libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmVectOpsTemplateCode.h 78KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204
  1. #ifdef cmVectOpsTemplateCode_h
  2. void VECT_OP_FUNC(VPrint)( cmRpt_t* rpt, const char* fmt, ... )
  3. {
  4. va_list vl;
  5. va_start(vl,fmt);
  6. if( rpt != NULL )
  7. cmRptVPrintf(rpt,fmt,vl);
  8. else
  9. vprintf(fmt,vl);
  10. va_end(vl);
  11. }
  12. void VECT_OP_FUNC(Printf)( cmRpt_t* rpt, unsigned rowCnt, unsigned colCnt, const VECT_OP_TYPE* sbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt, unsigned flags )
  13. {
  14. unsigned cci;
  15. unsigned outColCnt = 10;
  16. if( fieldWidth < 0 )
  17. fieldWidth = 10;
  18. if( decPlCnt < 0 )
  19. decPlCnt = 4;
  20. if( outColCnt == -1 )
  21. outColCnt = colCnt;
  22. for(cci=0; cci<colCnt; cci+=outColCnt)
  23. {
  24. unsigned ci0 = cci;
  25. unsigned cn = cci + outColCnt;
  26. unsigned ri;
  27. if(cn > colCnt)
  28. cn = colCnt;
  29. if( colCnt > outColCnt )
  30. {
  31. if( cmIsFlag(flags,cmPrintMatlabLabelsFl) )
  32. VECT_OP_FUNC(VPrint)(rpt,"Columns:%i to %i\n",ci0,cn-1);
  33. else
  34. if( cmIsFlag(flags,cmPrintShortLabelsFl) )
  35. VECT_OP_FUNC(VPrint)(rpt,"%3i: ",ci0);
  36. }
  37. if( rowCnt > 1 )
  38. VECT_OP_FUNC(VPrint)(rpt,"\n");
  39. for(ri=0; ri<rowCnt; ++ri)
  40. {
  41. unsigned ci;
  42. for(ci=ci0; ci<cn; ++ci )
  43. VECT_OP_FUNC(VPrint)(rpt,fmt,fieldWidth,decPlCnt,sbp[ (ci*rowCnt) + ri ]);
  44. if( cn > 0 )
  45. VECT_OP_FUNC(VPrint)(rpt,"\n");
  46. }
  47. }
  48. }
  49. void VECT_OP_FUNC(Print)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
  50. { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl); }
  51. void VECT_OP_FUNC(PrintE)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
  52. { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl); }
  53. void VECT_OP_FUNC(PrintLf)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt )
  54. {
  55. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  56. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, fieldWidth, decPlCnt,fmt,cmPrintShortLabelsFl );
  57. }
  58. void VECT_OP_FUNC(PrintL)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
  59. {
  60. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  61. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl );
  62. }
  63. void VECT_OP_FUNC(PrintLE)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
  64. {
  65. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  66. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl );
  67. }
  68. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityVV)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  69. {
  70. VECT_OP_TYPE sum = VECT_OP_FUNC(Sum)(sbp,dn);
  71. if( sum == 0 )
  72. sum = 1;
  73. return VECT_OP_FUNC(DivVVS)(dbp,dn,sbp,sum);
  74. }
  75. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbability)(VECT_OP_TYPE* dbp, unsigned dn)
  76. { return VECT_OP_FUNC(NormalizeProbabilityVV)(dbp,dn,dbp); }
  77. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityN)(VECT_OP_TYPE* dbp, unsigned dn, unsigned stride)
  78. {
  79. VECT_OP_TYPE sum = VECT_OP_FUNC(SumN)(dbp,dn,stride);
  80. if( sum == 0 )
  81. return dbp;
  82. VECT_OP_TYPE* dp = dbp;
  83. VECT_OP_TYPE* ep = dp + (dn*stride);
  84. for(; dp < ep; dp+=stride )
  85. *dp /= sum;
  86. return dbp;
  87. }
  88. VECT_OP_TYPE* VECT_OP_FUNC(StandardizeRows)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
  89. {
  90. bool uFl = false;
  91. bool sFl = false;
  92. unsigned i;
  93. if( uV == NULL )
  94. {
  95. uV = cmMemAllocZ(VECT_OP_TYPE,drn);
  96. uFl = true;
  97. }
  98. if( sdV == NULL )
  99. {
  100. sdV = cmMemAllocZ(VECT_OP_TYPE,drn);
  101. sFl = true;
  102. }
  103. VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 1 );
  104. VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 1 );
  105. for(i=0; i<dcn; ++i)
  106. {
  107. VECT_OP_FUNC(SubVV)(dbp + i * drn, drn, uV );
  108. VECT_OP_FUNC(DivVV)(dbp + i * drn, drn, sdV );
  109. }
  110. if(uFl)
  111. cmMemFree(uV);
  112. if(sFl)
  113. cmMemFree(sdV);
  114. return dbp;
  115. }
  116. VECT_OP_TYPE* VECT_OP_FUNC(StandardizeCols)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
  117. {
  118. bool uFl = false;
  119. bool sFl = false;
  120. unsigned i;
  121. if( uV == NULL )
  122. {
  123. uV = cmMemAllocZ(VECT_OP_TYPE,dcn);
  124. uFl = true;
  125. }
  126. if( sdV == NULL )
  127. {
  128. sdV = cmMemAllocZ(VECT_OP_TYPE,dcn);
  129. sFl = true;
  130. }
  131. VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 0 );
  132. VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 0 );
  133. for(i=0; i<drn; ++i)
  134. {
  135. VECT_OP_FUNC(SubVVNN)(dbp + i, dcn, drn, uV, 1 );
  136. VECT_OP_FUNC(DivVVNN)(dbp + i, dcn, drn, sdV, 1 );
  137. }
  138. if(uFl)
  139. cmMemFree(uV);
  140. if(sFl)
  141. cmMemFree(sdV);
  142. return dbp;
  143. }
  144. VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  145. {
  146. VECT_OP_TYPE* dp = dbp;
  147. VECT_OP_TYPE* ep = dbp + dn;
  148. for(; dp < ep; ++dp,++sp )
  149. *dp = *sp < 0 ? 0 : *sp;
  150. return dbp;
  151. }
  152. VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  153. {
  154. VECT_OP_TYPE* dep = dbp + dn;
  155. VECT_OP_TYPE* rp = dbp;
  156. VECT_OP_TYPE sum = 0;
  157. while( dbp < dep )
  158. {
  159. sum += *sbp++;
  160. *dbp++ = sum;
  161. }
  162. return rp;
  163. }
  164. VECT_OP_TYPE VECT_OP_FUNC(Mean)( const VECT_OP_TYPE* bp, unsigned n )
  165. { return VECT_OP_FUNC(Sum)(bp,n)/n; }
  166. VECT_OP_TYPE VECT_OP_FUNC(MeanN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  167. { return VECT_OP_FUNC(SumN)(bp,n,stride)/n; }
  168. VECT_OP_TYPE* VECT_OP_FUNC(MeanM)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim )
  169. {
  170. unsigned i;
  171. unsigned cn = dim == 0 ? scn : srn;
  172. unsigned rn = dim == 0 ? srn : scn;
  173. unsigned inc = dim == 0 ? srn : 1;
  174. unsigned stride = dim == 0 ? 1 : srn;
  175. unsigned d0 = 0;
  176. for(i=0; i<cn; ++i, d0+=inc)
  177. dp[i] = VECT_OP_FUNC(MeanN)(sp + d0, rn, stride );
  178. return dp;
  179. }
  180. VECT_OP_TYPE* VECT_OP_FUNC(Mean2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* (*srcFuncPtr)(void* arg, unsigned idx ), unsigned D, unsigned N, void* argPtr )
  181. {
  182. unsigned i,n;
  183. const VECT_OP_TYPE* sp;
  184. VECT_OP_FUNC(Zero)(dp,D);
  185. if( N > 1 )
  186. {
  187. n = 0;
  188. for(i=0; i<N; ++i)
  189. if((sp = srcFuncPtr(argPtr,i)) != NULL )
  190. {
  191. VECT_OP_FUNC(AddVV)(dp,D,sp);
  192. ++n;
  193. }
  194. VECT_OP_FUNC(DivVS)(dp,D,n);
  195. }
  196. return dp;
  197. }
  198. VECT_OP_TYPE VECT_OP_FUNC(Variance)( const VECT_OP_TYPE* sp, unsigned sn, const VECT_OP_TYPE* avgPtr )
  199. { return VECT_OP_FUNC(VarianceN)(sp,sn,1,avgPtr); }
  200. VECT_OP_TYPE VECT_OP_FUNC(VarianceN)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride, const VECT_OP_TYPE* meanPtr )
  201. {
  202. VECT_OP_TYPE mean = 0;
  203. if( sn <= 1 )
  204. return 0;
  205. if( meanPtr == NULL )
  206. mean = VECT_OP_FUNC(MeanN)( sp, sn, stride );
  207. else
  208. mean = *meanPtr;
  209. const VECT_OP_TYPE* ep = sp + (sn*stride);
  210. VECT_OP_TYPE sum = 0;
  211. for(; sp < ep; sp += stride )
  212. sum += (*sp-mean) * (*sp-mean);
  213. return sum / (sn-1);
  214. }
  215. VECT_OP_TYPE* VECT_OP_FUNC(VarianceM)(VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, const VECT_OP_TYPE* avgPtr, unsigned dim )
  216. {
  217. unsigned i;
  218. unsigned cn = dim == 0 ? scn : srn;
  219. unsigned rn = dim == 0 ? srn : scn;
  220. unsigned inc = dim == 0 ? srn : 1;
  221. unsigned stride = dim == 0 ? 1 : srn;
  222. unsigned d0 = 0;
  223. for(i=0; i<cn; ++i, d0+=inc)
  224. dp[i] = VECT_OP_FUNC(VarianceN)(sp + d0, rn, stride, avgPtr==NULL ? NULL : avgPtr+i );
  225. return dp;
  226. }
  227. unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn )
  228. {
  229. unsigned i = VECT_OP_FUNC(MaxIndex)(dp,dn,1);
  230. if( i != cmInvalidIdx )
  231. {
  232. VECT_OP_TYPE v = dp[i];
  233. VECT_OP_FUNC(DivVS)(dp,dn,v);
  234. }
  235. return i;
  236. }
  237. VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha )
  238. {
  239. double sum = 0;
  240. const VECT_OP_TYPE* bp = sp;
  241. const VECT_OP_TYPE* ep = sp + sn;
  242. while( bp < ep )
  243. sum += pow(fabs(*bp++),alpha);
  244. return (VECT_OP_TYPE)pow(sum/sn,1.0/alpha);
  245. }
  246. void VECT_OP_FUNC(GaussCovariance)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* xM, unsigned xN, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
  247. {
  248. unsigned i,j,k,n = 0;
  249. VECT_OP_TYPE tV[ D ];
  250. VECT_OP_FUNC(Fill)(yM,D*D,0);
  251. // if the mean was not given - then calculate it
  252. if( uV == NULL )
  253. {
  254. VECT_OP_FUNC(Fill)(tV,D,0);
  255. // sum each row of xM[] into uM[]
  256. for(i=0; i<D; ++i)
  257. {
  258. n = 0;
  259. for(j=0; j<xN; ++j)
  260. if( selIdxV==NULL || selIdxV[j]==selKey )
  261. {
  262. tV[i] += xM[ (j*D) + i ];
  263. ++n;
  264. }
  265. }
  266. // form an average from the sum in tV[]
  267. VECT_OP_FUNC(DivVS)(tV,D,n);
  268. uV = tV;
  269. }
  270. for(i=0; i<D; ++i)
  271. for(j=i; j<D; ++j)
  272. {
  273. n = 0;
  274. for(k=0; k<xN; ++k)
  275. if( selIdxV==NULL || selIdxV[k]==selKey)
  276. {
  277. unsigned yi = (i*D)+j;
  278. yM[ yi ] += ((xM[ (k*D)+j ]-uV[j]) * (xM[ (k*D) + i ]-uV[i]));
  279. if( i != j )
  280. yM[ (j*D)+i ] = yM[ yi ];
  281. ++n;
  282. }
  283. }
  284. if( n>1 )
  285. VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
  286. }
  287. void VECT_OP_FUNC(GaussCovariance2)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned idx), unsigned xN, void* userPtr, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
  288. {
  289. unsigned i,j,k = 0,n;
  290. VECT_OP_TYPE tV[ D ];
  291. const VECT_OP_TYPE* sp;
  292. VECT_OP_FUNC(Fill)(yM,D*D,0);
  293. // if the mean was not given - then calculate it
  294. if( uV == NULL )
  295. {
  296. VECT_OP_FUNC(Fill)(tV,D,0);
  297. n = 0;
  298. // sum each row of xM[] into uM[]
  299. for(i=0; i<xN; ++i)
  300. if( (selIdxV==NULL || selIdxV[i]==selKey) && ((sp=srcFunc(userPtr,i))!=NULL) )
  301. {
  302. VECT_OP_FUNC(AddVV)(tV,D,sp);
  303. ++n;
  304. }
  305. // form an average from the sum in tV[]
  306. VECT_OP_FUNC(DivVS)(tV,D,n);
  307. uV = tV;
  308. }
  309. for(i=0; i<xN; ++i)
  310. if( selIdxV==NULL || selIdxV[i]==selKey )
  311. {
  312. // get a pointer to the ith data point
  313. const VECT_OP_TYPE* sV = srcFunc(userPtr,i);
  314. // note: this algorithm works because when a data point element (scalar)
  315. // is multiplied by another data point element those two elements
  316. // are always part of the same data point (vector). Two elements
  317. // from different data points are never multiplied.
