123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- #include "cmPrefix.h"
- #include "cmGlobal.h"
- #include "cmRpt.h"
- #include "cmErr.h"
- #include "cmCtx.h"
- #include "cmMem.h"
- #include "cmMallocDebug.h"
- #include "cmFloatTypes.h"
- #include "cmMath.h"
- #include <sys/types.h> // u_char
-
- // TODO: rewrite to avoid copying
- // this code comes via csound source ...
- double cmX80ToDouble( unsigned char rate[10] )
- {
- char sign;
- short exp = 0;
- unsigned long mant1 = 0;
- unsigned long mant0 = 0;
- double val;
- unsigned char* p = (unsigned char*)rate;
-
- exp = *p++;
- exp <<= 8;
- exp |= *p++;
- sign = (exp & 0x8000) ? 1 : 0;
- exp &= 0x7FFF;
-
- mant1 = *p++;
- mant1 <<= 8;
- mant1 |= *p++;
- mant1 <<= 8;
- mant1 |= *p++;
- mant1 <<= 8;
- mant1 |= *p++;
-
- mant0 = *p++;
- mant0 <<= 8;
- mant0 |= *p++;
- mant0 <<= 8;
- mant0 |= *p++;
- mant0 <<= 8;
- mant0 |= *p++;
-
- /* special test for all bits zero meaning zero
- - else pow(2,-16383) bombs */
- if (mant1 == 0 && mant0 == 0 && exp == 0 && sign == 0)
- return 0.0;
- else {
- val = ((double)mant0) * pow(2.0,-63.0);
- val += ((double)mant1) * pow(2.0,-31.0);
- val *= pow(2.0,((double) exp) - 16383.0);
- return sign ? -val : val;
- }
- }
-
- // TODO: rewrite to avoid copying
- /*
- * Convert double to IEEE 80 bit floating point
- * Should be portable to all C compilers.
- * 19aug91 aldel/dpwe covered for MSB bug in Ultrix 'cc'
- */
-
- void cmDoubleToX80(double val, unsigned char rate[10])
- {
- char sign = 0;
- short exp = 0;
- unsigned long mant1 = 0;
- unsigned long mant0 = 0;
- unsigned char* p = (unsigned char*)rate;
-
- if (val < 0.0) { sign = 1; val = -val; }
-
- if (val != 0.0) /* val identically zero -> all elements zero */
- {
- exp = (short)(log(val)/log(2.0) + 16383.0);
- val *= pow(2.0, 31.0+16383.0-(double)exp);
- mant1 =((unsigned)val);
- val -= ((double)mant1);
- val *= pow(2.0, 32.0);
- mant0 =((double)val);
- }
-
- *p++ = ((sign<<7)|(exp>>8));
- *p++ = (u_char)(0xFF & exp);
- *p++ = (u_char)(0xFF & (mant1>>24));
- *p++ = (u_char)(0xFF & (mant1>>16));
- *p++ = (u_char)(0xFF & (mant1>> 8));
- *p++ = (u_char)(0xFF & (mant1));
- *p++ = (u_char)(0xFF & (mant0>>24));
- *p++ = (u_char)(0xFF & (mant0>>16));
- *p++ = (u_char)(0xFF & (mant0>> 8));
- *p++ = (u_char)(0xFF & (mant0));
-
- }
-
- bool cmIsPowerOfTwo( unsigned x )
- {
- return !( (x < 2) || (x & (x-1)) );
- }
-
- unsigned cmNextPowerOfTwo( unsigned val )
- {
- unsigned i;
- unsigned mask = 1;
- unsigned msb = 0;
- unsigned cnt = 0;
-
- // if val is a power of two return it
- if( cmIsPowerOfTwo(val) )
- return val;
-
- // next pow of zero is 2
- if( val == 0 )
- return 2;
-
- // if the next power of two can't be represented in 32 bits
- if( val > 0x80000000)
- {
- assert(0);
- return 0;
- }
-
- // find most sig. bit that is set - the number with only the next msb set is next pow 2
- for(i=0; i<31; i++,mask<<=1)
- if( mask & val )
- {
- msb = i;
- cnt++;
- }
-
-
- return 1 << (msb + 1);
- }
-
- unsigned cmNearPowerOfTwo( unsigned i )
- {
- unsigned vh = cmNextPowerOfTwo(i);
-
- if( vh == 2 )
- return vh;
-
- unsigned vl = vh / 2;
