSysFailRC,"Invalid element byte count:%i.",eleByteCnt);
  5033. goto errLabel;
  5034. }
  5035. }
  5036. }
  5037. errLabel:
  5038. cmMemPtrFree(&rowBuf);
  5039. cmFileClose(&h);
  5040. return rc;
  5041. }