  318. if( sV != NULL )
  319. for(j=0; j<D; ++j)
  320. for(k=j; k<D; ++k)
  321. yM[j + k*D] += (sV[j]-uV[j]) * (sV[k]-uV[k]);
  322. }
  323. if( n > 1 )
  324. VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
  325. // fill in the lower triangle
  326. for(j=0; j<D; ++j)
  327. for(k=j; k<D; ++k)
  328. yM[k + j*D] = yM[j + k*D];
  329. }
  330. bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  331. {
  332. const VECT_OP_TYPE* ep = s0p + sn;
  333. while( s0p < ep )
  334. if( *s0p++ != *s1p++ )
  335. return false;
  336. return true;
  337. }
  338. bool VECT_OP_FUNC(IsNormal)( const VECT_OP_TYPE* sp, unsigned sn )
  339. {
  340. const VECT_OP_TYPE* ep = sp + sn;
  341. for(; sp<ep; ++sp)
  342. if( !isnormal(*sp) )
  343. return false;
  344. return true;
  345. }
  346. bool VECT_OP_FUNC(IsNormalZ)(const VECT_OP_TYPE* sp, unsigned sn )
  347. {
  348. const VECT_OP_TYPE* ep = sp + sn;
  349. for(; sp<ep; ++sp)
  350. if( (*sp != 0) && (!isnormal(*sp)) )
  351. return false;
  352. return true;
  353. }
  354. unsigned VECT_OP_FUNC(FindNonNormal)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
  355. {
  356. const VECT_OP_TYPE* sp = sbp;
  357. const VECT_OP_TYPE* ep = sp + dn;
  358. unsigned n = 0;
  359. for(; sp<ep; ++sp)
  360. if( !isnormal(*sp) )
  361. dp[n++] = sp - sbp;
  362. return n;
  363. }
  364. unsigned VECT_OP_FUNC(FindNonNormalZ)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
  365. {
  366. const VECT_OP_TYPE* sp = sbp;
  367. const VECT_OP_TYPE* ep = sp + dn;
  368. unsigned n = 0;
  369. for(; sp<ep; ++sp)
  370. if( (*sp!=0) && (!isnormal(*sp)) )
  371. dp[n++] = sp - sbp;
  372. return n;
  373. }
  374. unsigned VECT_OP_FUNC(ZeroCrossCount)( const VECT_OP_TYPE* bp, unsigned bn, VECT_OP_TYPE* delaySmpPtr)
  375. {
  376. unsigned n = delaySmpPtr != NULL ? ((*delaySmpPtr >= 0) != (*bp >= 0)) : 0 ;
  377. const VECT_OP_TYPE* ep = bp + bn;
  378. for(; bp<ep-1; ++bp)
  379. if( (*bp >= 0) != (*(bp+1) >= 0) )
  380. ++n;
  381. if( delaySmpPtr != NULL )
  382. *delaySmpPtr = *bp;
  383. return n;
  384. }
  385. VECT_OP_TYPE VECT_OP_FUNC(RMS)( const VECT_OP_TYPE* bp, unsigned bn, unsigned wndSmpCnt )
  386. {
  387. const VECT_OP_TYPE* ep = bp + bn;
  388. if( bn==0 )
  389. return 0;
  390. assert( bn <= wndSmpCnt );
  391. double sum = 0;
  392. for(; bp < ep; ++bp )
  393. sum += *bp * *bp;
  394. return (VECT_OP_TYPE)sqrt(sum/wndSmpCnt);
  395. }
  396. VECT_OP_TYPE* VECT_OP_FUNC(RmsV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, unsigned sn, unsigned wndSmpCnt, unsigned hopSmpCnt )
  397. {
  398. const VECT_OP_TYPE* dep = dp + dn;
  399. const VECT_OP_TYPE* sep = sp + sn;
  400. VECT_OP_TYPE* rp = dp;
  401. for(; dp<dep && sp<sep; sp+=hopSmpCnt)
  402. *dp++ = VECT_OP_FUNC(RMS)( sp, cmMin(wndSmpCnt,sep-sp), wndSmpCnt );
  403. VECT_OP_FUNC(Zero)(dp,dep-dp);
  404. return rp;
  405. }
  406. VECT_OP_TYPE VECT_OP_FUNC(EuclidNorm)( const VECT_OP_TYPE* sp, unsigned sn )
  407. { return (VECT_OP_TYPE)sqrt( VECT_OP_FUNC(MultSumVV)(sp,sp,sn)); }
  408. /*
  409. From:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/distitpf.html
  410. [nf1,p2]=size(pf1);
  411. p1=p2-1;
  412. nf2=size(pf2,1);
  413. nx= min(nf1,nf2);
  414. r = pf1(1:nx,:)./pf2(1:nx,:);
  415. q = r-log(r);
  416. s = sum( q(:,2:p1),2) + 0.5 * (q(:,1)+q(:,p2))
  417. d= s/p1-1;
  418. */
  419. VECT_OP_TYPE VECT_OP_FUNC(ItakuraDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  420. {
  421. VECT_OP_TYPE d = 0;
  422. VECT_OP_TYPE r[ sn ];
  423. VECT_OP_TYPE q[ sn ];
  424. // r = pf1(1:nx,:)./pf2(1:nx,:);
  425. VECT_OP_FUNC(DivVVV)(r,sn,s0p,s1p);
  426. //q=log(r);
  427. VECT_OP_FUNC(LogV)(q,sn,r);
  428. //r = r - q = r - log(r)
  429. VECT_OP_FUNC(SubVV)(r,sn,q);
  430. //r = r - sn = r - log(r) - 1
  431. VECT_OP_FUNC(SubVS)(r,sn,sn);
  432. // d = sum(r);
  433. d = VECT_OP_FUNC(Sum)(r,sn);
  434. return (VECT_OP_TYPE)(d / sn);
  435. //d = log( VECT_OP_FUNC(Sum)(r,sn) /sn );
  436. //d -= VECT_OP_FUNC(Sum)(q,sn)/sn;
  437. return d;
  438. }
  439. VECT_OP_TYPE VECT_OP_FUNC(CosineDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  440. {
  441. VECT_OP_TYPE d0 = VECT_OP_FUNC(EuclidNorm)(s0p,sn);
  442. VECT_OP_TYPE d1 = VECT_OP_FUNC(EuclidNorm)(s1p,sn);
  443. if( d0 == 0 )
  444. d0 = cmReal_MIN;
  445. if( d1 == 0 )
  446. d1 = cmReal_MIN;
  447. return (VECT_OP_TYPE)(VECT_OP_FUNC(MultSumVV)(s0p,s1p,sn) / (d0 * d1));
  448. }
  449. VECT_OP_TYPE VECT_OP_FUNC(EuclidDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  450. {
  451. double d = 0;
  452. const VECT_OP_TYPE* sep = s0p + sn;
  453. for(; s0p<sep; ++s0p,++s1p)
  454. d += (*s0p - *s1p) * (*s0p - *s1p);
  455. return (VECT_OP_TYPE)(sqrt(d));
  456. }
  457. VECT_OP_TYPE VECT_OP_FUNC(L1Distance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  458. {
  459. double d = 0;
  460. const VECT_OP_TYPE* sep = s0p + sn;
  461. for(; s0p<sep; ++s0p,++s1p)
  462. d += (VECT_OP_TYPE)fabs(*s0p - *s1p);
  463. return d;
  464. }
  465. VECT_OP_TYPE VECT_OP_FUNC(MahalanobisDistance)( const VECT_OP_TYPE* x, unsigned D, const VECT_OP_TYPE* u, const VECT_OP_TYPE* invCovM )
  466. {
  467. VECT_OP_TYPE t[ D ];
  468. VECT_OP_TYPE d[ D ];
  469. // t[] = x[] - u[];
  470. VECT_OP_FUNC(SubVVV)(t,D,x,u);
  471. // d[1,D] = t[1,D] * covM[D,D]
  472. VECT_OP_FUNC(MultVVM)( d, D, t, D, invCovM );
  473. // d = sum(d[].*t[])
  474. VECT_OP_TYPE dist = VECT_OP_FUNC(MultSumVV)(d,t,D);
  475. return (VECT_OP_TYPE)sqrt(dist);
  476. }
  477. VECT_OP_TYPE VECT_OP_FUNC(KL_Distance)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
  478. {
  479. VECT_OP_TYPE v[ sn ];
  480. VECT_OP_FUNC(DivVVV)(v,sn,up,sp); // v = up ./ sp
  481. VECT_OP_FUNC(LogV)(v,sn,v); // v = log(v)
  482. VECT_OP_FUNC(MultVV)(v,sn,up); // v *= up;
  483. return VECT_OP_FUNC(Sum)(v,sn); // sum(v)
  484. }
  485. VECT_OP_TYPE VECT_OP_FUNC(KL_Distance2)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
  486. {
  487. VECT_OP_TYPE v0[ sn ];
  488. VECT_OP_TYPE v1[ sn ];
  489. VECT_OP_FUNC(NormalizeProbabilityVV)(v0,sn,up);
  490. VECT_OP_FUNC(NormalizeProbabilityVV)(v1,sn,sp);
  491. return VECT_OP_FUNC(KL_Distance)(v0,v1,sn);
  492. }
  493. /// If dv[scn] is non NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
  494. /// The function returns the index of the closest data point (column) in sm[].
  495. unsigned VECT_OP_FUNC(EuclidDistanceVM)( VECT_OP_TYPE* dv, const VECT_OP_TYPE* sv, const VECT_OP_TYPE* sm, unsigned srn, unsigned scn )
  496. {
  497. unsigned minIdx = cmInvalidIdx;
  498. VECT_OP_TYPE minDist = 0;
  499. unsigned i = 0;
  500. for(; i<scn; ++i )
  501. {
  502. VECT_OP_TYPE dist = VECT_OP_FUNC(EuclidDistance)(sv, sm + (i*srn), srn );
  503. if( dv != NULL )
  504. *dv++ = dist;
  505. if( dist < minDist || minIdx == cmInvalidIdx )
  506. {
  507. minIdx = i;
  508. minDist = dist;
  509. }
  510. }
  511. return minIdx;
  512. }
  513. void VECT_OP_FUNC(DistVMM)( VECT_OP_TYPE* dM, VECT_OP_TYPE* mvV, unsigned* miV, unsigned rn, const VECT_OP_TYPE* s0M, unsigned s0cn, const VECT_OP_TYPE* s1M, unsigned s1cn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  514. {
  515. unsigned i,j,k;
  516. // for each col in s0M[];
  517. for(i=0,k=0; i<s0cn; ++i)
  518. {
  519. VECT_OP_TYPE min_val = VECT_OP_MAX;
  520. unsigned min_idx = cmInvalidIdx;
  521. // for each col in s1M[]
  522. for(j=0; j<s1cn; ++j,++k)
  523. {
  524. // v = distance(s0M[:,i],s1M[:,j]
  525. VECT_OP_TYPE v = distFunc( userPtr, s1M + (j*rn), s0M + (i*rn), rn );
  526. if( dM != NULL )
  527. dM[k] = v; // store distance
  528. // track closest col in s1M[]
  529. if( v < min_val || min_idx==cmInvalidIdx )
  530. {
  531. min_val = v;
  532. min_idx = j;
  533. }
  534. }
  535. if( mvV != NULL )
  536. mvV[i] = min_val;
  537. if( miV != NULL )
  538. miV[i] = min_idx;
  539. }
  540. }
  541. void VECT_OP_FUNC(SelectRandom) ( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn )
  542. {
  543. bool freeFl = false;
  544. unsigned i;
  545. assert( selIdxN != 0 );
  546. // if no selIdxV[] was given then create one
  547. if( selIdxV == NULL )
  548. {
  549. selIdxV = cmMemAlloc( unsigned, selIdxN );
  550. freeFl = true;
  551. }
  552. // select datapoints at random
  553. cmVOU_UniqueRandom(selIdxV,selIdxN,scn);
  554. // copy the data points into the output matrix
  555. if( dM != NULL )
  556. for(i=0; i<selIdxN; ++i)
  557. {
  558. assert( selIdxV[i] < scn );
  559. VECT_OP_FUNC(Copy)( dM + (i*srn), srn, sM + selIdxV[i]*srn );
  560. }
  561. if( freeFl )
  562. cmMemPtrFree(&selIdxV);
  563. }
  564. void VECT_OP_FUNC(_SelectDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr, bool avgFl )
  565. {
  566. unsigned i;
  567. unsigned dcn = 0;
  568. bool freeFl = false;
  569. assert( selIdxN > 0 );
  570. if( dM == NULL )
  571. {
  572. dM = cmMemAllocZ( VECT_OP_TYPE, srn*selIdxN );
  573. freeFl = true;
  574. }
  575. // allocate distM[scn,selIdxN] to hold the distances from each selected column to all columns in sM[]
  576. VECT_OP_TYPE* distM = cmMemAllocZ( VECT_OP_TYPE, scn*selIdxN );
  577. // sumV[] is a temp vector to hold the summed distances to from the selected columns to each column in sM[]
  578. VECT_OP_TYPE* sumV = cmMemAllocZ( VECT_OP_TYPE, scn );
  579. // select a random point from sM[] and copy it to the first column of dM[]
  580. cmVOU_Random(&i,1,scn);
  581. VECT_OP_FUNC(Copy)(dM, srn, sM + (i*srn));
  582. if( selIdxV != NULL )
  583. selIdxV[0] = i;
  584. for(dcn=1; dcn<selIdxN; ++dcn)
  585. {
  586. // set distM[scn,dcn] with the dist from dM[dcn,srn] to each column in sM[]
  587. VECT_OP_FUNC(DistVMM)( distM, NULL, NULL, srn, dM, dcn, sM, scn, distFunc, userPtr );
  588. // sum the rows of distM[ scn, dcn ] into sumV[scn]
  589. VECT_OP_FUNC(SumMN)( distM, scn, dcn, sumV );
  590. if( avgFl )
  591. VECT_OP_FUNC(DivVS)( sumV, scn, dcn );
  592. // find the point in sM[] which has the greatest combined distance to all previously selected points.