-
- if( vh - i < i - vl )
- return vh;
- return vl;
- }
-
- bool cmIsOddU( unsigned v ) { return v % 2 == 1; }
- bool cmIsEvenU( unsigned v ) { return !cmIsOddU(v); }
- unsigned cmNextOddU( unsigned v ) { return cmIsOddU(v) ? v : v+1; }
- unsigned cmPrevOddU( unsigned v ) { return cmIsOddU(v) ? v : v-1; }
- unsigned cmNextEvenU( unsigned v ) { return cmIsEvenU(v) ? v : v+1; }
- unsigned cmPrevEvenU( unsigned v ) { return cmIsEvenU(v) ? v : v-1; }
-
- // modified bessel function of first kind, order 0
- // ref: orfandis appendix B io.m
- double cmBessel0( double x )
- {
- double eps = pow(10.0,-9.0);
- double n = 1.0;
- double S = 1.0;
- double D = 1.0;
-
- while(D > eps*S)
- {
- double T = x /(2.0*n);
- n = n+1;
- D = D * pow(T,2.0);
- S = S + D;
- }
-
- return S;
-
- }
-
- //=================================================================
- // The following elliptic-related function approximations come from
- // Parks & Burrus, Digital Filter Design, Appendix program 9, pp. 317-326
- // which in turn draws directly on other sources
-
- // calculate complete elliptic integral (quarter period) K
- // given *complimentary* modulus kc
- cmReal_t cmEllipK( cmReal_t kc )
- {
- cmReal_t a = 1, b = kc, c = 1, tmp;
-
- while( c > cmReal_EPSILON )
- {
- c = 0.5*(a-b);
- tmp = 0.5*(a+b);
- b = sqrt(a*b);
- a = tmp;
- }
-
- return M_PI/(2*a);
- }
-
- // calculate elliptic modulus k
- // given ratio of complete elliptic integrals r = K/K'
- // (solves the "degree equation" for fixed N = K*K1'/K'K1)
- cmReal_t cmEllipDeg( cmReal_t r )
- {
- cmReal_t q,a,b,c,d;
- a = b = c = 1;
- d = q = exp(-M_PI*r);
-
- while( c > cmReal_EPSILON )
- {
- a = a + 2*c*d;
- c = c*d*d;
- b = b + c;
- d = d*q;
- }
-
- return 4*sqrt(q)*pow(b/a,2);
- }
-
- // calculate arc elliptic tangent u (elliptic integral of the 1st kind)
- // given argument x = sc(u,k) and *complimentary* modulus kc
- cmReal_t cmEllipArcSc( cmReal_t x, cmReal_t kc )
- {
- cmReal_t a = 1, b = kc, y = 1/x, tmp;
- unsigned L = 0;
-
- while( true )
- {
- tmp = a*b;
- a += b;
- b = 2*sqrt(tmp);
- y -= tmp/y;
- if( y == 0 )
- y = sqrt(tmp) * 1E-10;
- if( fabs(a-b)/a < cmReal_EPSILON )
- break;
- L *= 2;
- if( y < 0 )
- L++;
- }
-
- if( y < 0 )
- L++;
-
- return (atan(a/y) + M_PI*L)/a;
- }
-
- // calculate Jacobi elliptic functions sn, cn, and dn
- // given argument u and *complimentary* modulus kc
- cmRC_t cmEllipJ( cmReal_t u, cmReal_t kc, cmReal_t* sn, cmReal_t* cn, cmReal_t* dn )
- {
- assert( sn != NULL || cn != NULL || dn != NULL );
-
- if( u == 0 )
- {
- if( sn != NULL ) *sn = 0;
- if( cn != NULL ) *cn = 1;
- if( dn != NULL ) *dn = 1;
- return cmOkRC;
- }
-
- int i;
- cmReal_t a,b,c,d,e,tmp,_sn,_cn,_dn;
- cmReal_t aa[16], bb[16];
-
- a = 1;
- b = kc;
-
- for( i = 0; i < 16; i++ )
- {
- aa[i] = a;
- bb[i] = b;
- tmp = (a+b)/2;
- b = sqrt(a*b);
- a = tmp;
- if( (a-b)/a < cmReal_EPSILON )
- break;
- }
-
- c = a/tan(u*a);
- d = 1;
-
- for( ; i >= 0; i-- )
- {
- e = c*c/a;
- c = c*d;
- a = aa[i];
- d = (e + bb[i]) / (e+a);
- }
-
- _sn = 1/sqrt(1+c*c);
- _cn = _sn*c;
- _dn = d;
-
- if( sn != NULL ) *sn = _sn;
- if( cn != NULL ) *cn = _cn;
