1249 linhas
29 KiB
C
1249 linhas
29 KiB
C
#ifdef cmVectOpsRICode_h
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Col)( VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
|
|
{
|
|
assert(ci<cn);
|
|
return m + (ci*rn);
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Row)( VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
|
|
{
|
|
assert(ri<rn);
|
|
return m + ri;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(ElePtr)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
|
|
{
|
|
assert(ri<rn && ci<cn);
|
|
return m + (ci*rn) + ri;
|
|
}
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Ele)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
|
|
{ return *VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn); }
|
|
|
|
void VECT_OP_FUNC(Set)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn, VECT_OP_TYPE v )
|
|
{ *(VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn)) = v; }
|
|
|
|
const VECT_OP_TYPE* VECT_OP_FUNC(CCol)( const VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
|
|
{
|
|
assert(ci<cn);
|
|
return m + (ci*rn);
|
|
}
|
|
|
|
const VECT_OP_TYPE* VECT_OP_FUNC(CRow)( const VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
|
|
{
|
|
assert(ri<rn);
|
|
return m + ri;
|
|
}
|
|
|
|
const VECT_OP_TYPE* VECT_OP_FUNC(CElePtr)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
|
|
{
|
|
assert(ri<rn && ci<cn);
|
|
return m + (ci*rn) + ri;
|
|
}
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(CEle)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
|
|
{ return *VECT_OP_FUNC(CElePtr)(m,ri,ci,rn,cn); }
|
|
|
|
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Fill)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE value )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
|
|
if( value == 0 )
|
|
memset(dbp,0,(dep-dbp)*sizeof(VECT_OP_TYPE));
|
|
else
|
|
{
|
|
while( dbp < dep )
|
|
*dbp++ = value;
|
|
}
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Zero)( VECT_OP_TYPE* dbp, unsigned dn )
|
|
{
|
|
memset( dbp, 0, sizeof(VECT_OP_TYPE)*dn);
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Move)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
|
|
{
|
|
memmove(bp,sp,sizeof(VECT_OP_TYPE)*bn);
|
|
return bp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Copy)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
|
|
{
|
|
memcpy(bp,sp,sizeof(VECT_OP_TYPE)*bn);
|
|
return bp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyN)( VECT_OP_TYPE* bp, unsigned bn, unsigned d_stride, const VECT_OP_TYPE* sp, unsigned s_stride )
|
|
{
|
|
VECT_OP_TYPE* dbp = bp;
|
|
const VECT_OP_TYPE* ep = bp + (bn*d_stride);
|
|
for(; bp < ep; bp += d_stride, sp += s_stride )
|
|
*bp = *sp;
|
|
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyU)( VECT_OP_TYPE* bp, unsigned bn, const unsigned* sp )
|
|
{
|
|
VECT_OP_TYPE* dbp = bp;
|
|
const VECT_OP_TYPE* ep = bp + bn;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ = (VECT_OP_TYPE)*sp++;
|
|
return dbp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyI)( VECT_OP_TYPE* dbp, unsigned dn, const int* sp )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dp < dep )
|
|
*dp++ = (VECT_OP_TYPE)*sp++;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyF)( VECT_OP_TYPE* dbp, unsigned dn, const float* sp )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dp < dep )
|
|
*dp++ = (VECT_OP_TYPE)*sp++;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyD)( VECT_OP_TYPE* dbp, unsigned dn, const double* sp )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dp < dep )
|
|
*dp++ = (VECT_OP_TYPE)*sp++;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyS)( VECT_OP_TYPE* dbp, unsigned dn, const cmSample_t* sp )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dp < dep )
|
|
*dp++ = (VECT_OP_TYPE)*sp++;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyR)( VECT_OP_TYPE* dbp, unsigned dn, const cmReal_t* sp )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dp < dep )