  593. unsigned maxIdx = VECT_OP_FUNC(MaxIndex)(sumV, scn, 1 );
  594. // copy the point into dM[]
  595. VECT_OP_FUNC(Copy)(dM + (dcn*srn), srn, sM + (maxIdx*srn));
  596. if( selIdxV != NULL )
  597. selIdxV[dcn] = maxIdx;
  598. }
  599. cmMemPtrFree(&distM);
  600. cmMemPtrFree(&sumV);
  601. if( freeFl )
  602. cmMemPtrFree(&dM);
  603. }
  604. void VECT_OP_FUNC(SelectMaxDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  605. { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,false); }
  606. void VECT_OP_FUNC(SelectMaxAvgDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  607. { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,true); }
  608. #ifdef CM_VECTOP
  609. VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  610. { return VECT_OP_BLAS_FUNC(dot)(sn, s0p, 1, s1p, 1); }
  611. #else
  612. VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  613. {
  614. VECT_OP_TYPE sum = 0;
  615. const VECT_OP_TYPE* sep = s0p + sn;
  616. while(s0p<sep)
  617. sum += *s0p++ * *s1p++;
  618. return sum;
  619. }
  620. #endif
  621. VECT_OP_TYPE VECT_OP_FUNC(MultSumVS)( const VECT_OP_TYPE* s0p, unsigned sn, VECT_OP_TYPE s1 )
  622. {
  623. VECT_OP_TYPE sum = 0;
  624. const VECT_OP_TYPE* sep = s0p + sn;
  625. while(s0p<sep)
  626. sum += *s0p++ * s1;
  627. return sum;
  628. }
  629. #ifdef CM_VECTOP
  630. VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  631. {
  632. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasNoTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
  633. return dbp;
  634. }
  635. #else
  636. VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  637. {
  638. const VECT_OP_TYPE* dep = dbp + mrn;
  639. VECT_OP_TYPE* dp = dbp;
  640. const VECT_OP_TYPE* vep = vp + mcn;
  641. // for each dest element
  642. for(; dbp < dep; ++dbp )
  643. {
  644. const VECT_OP_TYPE* vbp = vp;
  645. const VECT_OP_TYPE* mbp = mp++;
  646. *dbp = 0;
  647. // for each source vector row and src mtx col
  648. while( vbp < vep )
  649. {
  650. *dbp += *mbp * *vbp++;
  651. mbp += mrn;
  652. }
  653. }
  654. return dp;
  655. }
  656. #endif
  657. #ifdef CM_VECTOP
  658. VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
  659. {
  660. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, vn, dn, 1.0, mp, vn, vp, 1, 0.0, dbp, 1 );
  661. return dbp;
  662. }
  663. #else
  664. VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
  665. {
  666. unsigned i;
  667. for(i=0; i<dn; ++i)
  668. dbp[i] = VECT_OP_FUNC(MultSumVV)(vp,mp + (i*vn),vn);
  669. return dbp;
  670. }
  671. #endif
  672. #ifdef CM_VECTOP
  673. VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
  674. {
  675. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
  676. return dbp;
  677. }
  678. #else
  679. VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
  680. {
  681. const VECT_OP_TYPE* dep = dbp + mcn;
  682. VECT_OP_TYPE* dp = dbp;
  683. const VECT_OP_TYPE* vep = vp + mrn;
  684. // for each dest element
  685. for(; dbp < dep; ++dbp )
  686. {
  687. const VECT_OP_TYPE* vbp = vp;
  688. *dbp = 0;
  689. // for each source vector row and src mtx col
  690. while( vbp < vep )
  691. *dbp += *mp++ * *vbp++;
  692. }
  693. return dp;
  694. }
  695. #endif
  696. VECT_OP_TYPE* VECT_OP_FUNC(MultDiagVMV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  697. {
  698. VECT_OP_TYPE* rp = dbp;
  699. const VECT_OP_TYPE* mep = mp + (dn*mcn);
  700. // for each dest element
  701. for(; mp < mep; mp += dn+1 )
  702. *dbp++ = *vp++ * *mp;
  703. return rp;
  704. }
  705. /*
  706. Fortran Doc: http://www.netlib.org/blas/cgemm.f
  707. C Doc: http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?cmd=getdoc&coll=0650&db=man&fname=3%20INTRO_CBLAS
  708. C = alpha * op(A) * op(B) + beta * C
  709. cblas_Xgemm(
  710. order, enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
  711. transposeA, enum CBLAS_TRANSPOSE { CblasNoTrans, CblasTrans, CBlasConjTrans }
  712. transposeB,
  713. M, row op(A) and rows C (i.e. rows of A 'after' optional transpose)
  714. N, col op(B) and cols C (i.e. rows of B 'after' optional transpose)
  715. K, col op(A) and rows op(B)
  716. alpha, A scalar
  717. A, pointer to source matrix A
  718. lda, number of rows in A as it is stored in memory (assuming col major order)
  719. B, pointer to source matrix B
  720. ldb, number of rows in B as it is stored in memory (assuming col major order)
  721. beta C scalar
  722. C, pointer to destination matrix C
  723. ldc number of rows in C as it is stored in memory (assuming col major order)
  724. )
  725. */
  726. #ifdef CM_VECTOP
  727. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM1)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags )
  728. {
  729. bool t0fl = cmIsFlag(flags,kTransposeM0Fl);
  730. bool t1fl = cmIsFlag(flags,kTransposeM1Fl);
  731. VECT_OP_BLAS_FUNC(gemm)(
  732. CblasColMajor,
  733. t0fl ? CblasTrans : CblasNoTrans,
  734. t1fl ? CblasTrans : CblasNoTrans,
  735. drn, dcn, n,
  736. alpha,
  737. m0, t0fl ? n : drn,
  738. m1, t1fl ? dcn : n,
  739. beta,
  740. dbp, drn );
  741. return dbp;
  742. }
  743. #else
  744. // Not implemented.
  745. #endif
  746. #ifdef CM_VECTOP
  747. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM2)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags, unsigned dprn, unsigned m0prn, unsigned m1prn )
  748. {
  749. VECT_OP_BLAS_FUNC(gemm)(
  750. CblasColMajor,
  751. cmIsFlag(flags,kTransposeM0Fl) ? CblasTrans : CblasNoTrans,
  752. cmIsFlag(flags,kTransposeM1Fl) ? CblasTrans : CblasNoTrans,
  753. drn, dcn, n,
  754. alpha,
  755. m0, m0prn,
  756. m1, m1prn,
  757. beta,
  758. dbp, dprn );
  759. return dbp;
  760. }
  761. #else
  762. // Not implemented.
  763. #endif
  764. #ifdef CM_VECTOP
  765. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n )
  766. {
  767. VECT_OP_BLAS_FUNC(gemm)(
  768. CblasColMajor,
  769. CblasNoTrans, CblasNoTrans,
  770. drn, dcn, n,
  771. 1.0, m0, drn,
  772. m1, n,
  773. 0.0, dbp, drn );
  774. return dbp;
  775. }
  776. #else
  777. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  778. {
  779. unsigned i;
  780. for(i=0; i<dcn; ++i)
  781. VECT_OP_FUNC(MultVMV)(dbp+(i*drn),drn,m0,m0cn_m1rn,m1+(i*m0cn_m1rn));
  782. return dbp;
  783. }
  784. #endif
  785. #ifdef CM_VECTOP
  786. VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  787. {
  788. VECT_OP_BLAS_FUNC(gemm)( CblasColMajor, CblasNoTrans, CblasTrans,
  789. drn, dcn, m0cn_m1rn,
  790. 1.0, m0, drn,
  791. m1, dcn,
  792. 0.0, dbp, drn );
  793. return dbp;
  794. }
  795. #else
  796. VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  797. {
  798. unsigned i,j,k;
  799. VECT_OP_FUNC(Zero)(dbp,drn*dcn);
  800. for(i=0; i<dcn; ++i)
  801. for(j=0; j<drn; ++j)
  802. for(k=0; k<m0cn_m1rn; ++k)
  803. dbp[ i*drn + j ] += m0[ k*drn + j ] * m1[ k*dcn + i ];
  804. return dbp;
  805. }
  806. #endif
  807. VECT_OP_TYPE* VECT_OP_FUNC(PowVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE expo )
  808. {
  809. VECT_OP_TYPE* dp = dbp;
  810. VECT_OP_TYPE* ep = dp + dn;
  811. for(; dp < ep; ++dp )
  812. *dp = (VECT_OP_TYPE)pow(*dp,expo);
  813. return dbp;
  814. }
  815. VECT_OP_TYPE* VECT_OP_FUNC(PowVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE expo )
  816. {
  817. VECT_OP_TYPE* dp = dbp;
  818. VECT_OP_TYPE* ep = dp + dn;
  819. for(; dp < ep; ++dp,++sp )
  820. *dp = (VECT_OP_TYPE)pow(*sp,expo);
  821. return dbp;
  822. }
  823. VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
  824. {
  825. VECT_OP_TYPE* dp = dbp;
  826. VECT_OP_TYPE* ep = dp + dn;
  827. for(; dp <ep; ++dp,++sbp)
  828. *dp = (VECT_OP_TYPE)log(*sbp);
  829. return dbp;
  830. }
  831. VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
  832. {
  833. VECT_OP_TYPE minVal = pow(10.0,minDb/20.0);
  834. VECT_OP_TYPE* dp = dbp;
  835. VECT_OP_TYPE* ep = dp + dn;
  836. for(; dp<ep; ++dp,++sbp)
  837. *dp = *sbp<minVal ? minDb : 20.0 * log10(*sbp);
  838. return dbp;
  839. }
  840. VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  841. {
  842. VECT_OP_TYPE* dp = dbp;
  843. VECT_OP_TYPE* ep = dp + dn;
  844. for(; dp<ep; ++dp,++sbp)
  845. *dp = pow(10.0,*sbp/20.0);
  846. return dbp;
  847. }
  848. VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
  849. {
  850. VECT_OP_TYPE minVal = pow(10.0,minDb/10.0);
  851. VECT_OP_TYPE* dp = dbp;
  852. VECT_OP_TYPE* ep = dp + dn;
  853. for(; dp<ep; ++dp,++sbp)
  854. *dp = *sbp<minVal ? minDb : 10.0 * log10(*sbp);
  855. return dbp;
  856. }
  857. VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  858. {
  859. VECT_OP_TYPE* dp = dbp;
  860. VECT_OP_TYPE* ep = dp + dn;
  861. for(; dp<ep; ++dp,++sbp)
  862. *dp = pow(10.0,*sbp/10.0);
  863. return dbp;
  864. }
  865. VECT_OP_TYPE* VECT_OP_FUNC(RandSymPosDef)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE* t )
  866. {
  867. unsigned i,j;
  868. bool fl = t == NULL;
  869. if( fl )
  870. t = cmMemAlloc( VECT_OP_TYPE , dn*dn );
  871. do
  872. {
  873. // intialize t[] as a square symetric matrix with random values
  874. for(i=0; i<dn; ++i)
  875. for(j=i; j<dn; ++j)
  876. {
  877. VECT_OP_TYPE v = (VECT_OP_TYPE)rand()/RAND_MAX;
  878. t[ (i*dn) + j ] = v;
  879. if( i != j )
  880. t[ (j*dn) + i ] = v;
  881. }
  882. // square t[] to force the eigenvalues to be positive
  883. VECT_OP_FUNC(MultMMM)(dbp,dn,dn,t,t,dn);
  884. VECT_OP_FUNC(Copy)(t,dn*dn,dbp);
  885. // test that func is positive definite
  886. }while( VECT_OP_FUNC(Chol)(t,dn)==NULL );
  887. if( fl )
  888. cmMemFree(t);
  889. return dbp;
  890. }
  891. // Calculate the determinant of a matrix previously factored by
  892. // the lapack function dgetrf_()
  893. VECT_OP_TYPE VECT_OP_FUNC(LUDet)( const VECT_OP_TYPE* lu, const int_lap_t* ipiv, int rn )
  894. {
  895. VECT_OP_TYPE det1 = 1;
  896. int det2 = 0;
  897. int i;
  898. for(i=0; i<rn; ++i)
  899. {
  900. if( ipiv != NULL && ipiv[i] != (i+1) )
  901. det1 = -det1;
  902. det1 = lu[ (i*rn) + i ] * det1;
  903. if( det1 == 0 )
  904. break;
  905. while( fabs(det1) <= 1 )
  906. {
  907. det1 *= 10;
  908. det2 -= 1;
  909. }
  910. //continue;
  911. while( fabs(det1) >= 10 )
  912. {
  913. det1 /= 10;
  914. det2 += 1;
  915. }
  916. }
  917. // Here's where underflow or overflow might happen.
  918. // Enable floating point exception handling to trap.
  919. det1 *= pow(10.0,det2);
  920. return det1;
  921. }
  922. // take the inverse of a matrix factored via lapack dgetrf_()
  923. VECT_OP_TYPE* VECT_OP_FUNC(LUInverse)(VECT_OP_TYPE* dp, int_lap_t* ipiv, int drn )
  924. {
  925. int_lap_t ispec = 1;
  926. int_lap_t rn = drn;
  927. int_lap_t n1 = drn;
  928. int_lap_t n2 = drn;
  929. int_lap_t n3 = drn;
  930. int_lap_t n4 = drn;
  931. char funcNameStr[] = {"DGETRI"};
  932. // Calculate the NB factor for LWORK -
  933. // The two args are length of string args 'funcNameStr' and ' '.