- if( dn != NULL ) *dn = _dn;
-
- return cmOkRC;
- }
-
- //=================================================================
- // bilinear transform
- // z = (2*sr + s)/(2*sr - s)
- cmRC_t cmBlt( unsigned n, cmReal_t sr, cmReal_t* rp, cmReal_t* ip )
- {
- unsigned i;
- cmReal_t a = 2*sr,
- tr, ti, td;
-
- for( i = 0; i < n; i++ )
- {
- tr = rp[i];
- ti = ip[i];
- td = pow(a-tr, 2) + ti*ti;
- rp[i] = (a*a - tr*tr - ti*ti)/td;
- ip[i] = 2*a*ti/td;
- if( tr < -1E15 )
- rp[i] = 0;
- if( fabs(ti) > 1E15 )
- ip[i] = 0;
- }
-
- return cmOkRC;
- }
-
- unsigned cmHzToMidi( double hz )
- {
-
- float midi = 12.0 * log2(hz/13.75) + 9;
-
- if( midi < 0 )
- midi = 0;
- if( midi > 127 )
- midi = 127;
-
- return (unsigned)lround(midi);
- }
-
- float cmMidiToHz( unsigned midi )
- {
- double m = midi <= 127 ? midi : 127;
-
- return (float)( 13.75 * pow(2.0,(m - 9.0)/12.0));
- }
-
-
- //=================================================================
- // Floating point byte swapping
-
- // Unions used to type-pun the swapping functions and thereby
- // avoid strict aliasing problems with -O2. Using unions for
- // this purpose is apparently legal under C99 but not C++.
-
- typedef union
- {
- unsigned u;
- float f;
- } _cmMathU_t;
-
- typedef union
- {
- unsigned long long u;
- double f;
- } _cmMathUL_t;
-
- unsigned cmFfSwapFloatToUInt( float v )
- {
- assert( sizeof(float) == sizeof(unsigned));
- _cmMathU_t u;
- u.f=v;
- return cmSwap32(u.u);
- }
-
- float cmFfSwapUIntToFloat( unsigned v )
- {
- assert( sizeof(float) == sizeof(unsigned));
- _cmMathU_t u;
-
- u.u = cmSwap32(v);
- return u.f;
- }
-
- unsigned long long cmFfSwapDoubleToULLong( double v )
- {
- assert( sizeof(double) == sizeof(unsigned long long));
- _cmMathUL_t u;
- u.f = v;
- return cmSwap64(u.u);
- }
-
- double cmFfSwapULLongToDouble( unsigned long long v )
- {
- assert( sizeof(double) == sizeof(unsigned long long));
- _cmMathUL_t u;
- u.u = cmSwap64(v);
- return u.f;
- }
-
- int cmRandInt( int min, int max )
- {
- assert( min <= max );
- int offs = max - min;
- return min + cmMax(0,cmMin(offs,(int)round(offs * (double)rand() / RAND_MAX)));
- }
-
- unsigned cmRandUInt( unsigned min, unsigned max )
- {
- assert( min <= max );
- unsigned offs = max - min;
- return min + cmMax(0,cmMin(offs,(unsigned)round(offs * (double)rand() / RAND_MAX)));
- }
-
- float cmRandFloat( float min, float max )
- {
- assert( min <= max );
- float offs = max - min;
- return min + cmMax(0,cmMin(offs,(float)(offs * (double)rand() / RAND_MAX)));
- }
-
- double cmRandDouble( double min, double max )
- {
- assert( min <= max );
- double offs = max - min;
- return min + cmMax(0,cmMin(offs,(offs * (double)rand() / RAND_MAX)));
- }
-
-
- //=================================================================
- // Base on: http://stackoverflow.com/questions/3874627/floating-point-comparison-functions-for-c-sharp
-
- bool cmIsCloseD( double x0, double x1, double eps )
- {
- double d = fabs(x0-x1);
-
- if( x0 == x1 )
- return true;
-
- if( x0==0 || x1==0 || d<DBL_MIN )
- return d < (eps * DBL_MIN);
-
- return (d / cmMin( fabs(x0) + fabs(x1), DBL_MAX)) < eps;