|
|
*dp++ = (VECT_OP_TYPE)*sp++;
|
|
return dbp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(CopyStride)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, unsigned srcStride )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
for(; dp < dep; sp += srcStride )
|
|
*dp++ = *sp;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Shrink)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
|
|
{
|
|
assert( s <= t && t <= (s+sn) );
|
|
assert( s <= (t+tn) && (t+tn) <= (s+sn));
|
|
//VECT_OP_FUNC(Move)(s,sn - ((t - s) + tn),t+tn);
|
|
VECT_OP_FUNC(Move)((VECT_OP_TYPE*)t,(sn - ((t+tn)-s)) + 1,t+tn);
|
|
return s;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Expand)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
|
|
{
|
|
assert( s <= t && t <= s+sn );
|
|
unsigned i = t - s;
|
|
s = cmMemResizeP(VECT_OP_TYPE,s,sn+tn);
|
|
t = s + i;
|
|
assert( t + tn + sn - i == s + sn + tn );
|
|
VECT_OP_FUNC(Move)(((VECT_OP_TYPE*)t)+tn,sn-i,t);
|
|
return s;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Replace)(VECT_OP_TYPE* s, unsigned* sn, const VECT_OP_TYPE* t, unsigned tn, const VECT_OP_TYPE* u, unsigned un )
|
|
{
|
|
// if s is empty and t[tn] is empty
|
|
if( s == NULL && tn == 0 )
|
|
{
|
|
if( un == 0 )
|
|
return s;
|
|
|
|
s = cmMemAllocZ(VECT_OP_TYPE,un);
|
|
VECT_OP_FUNC(Copy)(s,un,u);
|
|
|
|
if( sn != NULL )
|
|
*sn = un;
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
assert( s!=NULL && t != NULL );
|
|
assert( (u!=NULL && un>0) || (u==NULL && un==0) );
|
|
|
|
if( (tn==0 && un==0) || (t==NULL && u==NULL))
|
|
return s;
|
|
|
|
// if the area to replace is greater than the area to insert ...
|
|
if( tn > un )
|
|
{
|
|
VECT_OP_FUNC(Shrink)(s,*sn,t+un,tn-un); // ... then shrink the buffer
|
|
*sn -= tn-un;
|
|
}
|
|
else
|
|
// if the area to insert is greater than the area to replace ...
|
|
if( un > tn )
|
|
{
|
|
unsigned offs = t - s;
|
|
s = VECT_OP_FUNC(Expand)(s,*sn,t+tn,un-tn); // ... then expand the buffer
|
|
t = s + offs;
|
|
*sn += un-tn;
|
|
}
|
|
|
|
assert(t+un <= s+(*sn));
|
|
|
|
if( u!=NULL )
|
|
VECT_OP_FUNC(Copy)((VECT_OP_TYPE*)t,un,u);
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Rotate)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt )
|
|
{
|
|
VECT_OP_TYPE* dep = dbp + dn;
|
|
int i = 0;
|
|
unsigned k = 0;
|
|
int n = dep - dbp;
|
|
VECT_OP_TYPE t1 = dbp[i];
|
|
|
|
for(k=0; k<n; ++k)
|
|
{
|
|
int j;
|
|
|
|
j = (i + shiftCnt) % n;
|
|
|
|
if( j<0 )
|
|
j += n;
|
|
|
|
VECT_OP_TYPE t2 = dbp[j];
|
|
|
|
dbp[j] = t1;
|
|
t1 = t2;
|
|
i = j;
|
|
}
|
|
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(RotateM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sbp, int rShiftCnt, int cShiftCnt )
|
|
{
|
|
int j;
|
|
|
|
while( rShiftCnt < 0 )
|
|
rShiftCnt += drn;
|
|
|
|
while( cShiftCnt < 0 )
|
|
cShiftCnt += dcn;
|
|
|
|
int m = rShiftCnt % drn;
|
|
int n = cShiftCnt % dcn;
|
|
|
|
|
|
for(j=0; j<dcn; ++j,++n)
|
|
{
|
|
if(n==dcn)
|
|
n = 0;
|
|
|
|
// cnt from dst position to end of column
|
|
unsigned cn = drn - m;
|
|
|
|
// copy from top of src col to bottom of dst column
|
|
VECT_OP_FUNC(Copy)(dbp + (n*drn) + m, cn, sbp );
|
|
sbp+=cn;
|
|
|
|
|
|
if( cn < drn )
|
|
{
|
|
// copy from bottom of src col to top of dst column
|
|
VECT_OP_FUNC(Copy)(dbp + (n*drn), drn-cn, sbp );
|
|
sbp += drn-cn;
|
|
}
|
|
|
|
}
|
|
return dbp;
|
|
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Shift)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt, VECT_OP_TYPE fillValue )
|
|
{
|
|
VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* rp = dbp;
|
|
unsigned n = dep - dbp;
|
|
|
|
if( shiftCnt == 0 )
|
|
return dbp;
|
|
|
|
if( abs(shiftCnt) >= n )
|
|
return VECT_OP_FUNC(Fill)(dbp,dn,fillValue);
|
|
|
|
if( shiftCnt > 0 )
|
|
{
|
|
const VECT_OP_TYPE* sbp = dep - (shiftCnt+1);
|
|
const VECT_OP_TYPE* sep = dbp;
|
|
VECT_OP_TYPE* dp = dbp + (n-1);
|
|
|
|
while( sbp >= sep )
|
|
*dp-- = *sbp--;
|
|
|
|