  934. // It is not clear how many 'n' args are requred so all are passed set to 'drn'
  935. int nb = ilaenv_(&ispec, funcNameStr, " ", &n1,&n2,&n3,&n4, strlen(funcNameStr), 1 );
  936. VECT_OP_TYPE w[drn * nb]; // allocate working memory
  937. int_lap_t info;
  938. // calculate inv(A) base on LU factorization
  939. VECT_OP_LAP_FUNC(getri_)(&rn,dp,&rn,ipiv,w,&rn,&info);
  940. assert(info==0);
  941. return info ==0 ? dp : NULL;
  942. }
  943. VECT_OP_TYPE VECT_OP_FUNC(DetM)( const VECT_OP_TYPE* sp, unsigned srn )
  944. {
  945. int_lap_t arn = srn;
  946. VECT_OP_TYPE A[ arn * arn ];
  947. int_lap_t ipiv[ arn ];
  948. int_lap_t info;
  949. VECT_OP_FUNC(Copy)(A,arn*arn,sp);
  950. // PLU factor
  951. VECT_OP_LAP_FUNC(getrf_)(&arn,&arn,A,&arn,ipiv,&info);
  952. if( info == 0 )
  953. return VECT_OP_FUNC(LUDet)(A,ipiv,arn);
  954. return 0;
  955. }
  956. VECT_OP_TYPE VECT_OP_FUNC(DetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
  957. { return VECT_OP_FUNC(LUDet)(sp,NULL,srn); }
  958. VECT_OP_TYPE VECT_OP_FUNC(LogDetM)( const VECT_OP_TYPE* sp, unsigned srn )
  959. {
  960. cmReal_t det = 0;
  961. unsigned ne2 = srn * srn;
  962. VECT_OP_TYPE U[ne2];
  963. const VECT_OP_TYPE* up = U;
  964. const VECT_OP_TYPE* ep = up + ne2;
  965. VECT_OP_FUNC(Copy)(U,ne2,sp);
  966. VECT_OP_FUNC(Chol)(U,srn);
  967. for(; up<ep; up += (srn+1) )
  968. det += log(*up);
  969. return 2*det;
  970. }
  971. VECT_OP_TYPE VECT_OP_FUNC(LogDetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
  972. { return log(VECT_OP_FUNC(DetDiagM)(sp,srn)); }
  973. VECT_OP_TYPE* VECT_OP_FUNC(InvM)( VECT_OP_TYPE* dp, unsigned drn )
  974. {
  975. int_lap_t rn = drn;
  976. int_lap_t ipiv[ rn ];
  977. int_lap_t info;
  978. // PLU factor
  979. VECT_OP_LAP_FUNC(getrf_)(&rn,&rn,dp,&rn,ipiv,&info);
  980. if( info == 0 )
  981. return VECT_OP_FUNC(LUInverse)(dp,ipiv,rn );
  982. return NULL;
  983. }
  984. VECT_OP_TYPE* VECT_OP_FUNC(InvDiagM)( VECT_OP_TYPE* dp, unsigned drn )
  985. {
  986. const VECT_OP_TYPE* dep = dp + (drn*drn);
  987. VECT_OP_TYPE* rp = dp;
  988. for(; dp < dep; dp += drn+1 )
  989. {
  990. *dp = 1.0 / *dp;
  991. // if any element on the diagonal is zero then the
  992. // determinant is zero and the matrix is not invertable
  993. if( *dp == 0 )
  994. break;
  995. }
  996. return dp < dep ? NULL : rp;
  997. }
  998. VECT_OP_TYPE* VECT_OP_FUNC(SolveLS)( VECT_OP_TYPE* A, unsigned an, VECT_OP_TYPE* B, unsigned bcn )
  999. {
  1000. int_lap_t aN = an;
  1001. int_lap_t bcN = bcn;
  1002. int_lap_t ipiv[ an ];
  1003. int_lap_t info = 0;
  1004. VECT_OP_LAP_FUNC(gesv_)(&aN,&bcN,(VECT_OP_TYPE*)A,&aN,ipiv,B,&aN,&info);
  1005. return info == 0 ? B : NULL;
  1006. }
  1007. VECT_OP_TYPE* VECT_OP_FUNC(Chol)(VECT_OP_TYPE* A, unsigned an )
  1008. {
  1009. char uplo = 'U';
  1010. int_lap_t N = an;
  1011. int_lap_t lda = an;
  1012. int_lap_t info = 0;
  1013. VECT_OP_LAP_FUNC(potrf_(&uplo,&N,(VECT_OP_TYPE*)A,&lda,&info));
  1014. return info == 0 ? A : NULL;
  1015. }
  1016. VECT_OP_TYPE* VECT_OP_FUNC(CholZ)(VECT_OP_TYPE* A, unsigned an )
  1017. {
  1018. unsigned i,j;
  1019. VECT_OP_FUNC(Chol)(A,an);
  1020. // zero the lower triangle of A
  1021. for(i=0; i<an; ++i)
  1022. for(j=i+1; j<an; ++j)
  1023. A[ (i*an) + j ] = 0;
  1024. return A;
  1025. }
  1026. VECT_OP_TYPE VECT_OP_FUNC(FracAvg)( double bi, double ei, const VECT_OP_TYPE* sbp, unsigned sn )
  1027. {
  1028. unsigned bii = cmMax(0,cmMin(sn-1,(unsigned)ceil(bi)));
  1029. unsigned eii = cmMax(0,cmMin(sn,(unsigned)floor(ei)+1));
  1030. double begW = bii - bi;
  1031. double endW = eii - floor(ei);
  1032. double cnt = eii - bii;
  1033. double sum = (double)VECT_OP_FUNC(Sum)(sbp+bii,eii-bii);
  1034. if( begW>0 && bii > 0 )
  1035. {
  1036. cnt += begW;
  1037. sum += begW * sbp[ bii-1 ];
  1038. }
  1039. if( endW>0 && eii+1 < sn )
  1040. {
  1041. cnt += endW;
  1042. sum += endW * sbp[ eii+1 ];
  1043. }
  1044. return (VECT_OP_TYPE)(sum / cnt);
  1045. }
  1046. VECT_OP_TYPE* VECT_OP_FUNC(DownSampleAvg)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1047. {
  1048. const VECT_OP_TYPE* dep = dbp + dn;
  1049. VECT_OP_TYPE* rp = dbp;
  1050. unsigned i = 0;
  1051. double fact = (double)sn / dn;
  1052. assert( sn >= dn );
  1053. for(i=0; dbp < dep; ++i )
  1054. *dbp++ = VECT_OP_FUNC(FracAvg)( fact*i, fact*(i+1), sbp, sn );
  1055. return rp;
  1056. }
  1057. VECT_OP_TYPE* VECT_OP_FUNC(UpSampleInterp)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1058. {
  1059. const VECT_OP_TYPE* dep = dbp + dn;
  1060. const VECT_OP_TYPE* sep = sbp + sn;
  1061. VECT_OP_TYPE* rp = dbp;
  1062. double fact = (double)sn / dn;
  1063. double phs = 0;
  1064. assert( sn <= dn );
  1065. while( dbp<dep )
  1066. {
  1067. if( sbp < sep )
  1068. *dbp++ = (VECT_OP_TYPE)((*sbp) + (phs * ((*(sbp+1)) - (*sbp))));
  1069. else
  1070. *dbp++ = (*(sep-1));
  1071. phs += fact;
  1072. while( phs > 1.0 )
  1073. {
  1074. phs -= 1.0;
  1075. sbp++;
  1076. }
  1077. }
  1078. return rp;
  1079. }
  1080. VECT_OP_TYPE* VECT_OP_FUNC(FitToSize)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1081. {
  1082. if( dn == sn )
  1083. return VECT_OP_FUNC(Copy)(dbp,dn,sbp);
  1084. if( dn < sn )
  1085. return VECT_OP_FUNC(DownSampleAvg)(dbp,dn,sbp,sn);
  1086. return VECT_OP_FUNC(UpSampleInterp)(dbp,dn,sbp,sn);
  1087. }
  1088. VECT_OP_TYPE* VECT_OP_FUNC(LinearMap)(VECT_OP_TYPE* dV, unsigned dn, VECT_OP_TYPE* sV, unsigned sn )
  1089. {
  1090. if( dn == sn )
  1091. {
  1092. memcpy(dV,sV,dn*sizeof(VECT_OP_TYPE));
  1093. return dV;
  1094. }
  1095. unsigned i,j,k;
  1096. // if stretching
  1097. if( dn > sn )
  1098. {
  1099. VECT_OP_TYPE f_n = (VECT_OP_TYPE)dn/sn;
  1100. VECT_OP_TYPE f_nn = f_n;
  1101. unsigned i_n = floor(f_n);
  1102. k = 0;
  1103. i = 0;
  1104. // for each set of ceiling(dn/sn) dst values
  1105. while(1)
  1106. {
  1107. // repeat floor(dn/sn) src val into dst
  1108. for(j=0; j<i_n; ++j,++i)
  1109. dV[i] = sV[k];
  1110. if( k + 1 == sn )
  1111. break;
  1112. // interpolate between the cur and nxt source value
  1113. VECT_OP_TYPE w = f_nn - floor(f_nn);
  1114. dV[i] = sV[k] + w * (sV[k+1]-sV[k]);
  1115. ++i;
  1116. ++k;
  1117. i_n = floor(f_n - (1.0-w));
  1118. f_nn += f_n;
  1119. }
  1120. }
  1121. else // if shrinking
  1122. {
  1123. VECT_OP_TYPE f_n = (VECT_OP_TYPE)sn/dn;
  1124. VECT_OP_TYPE f_nn = f_n;
  1125. unsigned i_n = floor(f_n);
  1126. k = 0;
  1127. i = 0;
  1128. VECT_OP_TYPE acc = 0;
  1129. // for each seq of ceil(sn/dn) src values
  1130. while(1)
  1131. {
  1132. // accum first floor(sn/dn) src values
  1133. for(j=0; j<i_n; ++j,++i)
  1134. acc += sV[i];
  1135. if( k == dn-1 )
  1136. {
  1137. dV[k] = acc/f_n;
  1138. break;
  1139. }
  1140. // interpolate frac of last src value
  1141. VECT_OP_TYPE w = f_nn - floor(f_nn);
  1142. // form avg
  1143. dV[k] = (acc + (w*sV[i]))/f_n;
  1144. // reload acc with inverse frac of src value
  1145. acc = (1.0-w) * sV[i];
  1146. ++i;
  1147. ++k;
  1148. i_n = floor(f_n-(1.0-w));
  1149. f_nn += f_n;
  1150. }
  1151. }
  1152. return dV;
  1153. }
  1154. VECT_OP_TYPE* VECT_OP_FUNC(Random)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE minVal, VECT_OP_TYPE maxVal )
  1155. {
  1156. const VECT_OP_TYPE* dep = dbp + dn;
  1157. VECT_OP_TYPE* dp =dbp;
  1158. double fact = (maxVal - minVal)/RAND_MAX;
  1159. while( dbp < dep )
  1160. *dbp++ = fact * rand() + minVal;
  1161. return dp;
  1162. }
  1163. unsigned* VECT_OP_FUNC(WeightedRandInt)( unsigned *dbp, unsigned dn, const VECT_OP_TYPE* wp, unsigned wn )
  1164. {
  1165. unsigned i,j;
  1166. VECT_OP_TYPE a[ wn ];
  1167. // form bin boundaries by taking a cum. sum of the weight values.
  1168. VECT_OP_FUNC(CumSum)(a,wn,wp);
  1169. for(j=0; j<dn; ++j)
  1170. {
  1171. // gen a random number from a uniform distribution betwen 0 and the max value from the cumsum.