- }
-
- bool cmIsCloseF( float x0, float x1, double eps_d )
- {
- float eps = (float)eps_d;
- float d = fabsf(x0-x1);
-
- if( x0 == x1 )
- return true;
-
- if( x0==0 || x1==0 || d<FLT_MIN )
- return d < (eps * FLT_MIN);
-
- return (d / cmMin( fabsf(x0) + fabsf(x1), FLT_MAX)) < eps;
- }
-
- bool cmIsCloseI( int x0, int x1, double eps )
- {
- if( x0 == x1 )
- return true;
-
- return abs(x0-x1)/(abs(x0)+abs(x1)) < eps;
- }
-
-
- bool cmIsCloseU( unsigned x0, unsigned x1, double eps )
- {
- if( x0 == x1 )
- return true;
- if( x0 > x1 )
- return (x0-x1)/(x0+x1) < eps;
- else
- return (x1-x0)/(x0+x1) < eps;
- }
-
- //=================================================================
-
- // cmLFSR() implementation based on note at bottom of:
- // http://www.ece.cmu.edu/~koopman/lfsr/index.html
- void cmLFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN )
- {
- assert( 0 < lfsrN && lfsrN < 32 );
-
- unsigned i;
- for(i=0; i<yN; ++i)
- {
- if( (yV[i] = seed & 1)==1 )
- seed = (seed >> 1) ^ tapMask;
- else
- seed = (seed >> 1);
-
- }
- }
-
- bool cmMLS_IsBalanced( const unsigned* xV, int xN)
- {
- int a = 0;
- unsigned i;
-
- for(i=0; i<xN; ++i)
- if( xV[i] == 1 )
- ++a;
-
- return abs(a - (xN-a)) == 1;
- }
-
- unsigned _cmGenGoldCopy( int* y, unsigned yi, unsigned yN, unsigned* x, unsigned xN)
- {
- unsigned i;
- for(i=0; i<xN; ++i,++yi)
- y[yi] = x[i]==1 ? -1 : 1;
-
- assert(yi <= yN);
- return yi;
- }
-
- bool cmGenGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN )
- {
- bool retFl = true;
- unsigned yi = 0;
- unsigned yN = goldN * mlsN;
- unsigned* mls0V = cmMemAllocZ(unsigned,mlsN);
- unsigned* mls1V = cmMemAllocZ(unsigned,mlsN);
- unsigned* xorV = cmMemAllocZ(unsigned,mlsN);
-
- unsigned i,j;
-
- cmLFSR(lfsrN, poly_coeff0, 1 << (lfsrN-1), mls0V, mlsN);
-
- cmLFSR(lfsrN, poly_coeff1, 1 << (lfsrN-1), mls1V, mlsN);
-
- if( cmMLS_IsBalanced(mls0V,mlsN) )
- yi = _cmGenGoldCopy(yM, yi, yN, mls0V, mlsN);
-
- if( yi<yN && cmMLS_IsBalanced(mls1V,mlsN) )
- yi = _cmGenGoldCopy(yM, yi, yN, mls1V, mlsN);
-
-
- for(i=0; yi < yN && i<mlsN-1; ++i )
- {
- for(j=0; j<mlsN; ++j)
- xorV[j] = (mls0V[j] + mls1V[ (i+j) % mlsN ]) % 2;
-
- if( cmMLS_IsBalanced(xorV,mlsN) )
- yi = _cmGenGoldCopy(yM,yi,yN,xorV,mlsN);
- }
-
- if(yi < yN )
- {
- //rc = cmErrMsg(err,kOpFailAtRC,"Gold code generation failed. Insuffient balanced pairs.");
- retFl = false;
- }
-
- cmMemFree(mls0V);
- cmMemFree(mls1V);
- cmMemFree(xorV);
-
- return retFl;
-
- }
-
- bool cmLFSR_Test()
- {
- // lfsrN = 5; % 5 6 7;
- // poly_coeff0 = 0x12; % 0x12 0x21 0x41;
- // poly_coeff1 = 0x1e; % 0x1e 0x36 0x72;
-
- unsigned lfsrN = 7;
- unsigned pc0 = 0x41;
- unsigned pc1 = 0x72;
- unsigned mlsN = (1 << lfsrN)-1;
-
- unsigned yN = mlsN*2;
- unsigned yV[ yN ];
- unsigned i;
-
- cmLFSR( lfsrN, pc0, 1 << (lfsrN-1), yV, yN );
-
- for(i=0; i<mlsN; ++i)
- if( yV[i] != yV[i+mlsN] )
- return false;
-
- //atVOU_PrintL(NULL,"0x12",yV,mlsN,2);
-
- cmLFSR( lfsrN, pc1, 1 << (lfsrN-1), yV, yN );
-
- //atVOU_PrintL(NULL,"0x17",yV,mlsN,2);
-
- for(i=0; i<mlsN; ++i)
- if( yV[i] != yV[i+mlsN] )
- return false;
-
- return true;
- }
|