  1172. VECT_OP_TYPE rv = (VECT_OP_TYPE)rand() * a[wn-1] / RAND_MAX;
  1173. // find the bin the rv falls into
  1174. for(i=0; i<wn-1; ++i)
  1175. if( rv <= a[i] )
  1176. {
  1177. dbp[j] = i;
  1178. break;
  1179. }
  1180. if(i==wn-1)
  1181. dbp[j]= wn-1;
  1182. }
  1183. return dbp;
  1184. }
  1185. VECT_OP_TYPE* VECT_OP_FUNC(RandomGauss)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE mean, VECT_OP_TYPE var )
  1186. {
  1187. const VECT_OP_TYPE* dep = dbp + dn;
  1188. VECT_OP_TYPE* rp = dbp;
  1189. // The code below implements the Box-Muller uniform to
  1190. // Gaussian distribution transformation. In rectangular
  1191. // coordinates this transform is defined as:
  1192. // y1 = sqrt( - 2.0 * log(x1) ) * cos( 2.0*M_PI*x2 )
  1193. // y2 = sqrt( - 2.0 * log(x1) ) * sin( 2.0*M_PI*x2 )
  1194. //
  1195. while( dbp < dep )
  1196. *dbp++ = sqrt( -2.0 * log((VECT_OP_TYPE)rand()/RAND_MAX)) * cos(2.0*M_PI*((VECT_OP_TYPE)rand()/RAND_MAX)) * var + mean;
  1197. return rp;
  1198. }
  1199. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
  1200. {
  1201. VECT_OP_TYPE* rp = dbp;
  1202. const VECT_OP_TYPE* dep = dbp + dn;
  1203. while( dbp < dep )
  1204. VECT_OP_FUNC(RandomGauss)( dbp++, 1, *meanV++, *varV++ );
  1205. return rp;
  1206. }
  1207. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussM)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
  1208. {
  1209. unsigned i;
  1210. for(i=0; i<cn; ++i)
  1211. VECT_OP_FUNC(RandomGaussV)( dbp+(i*rn), rn, meanV, varV );
  1212. return dbp;
  1213. }
  1214. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM )
  1215. {
  1216. unsigned i,j;
  1217. for(i=0; i<dcn; ++i)
  1218. for(j=0; j<drn; ++j)
  1219. VECT_OP_FUNC(RandomGauss)(dbp + (i*drn)+j, 1, meanV[j], covarM[ (j*drn) + j]);
  1220. return dbp;
  1221. }
  1222. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, VECT_OP_TYPE* t )
  1223. {
  1224. bool fl = t == NULL;
  1225. if( fl )
  1226. t = cmMemAlloc(VECT_OP_TYPE, drn * drn );
  1227. VECT_OP_FUNC(Copy)(t,drn*drn,covarM);
  1228. if( VECT_OP_FUNC(CholZ)(t,drn) == NULL )
  1229. {
  1230. // Cholesky decomposition failed - should try eigen analysis next
  1231. // From octave mvnrnd.m
  1232. // [E,Lambda]=eig(Sigma);
  1233. // if (min(diag(Lambda))<0),error('Sigma must be positive semi-definite.'),end
  1234. // U = sqrt(Lambda)*E';
  1235. assert(0);
  1236. }
  1237. /*
  1238. unsigned i,j;
  1239. for(i=0; i<drn; ++i)
  1240. {
  1241. for(j=0; j<drn; ++j)
  1242. printf("%f ",t[ (j*drn) + i]);
  1243. printf("\n");
  1244. }
  1245. */
  1246. VECT_OP_FUNC(RandomGaussNonDiagM2)(dbp,drn,dcn,meanV,t);
  1247. if(fl)
  1248. cmMemFree(t);
  1249. return dbp;
  1250. }
  1251. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM2)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* uM )
  1252. {
  1253. unsigned i;
  1254. for(i=0; i<dcn; ++i)
  1255. {
  1256. VECT_OP_TYPE r[ drn ];
  1257. VECT_OP_FUNC(RandomGauss)(r,drn,0,1); // r = randn(drn,1);
  1258. VECT_OP_FUNC(MultVVM)( dbp+(i*drn),drn,r,drn,uM); // dbp[:i] = r * uM;
  1259. VECT_OP_FUNC(AddVV)( dbp+(i*drn),drn,meanV); // dbp[:,i] += meanV;
  1260. }
  1261. return dbp;
  1262. }
  1263. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanM, const VECT_OP_TYPE* varM, unsigned K )
  1264. {
  1265. unsigned k;
  1266. unsigned D = drn;
  1267. unsigned N = dcn/K;
  1268. for(k=0; k<K; ++k)
  1269. VECT_OP_FUNC(RandomGaussM)( dbp + (k*N*D), drn, N, meanM + (k*D), varM + (k*D) );
  1270. return dbp;
  1271. }
  1272. VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY )
  1273. {
  1274. unsigned i;
  1275. for(i=0; i<dn; ++i)
  1276. {
  1277. double a = 2.0*M_PI*i/(dn-1);
  1278. dbp[ i ] = (VECT_OP_TYPE)(varX * cos(a) + x);
  1279. dbp[ i+dn ] = (VECT_OP_TYPE)(varY * sin(a) + y);
  1280. }
  1281. return dbp;
  1282. }
  1283. unsigned VECT_OP_FUNC(SynthSine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1284. {
  1285. const VECT_OP_TYPE* dep = dbp + dn;
  1286. double rps = 2.0*M_PI*hz/srate;
  1287. while( dbp < dep )
  1288. *dbp++ = (VECT_OP_TYPE)sin( rps * phase++ );
  1289. return phase;
  1290. }
  1291. unsigned VECT_OP_FUNC(SynthCosine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1292. {
  1293. const VECT_OP_TYPE* dep = dbp + dn;
  1294. double rps = 2.0*M_PI*hz/srate;
  1295. while( dbp < dep )
  1296. *dbp++ = (VECT_OP_TYPE)cos( rps * phase++ );
  1297. return phase;
  1298. }
  1299. unsigned VECT_OP_FUNC(SynthSquare)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1300. {
  1301. const VECT_OP_TYPE* dep = dbp + dn;
  1302. if( otCnt > 0 )
  1303. {
  1304. unsigned i;
  1305. // initialize the buffer with the fundamental
  1306. VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
  1307. otCnt *= 2;
  1308. // sum in each additional harmonic
  1309. for(i=3; i<otCnt; i+=2)
  1310. {
  1311. VECT_OP_TYPE* dp = dbp;
  1312. double rps = 2.0 * M_PI * i * hz / srate;
  1313. unsigned phs = phase;
  1314. double g = 1.0/i;
  1315. while( dp < dep )
  1316. *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
  1317. }
  1318. }
  1319. return phase + (dep - dbp);
  1320. }
  1321. unsigned VECT_OP_FUNC(SynthTriangle)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1322. {
  1323. const VECT_OP_TYPE* dep = dbp + dn;
  1324. if( otCnt > 0 )
  1325. {
  1326. unsigned i;
  1327. // initialize the buffer with the fundamental
  1328. VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
  1329. otCnt *= 2;
  1330. // sum in each additional harmonic
  1331. for(i=3; i<otCnt; i+=2)
  1332. {
  1333. VECT_OP_TYPE* dp = dbp;
  1334. double rps = 2.0 * M_PI * i * hz / srate;
  1335. unsigned phs = phase;
  1336. double g = 1.0/(i*i);
  1337. while( dp < dep )
  1338. *dp++ += (VECT_OP_TYPE)(g * cos( rps * phs++ ));
  1339. }
  1340. }
  1341. return phase + (dep - dbp);
  1342. }
  1343. unsigned VECT_OP_FUNC(SynthSawtooth)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1344. {
  1345. const VECT_OP_TYPE* dep = dbp + dn;
  1346. if( otCnt > 0 )
  1347. {
  1348. unsigned i;
  1349. // initialize the buffer with the fundamental
  1350. VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
  1351. // sum in each additional harmonic
  1352. for(i=2; i<otCnt; ++i)
  1353. {
  1354. VECT_OP_TYPE* dp = dbp;
  1355. double rps = 2.0 * M_PI * i * hz / srate;
  1356. unsigned phs = phase;
  1357. double g = 1.0/i;
  1358. while( dp < dep )
  1359. *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
  1360. }
  1361. VECT_OP_FUNC(MultVS)(dbp,dn,2.0/M_PI);
  1362. }
  1363. return phase + (dep - dbp);
  1364. }
  1365. unsigned VECT_OP_FUNC(SynthPulseCos)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1366. {
  1367. const VECT_OP_TYPE* dep = dbp + dn;
  1368. if( otCnt > 0 )
  1369. {
  1370. unsigned i;
  1371. // initialize the buffer with the fundamental
  1372. VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
  1373. // sum in each additional harmonic
  1374. for(i=1; i<otCnt; ++i)
  1375. {
  1376. VECT_OP_TYPE* dp = dbp;
  1377. double rps = 2.0 * M_PI * i * hz / srate;
  1378. unsigned phs = phase;
  1379. while( dp < dep )
  1380. *dp++ += (VECT_OP_TYPE)cos( rps * phs++ );
  1381. }
  1382. VECT_OP_FUNC(MultVS)(dbp,dn,1.0/otCnt);
  1383. }
  1384. return phase + (dep - dbp);
  1385. }
  1386. unsigned VECT_OP_FUNC(SynthImpulse)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1387. {
  1388. const VECT_OP_TYPE* dep = dbp + dn;
  1389. double pi2 = 2.0*M_PI;
  1390. double rps = pi2*hz/srate;
  1391. double v0,v1 = fmod( rps * phase, pi2);
  1392. if( dbp == dep )
  1393. return phase;
  1394. // the phase is set to zero when the first output should be a 1
  1395. if( phase == 0 )
  1396. {
  1397. *dbp++ = 1;
  1398. ++phase;
  1399. }
  1400. while( dbp < dep )
  1401. {
  1402. // the phase vector will always be increasing
  1403. // the modulus of the phase vector will wrap with frequency 'hz'
  1404. v0 = fmod( rps * phase++, pi2 );
  1405. // notice when wrapping occurs
  1406. *dbp++ = (VECT_OP_TYPE)(v0 < v1);
  1407. v1 = v0;
  1408. }
  1409. // check if the next output should be a 1
  1410. // (this eliminates the problem of not having access to v1 on the next call to this function
  1411. if( fmod( rps * phase, pi2 ) < v1 )
  1412. phase = 0;
  1413. return phase;
  1414. }
  1415. VECT_OP_TYPE VECT_OP_FUNC(SynthPinkNoise)( VECT_OP_TYPE* dbp, unsigned n, VECT_OP_TYPE delaySmp )
  1416. {
  1417. const VECT_OP_TYPE* dep = dbp + n;
  1418. VECT_OP_TYPE tmp[ n ];
  1419. VECT_OP_FUNC(Random)(tmp,n,-1.0,1.0);
  1420. VECT_OP_TYPE* sp = tmp;
  1421. VECT_OP_TYPE reg = delaySmp;
  1422. for(; dbp < dep; ++sp)
  1423. {
  1424. *dbp++ = (*sp + reg)/2.0;
  1425. reg = *sp;
  1426. }
  1427. return *sp;
  1428. }
  1429. VECT_OP_TYPE* VECT_OP_FUNC(LinearToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
  1430. {
  1431. const VECT_OP_TYPE* dep = dbp + dn;
  1432. VECT_OP_TYPE* rp = dbp;
  1433. while( dbp < dep )
  1434. *dbp++ = (VECT_OP_TYPE)(mult * log10( VECT_OP_EPSILON + *sp++ ));
  1435. return rp;
  1436. }
  1437. VECT_OP_TYPE* VECT_OP_FUNC(dBToLinear)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
  1438. {
  1439. const VECT_OP_TYPE* dep = dbp + dn;
  1440. VECT_OP_TYPE* rp = dbp;
  1441. while( dbp < dep )
  1442. *dbp++ = (VECT_OP_TYPE)pow(10.0, *sp++ / mult );
  1443. return rp;
  1444. }
  1445. VECT_OP_TYPE* VECT_OP_FUNC(AmplitudeToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1446. { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,20.0); }
  1447. VECT_OP_TYPE* VECT_OP_FUNC(PowerToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1448. { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,10.0); }
  1449. VECT_OP_TYPE* VECT_OP_FUNC(dBToAmplitude)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1450. { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,20); }
  1451. VECT_OP_TYPE* VECT_OP_FUNC(dBToPower)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1452. { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,10); }
  1453. unsigned VECT_OP_FUNC(SynthPhasor)(VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1454. {
  1455. const VECT_OP_TYPE* dep = dbp + dn;
  1456. while( dbp < dep )
  1457. *dbp++ = (VECT_OP_TYPE)fmod( (hz * phase++)/srate, 1.0 );
  1458. return phase;
  1459. }
  1460. VECT_OP_TYPE VECT_OP_FUNC(KaiserBetaFromSidelobeReject)( double sidelobeRejectDb )
  1461. {
  1462. double beta;
  1463. if( sidelobeRejectDb < 13.26 )
  1464. sidelobeRejectDb = 13.26;
  1465. else
  1466. if( sidelobeRejectDb > 120.0)
  1467. sidelobeRejectDb = 120.0;
  1468. if( sidelobeRejectDb < 60.0 )
  1469. beta = (0.76609 * pow(sidelobeRejectDb - 13.26,0.4)) + (0.09834*(sidelobeRejectDb-13.26));
  1470. else
  1471. beta = 0.12438 * (sidelobeRejectDb + 6.3);
  1472. return (VECT_OP_TYPE)beta;
  1473. }
  1474. VECT_OP_TYPE VECT_OP_FUNC(KaiserFreqResolutionFactor)( double sidelobeRejectDb )
  1475. { return (6.0 * (sidelobeRejectDb + 12.0))/155.0; }
  1476. VECT_OP_TYPE* VECT_OP_FUNC(Kaiser)( VECT_OP_TYPE* dbp, unsigned n, double beta )
  1477. {
  1478. bool zeroFl = false;
  1479. int M = 0;
  1480. double den = cmBessel0(beta); // wnd func denominator
  1481. int cnt = n;
  1482. int i;
  1483. assert( n >= 3 );
  1484. // force ele cnt to be odd
  1485. if( cmIsEvenU(cnt) )
  1486. {
  1487. cnt--;
  1488. zeroFl = true;
  1489. }
  1490. // at this point cnt is odd and >= 3
  1491. // calc half the window length
  1492. M = (int)((cnt - 1.0)/2.0);
  1493. double Msqrd = M*M;
  1494. for(i=0; i<cnt; i++)
  1495. {
  1496. double v0 = (double)(i - M);
  1497. double num = cmBessel0(beta * sqrt(1.0 - ((v0*v0)/Msqrd)));
  1498. dbp[i] = (VECT_OP_TYPE)(num/den);
  1499. }
  1500. if( zeroFl )
  1501. dbp[cnt] = 0.0; // zero the extra element in the output array
  1502. return dbp;
  1503. }
  1504. VECT_OP_TYPE* VECT_OP_FUNC(Gaussian)( VECT_OP_TYPE* dbp, unsigned dn, double mean, double variance )
  1505. {
  1506. int M = dn-1;
  1507. double sqrt2pi = sqrt(2.0*M_PI);
  1508. unsigned i;
  1509. for(i=0; i<dn; i++)
  1510. {
  1511. double arg = ((((double)i/M) - 0.5) * M);
  1512. arg = pow( (double)(arg-mean), 2.0);
  1513. arg = exp( -arg / (2.0*variance));
  1514. dbp[i] = (VECT_OP_TYPE)(arg / (sqrt(variance) * sqrt2pi));
  1515. }
  1516. return dbp;
  1517. }
  1518. VECT_OP_TYPE* VECT_OP_FUNC(Hamming)( VECT_OP_TYPE* dbp, unsigned dn )
  1519. {
  1520. const VECT_OP_TYPE* dep = dbp + dn;
  1521. VECT_OP_TYPE* dp = dbp;
  1522. double fact = 2.0 * M_PI / (dn-1);
  1523. unsigned i;
  1524. for(i=0; dbp < dep; ++i )
  1525. *dbp++ = (VECT_OP_TYPE)(.54 - (.46 * cos(fact*i)));
  1526. return dp;
  1527. }
  1528. VECT_OP_TYPE* VECT_OP_FUNC(Hann)( VECT_OP_TYPE* dbp, unsigned dn )
  1529. {
  1530. const VECT_OP_TYPE* dep = dbp + dn;
  1531. VECT_OP_TYPE* dp = dbp;
  1532. double fact = 2.0 * M_PI / (dn-1);
  1533. unsigned i;
  1534. for(i=0; dbp < dep; ++i )
  1535. *dbp++ = (VECT_OP_TYPE)(.5 - (.5 * cos(fact*i)));
  1536. return dp;
  1537. }
  1538. VECT_OP_TYPE* VECT_OP_FUNC(HannMatlab)( VECT_OP_TYPE* dbp, unsigned dn )
  1539. {
  1540. const VECT_OP_TYPE* dep = dbp + dn;
  1541. VECT_OP_TYPE* dp = dbp;
  1542. double fact = 2.0 * M_PI / (dn+1);
  1543. unsigned i;
  1544. for(i=0; dbp < dep; ++i )
  1545. *dbp++ = (VECT_OP_TYPE)(0.5*(1.0-cos(fact*(i+1))));
  1546. return dp;
  1547. }
  1548. VECT_OP_TYPE* VECT_OP_FUNC(Triangle)( VECT_OP_TYPE* dbp, unsigned dn )
  1549. {
  1550. unsigned n = dn/2;
  1551. VECT_OP_TYPE incr = 1.0/n;
  1552. VECT_OP_FUNC(Seq)(dbp,n,0,incr);
  1553. VECT_OP_FUNC(Seq)(dbp+n,dn-n,1,-incr);
  1554. return dbp;
  1555. }
  1556. VECT_OP_TYPE* VECT_OP_FUNC(GaussWin)( VECT_OP_TYPE* dbp, unsigned dn, double arg )
  1557. {
  1558. const VECT_OP_TYPE* dep = dbp + dn;
  1559. VECT_OP_TYPE* rp = dbp;
  1560. int N = (dep - dbp) - 1;
  1561. int n = -N/2;
  1562. if( N == 0 )
  1563. *dbp = 1.0;
  1564. else
  1565. {
  1566. while( dbp < dep )
  1567. {
  1568. double a = (arg * n++) / (N/2);
  1569. *dbp++ = (VECT_OP_TYPE)exp( -(a*a)/2 );
  1570. }
  1571. }
  1572. return rp;
  1573. }
  1574. VECT_OP_TYPE* VECT_OP_FUNC(Filter)(
  1575. VECT_OP_TYPE* y,
  1576. unsigned yn,
  1577. const VECT_OP_TYPE* x,
  1578. unsigned xn,
  1579. cmReal_t b0,
  1580. const cmReal_t* b,
  1581. const cmReal_t* a,
  1582. cmReal_t* d,
  1583. unsigned dn )
  1584. {
  1585. int i,j;
  1586. VECT_OP_TYPE y0 = 0;
  1587. unsigned n = cmMin( yn, xn );
  1588. // This is a direct form II algorithm based on the MATLAB implmentation
  1589. // http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
  1590. for(i=0; i<n; ++i)
  1591. {
  1592. y[i] = (x[i] * b0) + d[0];
  1593. y0 = y[i];
  1594. for(j=0; j<dn; ++j)
  1595. d[j] = (b[j] * x[i]) - (a[j] * y0) + d[j+1];
  1596. }
  1597. // if fewer input samples than output samples - zero the end of the output buffer
  1598. if( yn > xn )
  1599. VECT_OP_FUNC(Fill)(y+i,yn-i,0);
  1600. return cmOkRC;
  1601. }
  1602. VECT_OP_TYPE* VECT_OP_FUNC(FilterFilter)(struct cmFilter_str* f, cmRC_t (*func)( struct cmFilter_str* f, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn ), const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn )
  1603. {
  1604. int i,j;
  1605. int nfilt = cmMax(bn,an);
  1606. int nfact = 3*(nfilt-1);
  1607. const cmReal_t* a = aa;
  1608. const cmReal_t* b = bb;
  1609. cmReal_t* m = NULL;
  1610. cmReal_t* p;
  1611. unsigned zn = (nfilt-1)*(nfilt-1);
  1612. unsigned mn = 2*zn; // space for mtx z0 and z1
  1613. mn += nfilt; // space for zero padded coeff vector
  1614. mn += 2*nfact; // space for begin/end sequences
  1615. if( nfact >= xn )
  1616. {
  1617. return cmOkRC;
  1618. }
  1619. m = cmMemAllocZ( cmReal_t, mn );
  1620. p = m;
  1621. cmReal_t* z0 = p;
  1622. p += zn;
  1623. cmReal_t* z1 = p;
  1624. p += zn;
  1625. cmReal_t* s0 = p;
  1626. p += nfact;
  1627. cmReal_t* s1 = p;
  1628. p += nfact;
  1629. // zero pad the shorter coeff vect
  1630. if( bn < nfilt )
  1631. {
  1632. cmVOR_Copy(p,bn,bb);
  1633. b = p;
  1634. p += nfilt;
  1635. }
  1636. else
  1637. if( an < nfilt )
  1638. {
  1639. cmVOR_Copy(p,an,aa);
  1640. a = p;
  1641. p += nfilt;
  1642. }
  1643. // z0=eye(nfilt-1)
  1644. cmVOR_Identity(z0,nfilt-1,nfilt-1);
  1645. // z1=[eye(nfilt-1,nfilt-2); zeros(1,nfilt-1)];
  1646. cmVOR_Identity(z1,nfilt-1,nfilt-2);
  1647. // z0(:,1) -= a(:)
  1648. for(i=0; i<nfilt-1; ++i)
  1649. z0[i] -= -a[i+1];
  1650. // z0(:,2:end) -= z1;
  1651. for(i=1; i<nfilt-1; ++i)
  1652. for(j=0; j<nfilt-1; ++j)
  1653. z0[ (i*(nfilt-1)) + j ] -= z1[ ((i-1)*(nfilt-1)) + j ];
  1654. // z1 = b - (a * b[0])
  1655. for(i=1; i<nfilt; ++i)
  1656. z1[i-1] = b[i] - (a[i] * b[0]);
  1657. // z1 = z0\z1
  1658. cmVOR_SolveLS(z0,nfilt-1,z1,1);
  1659. // if yn<xn then truncate x.
  1660. xn = cmMin(xn,yn);
  1661. yn = xn;
  1662. // fill in the beginning sequence
  1663. for(i=0; i<nfact; ++i)
  1664. s0[i] = 2*x[0] - x[ nfact-i ];
  1665. // fill in the ending sequence
  1666. for(i=0; i<nfact; ++i)
  1667. s1[i] = 2*x[xn-1] - x[ xn-2-i ];
  1668. cmVOR_MultVVS( z0, nfact, z1, s0[0]);
  1669. unsigned pn = cmMin(1024,xn);
  1670. //acFilter* f = cmFilterAlloc(c,NULL,b,bn,a,an,pn,z0);
  1671. cmFilterInit(f,b,bn,a,an,pn,z0);
  1672. const VECT_OP_TYPE* xx = x;
  1673. for(j=0; j<2; ++j)
  1674. {
  1675. unsigned n = pn;
  1676. // filter begining sequence
  1677. cmFilterExecR(f,s0,nfact,s0,nfact);
  1678. // filter middle sequence
  1679. for(i=0; i<xn; i+=n)
  1680. {
  1681. n = cmMin(pn,xn-i);
  1682. func(f,xx+i,n,y+i,n);
  1683. }
  1684. // filter ending sequence
  1685. cmFilterExecR(f,s1,nfact,s1,nfact);
  1686. // flip all the sequences
  1687. cmVOR_Flip(s0,nfact);
  1688. cmVOR_Flip(s1,nfact);
  1689. VECT_OP_FUNC(Flip)(y,yn);
  1690. if( j==0)
  1691. {
  1692. // swap the begin and end sequences
  1693. cmReal_t* t = s0;
  1694. s0 = s1;
  1695. s1 = t;
  1696. xx = y;
  1697. cmVOR_MultVVS( z0, nfact, z1, s0[0]);
  1698. cmFilterInit(f,b,bn,a,an,pn,z0);
  1699. }
  1700. }
  1701. //cmFilterFree(&f);
  1702. cmMemPtrFree(&m);
  1703. return y;
  1704. }
  1705. VECT_OP_TYPE* VECT_OP_FUNC(LP_Sinc)(VECT_OP_TYPE* dp, unsigned dn, double srate, double fcHz, unsigned flags )
  1706. {
  1707. VECT_OP_TYPE* rp = dp;
  1708. int dM = dn % 2; // dM is used to handle odd length windows
  1709. int M = (dn - dM)/2;
  1710. int Mi = -M;
  1711. double signFact = cmIsFlag(flags, kHighPass_LPSincFl) ? -0.5 : 0.5;
  1712. double phsFact = 2.0 * M_PI * fcHz / srate;
  1713. double sum = 0;
  1714. M += dM;
  1715. //printf("M=%i Mi=%i sign:%f phs:%f\n",M,Mi,signFact,phsFact);
  1716. for(; Mi<M; ++Mi,++dp)
  1717. {
  1718. double phs = phsFact * Mi;
  1719. *dp = Mi == 0 ? 0.5 : signFact * sin(phs)/phs;
  1720. sum += *dp;
  1721. }
  1722. if( cmIsFlag(flags,kNormalize_LPSincFl) )
  1723. VECT_OP_FUNC(DivVS)(rp,dn,sum);
  1724. return rp;
  1725. }
  1726. VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt )
  1727. {
  1728. double sum = 0;
  1729. const VECT_OP_TYPE* ep = mag0V + binCnt;
  1730. unsigned i = 0;
  1731. for(; mag0V < ep; ++i )
  1732. {
  1733. // calc phase deviation from expected
  1734. double dev_rads = *phs0V++ - (2 * *phs1V++) + *phs2V++;
  1735. // map deviation into range: -pi to pi
  1736. //double dev_rads1 = mod(dev_rads0 + M_PI, -2*M_PI ) + M_PI;
  1737. while( dev_rads > M_PI)
  1738. dev_rads -= 2*M_PI;
  1739. while( dev_rads < -M_PI)
  1740. dev_rads += 2*M_PI;
  1741. // convert into rect coord's
  1742. double m1r = *mag1V++;
  1743. double m0r = *mag0V * cos(dev_rads);
  1744. double m0i = *mag0V++ * sin(dev_rads);
  1745. // calc the combined amplitude and phase deviation
  1746. // sum += hypot( m1 - (m0 * e^(-1*dev_rads)));
  1747. sum += hypot( m1r-m0r, -m0i );
  1748. }
  1749. return (VECT_OP_TYPE)sum;
  1750. }
  1751. VECT_OP_TYPE* VECT_OP_FUNC(MelMask)( VECT_OP_TYPE* maskMtx, unsigned filterCnt, unsigned binCnt, double srate, unsigned flags )
  1752. {
  1753. unsigned fi,bi;
  1754. double mxh = srate/2.0; // nyquist
  1755. double dh = mxh/(binCnt-1) ; // binHz
  1756. double mxm = 1127.0 * log( 1.0 + mxh/700.0); // max mel value in Hz
  1757. double dm = mxm / (filterCnt+1); // avg mel band hz
  1758. double sum = 0;
  1759. for(fi=0; fi<filterCnt; ++fi)
  1760. {
  1761. double m = (fi+1) * dm;
  1762. // calc min/center/max frequencies for this band
  1763. double minHz = 700.0 * (exp((m-dm)/1127.01048)-1.0);
  1764. double ctrHz = 700.0 * (exp( m /1127.01048)-1.0);
  1765. double maxHz = 700.0 * (exp((m+dm)/1127.01048)-1.0);
  1766. // shift the band min/ctr/max to the nearest bin ctr frequency
  1767. if( cmIsFlag(flags,kShiftMelFl) )
  1768. {
  1769. unsigned i;
  1770. i = (unsigned)floor(minHz/dh);
  1771. minHz = minHz - (dh*i) < dh*(i+1) - minHz ? dh*i : dh*(i+1);
  1772. i = (unsigned)floor(ctrHz/dh);
  1773. ctrHz = ctrHz - (dh*i) < dh*(i+1) - ctrHz ? dh*i : dh*(i+1);
  1774. i = (unsigned)floor(maxHz/dh);
  1775. maxHz = maxHz - (dh*i) < dh*(i+1) - maxHz ? dh*i : dh*(i+1);
  1776. }
  1777. // calc the height of the triangle - such that all bands have equal area
  1778. double a = 2.0/(maxHz - minHz);
  1779. for(bi=0; bi<binCnt; ++bi)
  1780. {
  1781. double h = bi*dh;
  1782. unsigned mi = bi*filterCnt + fi;
  1783. if( h < minHz || h > maxHz )
  1784. maskMtx[mi] = 0;
  1785. else
  1786. {
  1787. if( h <= ctrHz )
  1788. maskMtx[mi] = a * (h - minHz)/(ctrHz-minHz);
  1789. else
  1790. maskMtx[mi] = a * (maxHz - h)/(maxHz-ctrHz);
  1791. sum += maskMtx[mi];
  1792. }
  1793. }
  1794. }
  1795. if( cmIsFlag(flags,kNormalizeMelFl) )
  1796. VECT_OP_FUNC(DivVS)( maskMtx, (filterCnt*binCnt), sum );
  1797. return maskMtx;
  1798. }
  1799. unsigned VECT_OP_FUNC(BarkMap)(unsigned* binIdxV, unsigned* cntV, unsigned bandCnt, unsigned binCnt, double srate )
  1800. {
  1801. if( bandCnt == 0 )
  1802. return 0;
  1803. //zwicker & fastl: psychoacoustics 1999, page 159
  1804. double bandUprHz[] = { 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500 };
  1805. unsigned hn = sizeof(bandUprHz)/sizeof(double);
  1806. unsigned i, bi = 0;
  1807. bandCnt = cmMin(hn,bandCnt);
  1808. binIdxV[0] = 0;
  1809. cntV[0] = 1;
  1810. for(i=1; bi < bandCnt && i<binCnt; ++i)
  1811. {
  1812. double hz = srate * i / (2 * (binCnt-1));
  1813. if( hz <= bandUprHz[bi] )
  1814. cntV[bi]++;
  1815. else
  1816. {
  1817. //printf("%i %i %i %f\n",bi,binIdxV[bi],cntV[bi],bandUprHz[bi]);
  1818. ++bi;
  1819. if( bi < bandCnt )
  1820. {
  1821. binIdxV[bi] = i;
  1822. cntV[bi] = 1;
  1823. }
  1824. }
  1825. }
  1826. return bi;
  1827. }
  1828. VECT_OP_TYPE* VECT_OP_FUNC(TriangleMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, const VECT_OP_TYPE* ctrHzV, VECT_OP_TYPE binHz, VECT_OP_TYPE stSpread, const VECT_OP_TYPE* lfV, const VECT_OP_TYPE* hfV )
  1829. {
  1830. unsigned i,j;
  1831. VECT_OP_TYPE v0[ bandCnt ];
  1832. VECT_OP_TYPE v1[ bandCnt ];
  1833. // if no lower/upper band limits were give use a fixed semitone band width
  1834. if( lfV==NULL || hfV==NULL)
  1835. {
  1836. for(i=0; i<bandCnt; ++i)
  1837. {
  1838. v0[i] = ctrHzV[i] * pow(2.0,-stSpread/12.0);
  1839. v1[i] = ctrHzV[i] * pow(2.0, stSpread/12.0);
  1840. }
  1841. lfV = v0;
  1842. hfV = v1;
  1843. }
  1844. VECT_OP_FUNC(Zero)(maskMtx,bandCnt*binCnt);
  1845. // for each band
  1846. for(i=0; i<bandCnt; ++i)
  1847. {
  1848. // calc bin index of first possible bin in this band
  1849. // j = (unsigned)floor(lfV[i] / binHz);
  1850. double binHz_j = 0;
  1851. // for each bin whose ctr frq is <= the band upper limit
  1852. for(j=0; j<binCnt; ++j)
  1853. {
  1854. double v;
  1855. // if bin[j] is inside the lower leg of the triangle
  1856. if( lfV[i] <= binHz_j && binHz_j <= ctrHzV[i] )
  1857. v = (binHz_j - lfV[i]) / cmMax(VECT_OP_MIN, ctrHzV[i] - lfV[i] );
  1858. else
  1859. // if bin[j] is inside the upper leg of the triangle
  1860. if( ctrHzV[i] < binHz_j && binHz_j <= hfV[i] )
  1861. v = (hfV[i] - binHz_j) / cmMax(VECT_OP_MIN, hfV[i] - ctrHzV[i] );
  1862. else
  1863. v = 0;
  1864. maskMtx[ (j*bandCnt)+i ] = v;
  1865. binHz_j = binHz * (j+1);
  1866. }
  1867. }
  1868. return maskMtx;
  1869. }
  1870. VECT_OP_TYPE* VECT_OP_FUNC(BarkMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, double binHz )
  1871. {
  1872. // -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (23+1)
  1873. VECT_OP_TYPE b[]= {0, 50,150,250,350,450,570,700,840,1000,1170,1370,1600,1850,2150,2500,2900,3400,4000,4800,5800,7000,8500,10500,13500, 15500 };
  1874. bandCnt = cmMin(bandCnt,kDefaultBarkBandCnt);
  1875. VECT_OP_FUNC(TriangleMask)(maskMtx, bandCnt, binCnt, b+1, binHz, 0, b+0, b+2 );
  1876. return maskMtx;
  1877. }
  1878. VECT_OP_TYPE* VECT_OP_FUNC(TerhardtThresholdMask)(VECT_OP_TYPE* maskV, unsigned binCnt, double srate, unsigned flags )
  1879. {
  1880. unsigned i;
  1881. double c0 = cmIsFlag(flags,kModifiedTtmFl) ? 0.6 : 1.0;
  1882. double c1 = cmIsFlag(flags,kModifiedTtmFl) ? 0.5 : 6.5;
  1883. maskV[0]=0;
  1884. for(i=0; i<binCnt; ++i)
  1885. {
  1886. double hz = srate * i / (2 * (binCnt-1));
  1887. maskV[i] = pow(pow(10,(c0 * -3.64* pow(hz/1000,-0.8) + c1 * exp(-0.6 * pow(hz/1000 - 3.3,2)) - 0.001* pow(hz/1000,4))/20),2);
  1888. }
  1889. return maskV;
  1890. }
  1891. VECT_OP_TYPE* VECT_OP_FUNC(ShroederSpreadingFunc)(VECT_OP_TYPE* m, unsigned bandCnt, double srate)
  1892. {
  1893. int fi,bi;
  1894. for(fi=0; fi<bandCnt; ++fi)
  1895. for(bi=0; bi<bandCnt; ++bi )
  1896. m[ fi + (bi*bandCnt) ] = pow(10,(15.81 + 7.5 * ((fi-bi)+0.474)-17.5*pow(1+pow((fi-bi)+0.474,2),0.5))/10);
  1897. return m;
  1898. }
  1899. VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt )
  1900. {
  1901. VECT_OP_TYPE* dbp = dp;
  1902. double c0 = 1.0/sqrt(filtCnt/2); // row 1-coeffCnt factor
  1903. double c1 = c0 * sqrt(2)/2; // row 0 factor
  1904. unsigned i,j;
  1905. // for each column
  1906. for(i=0; i<filtCnt; ++i)
  1907. // for each row
  1908. for(j=0; j<coeffCnt; ++j)
  1909. *dp++ = (j==0 ? c1 : c0) * cos( (0.5 + i) * M_PI * j / filtCnt);
  1910. return dbp;
  1911. }
  1912. unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold )
  1913. {
  1914. unsigned pkCnt = 0;
  1915. const unsigned* dep = dbp + dn;
  1916. const VECT_OP_TYPE* sep = sbp + sn;
  1917. const VECT_OP_TYPE* s2p = sbp;
  1918. const VECT_OP_TYPE* s0p = s2p++;
  1919. const VECT_OP_TYPE* s1p = s2p++;
  1920. while( dbp < dep && s2p < sep )
  1921. {
  1922. if( (*s0p < *s1p) && (*s1p > *s2p) && (*s1p >= threshold) )
  1923. {
  1924. *dbp++ = s1p - sbp;
  1925. s0p = s2p++;
  1926. s1p = s2p++;
  1927. ++pkCnt;
  1928. }
  1929. else
  1930. {
  1931. s0p = s1p;
  1932. s1p = s2p++;
  1933. }
  1934. }
  1935. return pkCnt;
  1936. }
  1937. unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v )
  1938. {
  1939. const VECT_OP_TYPE* sep = sbp + sn;
  1940. const VECT_OP_TYPE* bp = sbp;
  1941. sep--;
  1942. for(; sbp < sep; ++sbp )
  1943. if( *sbp <= v && v < *(sbp+1) )
  1944. return sbp - bp;
  1945. return cmInvalidIdx;
  1946. }
  1947. unsigned VECT_OP_FUNC(Kmeans)(
  1948. unsigned* classIdxV, // classIdxV[scn] - data point class assignments
  1949. VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
  1950. unsigned K, // count of clusters
  1951. const VECT_OP_TYPE* sM, // sM[srn,scn] source data matrix
  1952. unsigned srn, // dimensionality of each data point
  1953. unsigned scn, // count of data points
  1954. const unsigned* selIdxV, // data subset selection id vector (optional)
  1955. unsigned selKey, // data subset selection key (optional)
  1956. bool initFromCentroidFl,// true if the starting centroids are in centroidM[]
  1957. VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
  1958. void* userDistPtr
  1959. )
  1960. {
  1961. unsigned D = srn; // data dimensionality
  1962. unsigned N = scn; // count of data points to cluster
  1963. unsigned iterCnt = 0;
  1964. unsigned ki;
  1965. unsigned i = 0;
  1966. unsigned selN = N;
  1967. // if a data point selection vector was given
  1968. if( selIdxV != NULL )
  1969. {
  1970. selN = 0;
  1971. for(i=0; i<N; ++i)
  1972. {
  1973. selN += selIdxV[i]==selKey;
  1974. classIdxV[i] = K;
  1975. }
  1976. }
  1977. assert(K<=selN);
  1978. // if the numer of datapoints and the number of clusters is the same
  1979. // make the datapoints the centroids and return
  1980. if( K == selN )
  1981. {
  1982. ki = 0;
  1983. for(i=0; i<N; ++i)
  1984. if( selIdxV==NULL || selIdxV[i]==selKey )
  1985. {
  1986. VECT_OP_FUNC(Copy)(centroidM+(ki*D),D,sM+(i*D));
  1987. classIdxV[ki] = ki;
  1988. ++ki;
  1989. }
  1990. return 0;
  1991. }
  1992. // if centroidM[] has not been initialized with the starting centroid vectors.
  1993. if( initFromCentroidFl == false )
  1994. {
  1995. unsigned* kiV = cmMemAlloc( unsigned, N );
  1996. // select K unique datapoints at random as the initial centroids
  1997. cmVOU_RandomSeq(kiV,N);
  1998. for(i=0,ki=0; i<N && ki<K; ++i)
  1999. {
  2000. if( selIdxV==NULL || selIdxV[ kiV[i] ]==selKey )
  2001. {
  2002. VECT_OP_FUNC(Copy)( centroidM + (ki*D), D, sM + (kiV[i]*D) );
  2003. ++ki;
  2004. }
  2005. }
  2006. cmMemPtrFree(&kiV);
  2007. }
  2008. unsigned* nV = cmMemAllocZ( unsigned,K);
  2009. while(1)
  2010. {
  2011. unsigned changeCnt = 0;
  2012. cmVOU_Zero(nV,K);
  2013. // for each data point - assign data point to a cluster
  2014. for(i=0; i<N; ++i)
  2015. if( selIdxV==NULL || selIdxV[i] == selKey )
  2016. {
  2017. // set ki with the index of the centroid closest to sM[:,i]
  2018. VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sM + (i*srn), 1, centroidM, K, distFunc, userDistPtr );
  2019. assert(ki<K);
  2020. nV[ki]++;
  2021. changeCnt += ( ki != classIdxV[i] );
  2022. classIdxV[i] = ki;
  2023. }
  2024. // if no data points change classes then the centroids have converged
  2025. if( changeCnt == 0 )
  2026. break;
  2027. ++iterCnt;
  2028. // zero the centroid matrix
  2029. VECT_OP_FUNC(Fill)(centroidM, D*K, 0 );
  2030. // update the centroids
  2031. for(ki=0; ki<K; ++ki)
  2032. {
  2033. unsigned n = 0;
  2034. // sum the all datapoints belonging to class ki
  2035. for(i=0; i<N; ++i)
  2036. if( classIdxV[i] == ki )
  2037. {
  2038. VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sM + (i*srn) );
  2039. ++n;
  2040. }
  2041. // convert the sum to a mean to form the centroid
  2042. if( n > 0 )
  2043. VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
  2044. }
  2045. }
  2046. cmVOU_PrintL("class cnt:",NULL,1,K,nV);
  2047. cmMemPtrFree(&nV);
  2048. return iterCnt;
  2049. }
  2050. unsigned VECT_OP_FUNC(Kmeans2)(
  2051. unsigned* classIdxV, // classIdxV[scn] - data point class assignments
  2052. VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
  2053. unsigned K, // count of clusters
  2054. const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned frmIdx ),
  2055. unsigned srn, // dimensionality of each data point
  2056. unsigned scn, // count of data points
  2057. void* userSrcPtr, // callback data for srcFunc
  2058. VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
  2059. void* distUserPtr,
  2060. int maxIterCnt,
  2061. int deltaStopCnt
  2062. )
  2063. {
  2064. unsigned D = srn; // data dimensionality
  2065. unsigned N = scn; // count of data points to cluster
  2066. unsigned iterCnt = 0;
  2067. unsigned ki;
  2068. unsigned i = 0;
  2069. const VECT_OP_TYPE* sp;
  2070. assert(K<N);
  2071. deltaStopCnt = cmMax(0,deltaStopCnt);
  2072. // nV[K] - class assignment vector
  2073. unsigned* nV = cmMemAllocZ( unsigned,2*K);
  2074. // roV[K] - read-only flag centroid
  2075. // centroids flagged as read-only will not be updated by the clustering routine
  2076. unsigned* roV = nV + K;
  2077. // copy the read-only flags into roV[K]
  2078. for(i=0; i<K; ++i)
  2079. roV[i] = classIdxV[i];
  2080. while(1)
  2081. {
  2082. unsigned changeCnt = 0;
  2083. cmVOU_Zero(nV,K);
  2084. // for each data point - assign data point to a cluster
  2085. for(i=0; i<N; ++i)
  2086. if((sp = srcFunc(userSrcPtr,i)) != NULL)
  2087. {
  2088. // set ki with the index of the centroid closest to sM[:,i]
  2089. VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sp, 1, centroidM, K, distFunc, distUserPtr );
  2090. assert(ki<K);
  2091. // track the number of data points assigned to each centroid
  2092. nV[ki]++;
  2093. // track the number of data points which change classes
  2094. changeCnt += ( ki != classIdxV[i] );
  2095. // update the class that this data point belongs to
  2096. classIdxV[i] = ki;
  2097. }
  2098. // if the count of data points which changed classes is less than deltaStopCnt
  2099. // then the centroids have converged
  2100. if( changeCnt <= deltaStopCnt )
  2101. break;
  2102. if( maxIterCnt!=-1 && iterCnt>=maxIterCnt )
  2103. break;
  2104. // track the number of interations required to converge
  2105. ++iterCnt;
  2106. fprintf(stderr,"%i:%i (", iterCnt,changeCnt );
  2107. for(i=0; i<K; ++i)
  2108. fprintf(stderr,"%i ",nV[i]);
  2109. fprintf(stderr,") ");
  2110. fflush(stderr);
  2111. // update the centroids
  2112. for(ki=0; ki<K; ++ki)
  2113. if( roV[ki]==0 )
  2114. {
  2115. unsigned n = 0;
  2116. VECT_OP_FUNC(Zero)(centroidM + (ki*D), D );
  2117. // sum the all datapoints belonging to class ki
  2118. for(i=0; i<N; ++i)
  2119. if( classIdxV[i] == ki && ((sp=srcFunc(userSrcPtr,i))!=NULL))
  2120. {
  2121. VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sp );
  2122. ++n;
  2123. }
  2124. // convert the sum to a mean to form the centroid
  2125. if( n > 0 )
  2126. VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
  2127. }
  2128. }
  2129. cmMemPtrFree(&nV);
  2130. return iterCnt;
  2131. }
  2132. VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev )
  2133. {
  2134. VECT_OP_TYPE* rp = dbp;
  2135. const VECT_OP_TYPE* dep = dbp + dn;
  2136. VECT_OP_TYPE var = stdDev * stdDev;
  2137. VECT_OP_TYPE fact0 = 1.0/sqrt(2*M_PI*var);
  2138. VECT_OP_TYPE fact1 = 2.0 * var;
  2139. for(; dbp < dep; ++sbp )
  2140. *dbp++ = fact0 * exp( -((*sbp-mean)*(*sbp-mean))/ fact1 );
  2141. return rp;
  2142. }
  2143. /// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
  2144. /// at the data points held in the columns of xM[D,N]. Return the evaluation
  2145. /// results in the vector yV[N].
  2146. bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl )
  2147. {
  2148. VECT_OP_TYPE det0;
  2149. // calc the determinant of the covariance matrix
  2150. if( diagFl )
  2151. // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetDiagM)(covarM,D);
  2152. det0 = VECT_OP_FUNC(DetDiagM)(covarM,D);
  2153. else
  2154. // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetM)(covarM,D);
  2155. det0 = VECT_OP_FUNC(DetM)(covarM,D);
  2156. assert(det0 != 0 );
  2157. if( det0 == 0 )
  2158. return false;
  2159. // calc the inverse of the covariance matrix
  2160. VECT_OP_TYPE icM[D*D];
  2161. VECT_OP_FUNC(Copy)(icM,D*D,covarM);
  2162. VECT_OP_TYPE* r;
  2163. if( diagFl )
  2164. r = VECT_OP_FUNC(InvDiagM)(icM,D);
  2165. else
  2166. r = VECT_OP_FUNC(InvM)(icM,D);
  2167. if( r == NULL )
  2168. return false;
  2169. VECT_OP_FUNC(MultVarGaussPDF2)( yV, xM, meanV, icM, det0, D, N, diagFl );
  2170. return true;
  2171. }
  2172. VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* icM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl )
  2173. {
  2174. unsigned i;
  2175. double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
  2176. for(i=0; i<N; ++i)
  2177. {
  2178. VECT_OP_TYPE dx[D];
  2179. VECT_OP_TYPE t[D];
  2180. // dx[] difference between mean and ith data point
  2181. VECT_OP_FUNC(SubVVV)(dx,D, xM + (i*D), meanV);
  2182. // t[] = dx[] * inv(covarM);
  2183. if( diagFl )
  2184. VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
  2185. else
  2186. VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
  2187. // dist = sum(dx[] * t[])
  2188. cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
  2189. yV[i] = exp( fact - (0.5*dist) );
  2190. }
  2191. return yV;
  2192. }
  2193. VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
  2194. VECT_OP_TYPE* yV,
  2195. const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
  2196. void* funcDataPtr,
  2197. const VECT_OP_TYPE* meanV,
  2198. const VECT_OP_TYPE* icM,
  2199. VECT_OP_TYPE logDet,
  2200. unsigned D,
  2201. unsigned N,
  2202. bool diagFl )
  2203. {
  2204. unsigned i;
  2205. double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
  2206. for(i=0; i<N; ++i)
  2207. {
  2208. VECT_OP_TYPE dx[D];
  2209. VECT_OP_TYPE t[D];
  2210. const VECT_OP_TYPE* xV = srcFunc( funcDataPtr, i );
  2211. if( xV == NULL )
  2212. yV[i] = 0;
  2213. else
  2214. {
  2215. // dx[] difference between mean and ith data point
  2216. VECT_OP_FUNC(SubVVV)(dx, D, xV, meanV);
  2217. // t[] = dx[] * inv(covarM);
  2218. if( diagFl )
  2219. VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
  2220. else
  2221. VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
  2222. // dist = sum(dx[] * t[])
  2223. cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
  2224. yV[i] = exp( fact - (0.5*dist) );
  2225. }
  2226. }
  2227. return yV;
  2228. }
  2229. /// stateV[timeN]
  2230. /// a[stateN,stateN],
  2231. /// b[stateN,timeN]
  2232. /// phi[stateN].
  2233. void VECT_OP_FUNC(DiscreteViterbi)(unsigned* stateV, unsigned tN, unsigned sN, const VECT_OP_TYPE* phi, const VECT_OP_TYPE* a, const VECT_OP_TYPE* b )
  2234. {
  2235. unsigned* psiM = cmMemAlloc( unsigned, sN*tN ); // psi[sN,tN]
  2236. VECT_OP_TYPE* dV = cmMemAlloc( VECT_OP_TYPE, 2*sN );
  2237. VECT_OP_TYPE* d0V = dV;
  2238. VECT_OP_TYPE* d1V = dV + sN;
  2239. int t,i,j;
  2240. // calc the prob of starting in each state given the observations
  2241. VECT_OP_FUNC(MultVVV)( d0V, sN, phi, b );
  2242. VECT_OP_FUNC(NormalizeProbability)( d0V, sN ); // scale to prevent underflow
  2243. // for each time step
  2244. for(t=1; t<tN; ++t)
  2245. {
  2246. // for each possible next state
  2247. for(j=0; j<sN; ++j)
  2248. {
  2249. VECT_OP_TYPE mv = 0;
  2250. unsigned mi = 0;
  2251. // The following loop could be replaced with these vector op's:
  2252. // VECT_OP_TYPE tV[ sN ];
  2253. // VECT_OP_TYPE(MultVVV)(tV,sN,d0V,a + (j*sN));
  2254. // mi = VECT_OP_TYPE(MaxIndex)(tV,sN);
  2255. // mv = tV[mi];
  2256. // for each possible prev state
  2257. for(i=0; i<sN; ++i)
  2258. {
  2259. // calc prob of having ended in state i and transitioning to state j
  2260. VECT_OP_TYPE v = d0V[i] * a[ i + (j*sN) ];
  2261. // track the most likely transition ending in state j
  2262. if( v > mv )
  2263. {
  2264. mv = v;
  2265. mi = i;
  2266. }
  2267. }
  2268. // scale the prob of the most likely state by the prob of the obs given that state
  2269. d1V[j] = mv * b[ (t*sN) + j ];
  2270. // store the most likely previous state given that the current state is j
  2271. // (this is the key to understanding the backtracking step below)
  2272. psiM[ (t*sN) + j ] = mi;
  2273. }
  2274. VECT_OP_FUNC(NormalizeProbability)( d1V, sN ); // scale to prevent underflow
  2275. // swap d0V and d1V
  2276. VECT_OP_TYPE* tmp = d0V;
  2277. d0V = d1V;
  2278. d1V = tmp;
  2279. }
  2280. // store the most likely ending state
  2281. stateV[tN-1] = VECT_OP_FUNC(MaxIndex)( d0V, sN, 1 );
  2282. // given the most likely next step select the most likely previous step
  2283. for(t=tN-2; t>=0; --t)
  2284. stateV[t] = psiM[ ((t+1)*sN) + stateV[t+1] ];
  2285. cmMemPtrFree( &psiM );
  2286. cmMemPtrFree( &dV );
  2287. }
  2288. bool VECT_OP_FUNC(ClipLine2)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax, VECT_OP_TYPE* t0, VECT_OP_TYPE* t1 )
  2289. {
  2290. VECT_OP_TYPE dx = x1 - x0;
  2291. VECT_OP_TYPE dy = y1 - y0;
  2292. VECT_OP_TYPE p=0,q=0,r=0;
  2293. *t0 = 0.0;
  2294. *t1 = 1.0;
  2295. unsigned i;
  2296. for(i=0; i<4; ++i)
  2297. {
  2298. switch(i)
  2299. {
  2300. case 0: p=-dx; q=-(xMin - x0); break; // left
  2301. case 1: p= dx; q= (xMax - x0); break; // right
  2302. case 2: p=-dy; q=-(yMin - y0); break; // bottom
  2303. case 3: p= dy; q= (yMax - y0); break; // top
  2304. }
  2305. // if parallel to edge i
  2306. if( p == 0 )
  2307. {
  2308. // if entirely outside of window
  2309. if( q < 0 )
  2310. return false;
  2311. continue;
  2312. }
  2313. r = p/q;
  2314. // if travelling right/up
  2315. if( p < 0 )
  2316. {
  2317. // travelling away from x1,y1
  2318. if( r > *t1 )
  2319. return false;
  2320. // update distance on line to point of intersection
  2321. if( r > *t0 )
  2322. *t0 = r;
  2323. }
  2324. else // if travelling left/down
  2325. {
  2326. // travelling away from x1,y1
  2327. if( r < *t0 )
  2328. return false;
  2329. // update distance on line to point of intersection
  2330. if( r < *t1 )
  2331. *t1 = r;
  2332. }
  2333. }
  2334. return true;
  2335. }
  2336. /// (Uses the Laing-Barsky clipping algorithm)
  2337. /// From: http://www.skytopia.com/project/articles/compsci/clipping.html
  2338. bool VECT_OP_FUNC(ClipLine)( VECT_OP_TYPE* x0, VECT_OP_TYPE* y0, VECT_OP_TYPE* x1, VECT_OP_TYPE* y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
  2339. {
  2340. VECT_OP_TYPE t0;
  2341. VECT_OP_TYPE t1;
  2342. if( VECT_OP_FUNC(ClipLine2)(*x0,*y0,*x1,*y1,xMin,yMin,xMax,yMax,&t0,&t1) )
  2343. {
  2344. VECT_OP_TYPE dx = *x1 - *x0;
  2345. VECT_OP_TYPE dy = *y1 - *y0;
  2346. *x0 = *x0 + t0*dx;
  2347. *x1 = *x0 + t1*dx;
  2348. *y0 = *y0 + t0*dy;
  2349. *y1 = *y0 + t1*dy;
  2350. return true;
  2351. }
  2352. return false;
  2353. }
  2354. bool VECT_OP_FUNC(IsLineInRect)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
  2355. {
  2356. VECT_OP_TYPE t0;
  2357. VECT_OP_TYPE t1;
  2358. return VECT_OP_FUNC(ClipLine2)(x0,y0,x1,y1,xMin,yMin,xMax,yMax,&t0,&t1);
  2359. }
  2360. VECT_OP_TYPE VECT_OP_FUNC(PtToLineDistance)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE px, VECT_OP_TYPE py)
  2361. {
  2362. // from:http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
  2363. double normalLength = sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
  2364. if( normalLength <= 0 )
  2365. return 0;
  2366. return (VECT_OP_TYPE)fabs((px - x0) * (y1 - y0) - (py - y0) * (x1 - x0)) / normalLength;
  2367. }
  2368. void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 )
  2369. {
  2370. VECT_OP_TYPE sx = 0;
  2371. VECT_OP_TYPE sy = 0;
  2372. VECT_OP_TYPE sx_2 = 0;
  2373. VECT_OP_TYPE sxy = 0;
  2374. unsigned i;
  2375. if( x == NULL )
  2376. {
  2377. for(i=0; i<n; ++i)
  2378. {
  2379. VECT_OP_TYPE xx = i;
  2380. sx += xx;
  2381. sx_2 += xx * xx;
  2382. sxy += xx * y[i];
  2383. sy += y[i];
  2384. }
  2385. }
  2386. else
  2387. {
  2388. for(i=0; i<n; ++i)
  2389. {
  2390. sx += x[i];
  2391. sx_2 += x[i] * x[i];
  2392. sxy += x[i] * y[i];
  2393. sy += y[i];
  2394. }
  2395. }
  2396. *b1 = (sxy * n - sx * sy) / (sx_2 * n - sx*sx);
  2397. *b0 = (sy - (*b1) * sx) / n;
  2398. }
  2399. #endif