while(dbp <= dp )
|
|
*dbp++ = fillValue;
|
|
|
|
}
|
|
else
|
|
{
|
|
const VECT_OP_TYPE* sbp = dbp + abs(shiftCnt);
|
|
while( sbp < dep )
|
|
*dbp++ = *sbp++;
|
|
|
|
while(dbp<dep)
|
|
*dbp++ = fillValue;
|
|
}
|
|
|
|
return rp;
|
|
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Flip)( VECT_OP_TYPE* dbp, unsigned dn)
|
|
{
|
|
VECT_OP_TYPE* p0 = dbp;
|
|
VECT_OP_TYPE* p1 = dbp + dn - 1;
|
|
|
|
while( p0 < p1 )
|
|
{
|
|
VECT_OP_TYPE t = *p0;
|
|
*p0++ = *p1;
|
|
*p1-- = t;
|
|
}
|
|
return dbp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SubVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + n;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ -= v;
|
|
return bp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SubVV)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + n;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ -= *v++;
|
|
return bp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SubVVS)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + n;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ = *v++ - s;
|
|
return bp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SubVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
|
|
{
|
|
const VECT_OP_TYPE* ep = dp + (dn*dnn);
|
|
VECT_OP_TYPE* dbp = dp;
|
|
for(; dp < ep; dp+=dnn, v+=n )
|
|
*dp -= *v;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SubVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = *sb0p++ - *sb1p++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SubVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = s0 - *sb1p++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(AddVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + n;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ += v;
|
|
return bp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(AddVV)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + bn;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ += *v++;
|
|
return bp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(AddVVS)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + bn;
|
|
VECT_OP_TYPE* dp = bp;
|
|
while( dp < ep )
|
|
*dp++ = *v++ + s;
|
|
return bp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(AddVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
|
|
{
|
|
const VECT_OP_TYPE* ep = dp + (dn*dnn);
|
|
VECT_OP_TYPE* dbp = dp;
|
|
for(; dp < ep; v+=n, dp+=dnn )
|
|
*dp += *v;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(AddVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = *sb0p++ + *sb1p++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = *sb0p++ * *sb1p++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ *= *sbp++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
|
|
{
|
|
const VECT_OP_TYPE* ep = dp + (dn*dnn);
|
|
VECT_OP_TYPE* dbp = dp;
|
|
for(; dp < ep; v+=n, dp+=dnn )
|
|
*dp *= *v;
|
|
return dbp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ *= s;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = *sbp++ * s;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultVaVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ += *sbp++ * s;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MultSumVVS)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ += *sbp++ * s;
|
|
return dp;
|
|
}
|
|
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, VECT_OP_TYPE s1 )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = *sb0p++ / s1;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ /= *sb0p++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = *sb0p++ / *sb1p++;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
|
|
{
|
|
const VECT_OP_TYPE* ep = dp + (dn*dnn);
|
|
VECT_OP_TYPE* dbp = dp;
|
|
for(; dp < ep; v+=n, dp+=dnn )
|
|
*dp /= *v;
|
|
return dbp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ /= s;
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
while( dbp < dep )
|
|
*dbp++ = s0 / *sb1p++;
|
|
return dp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
for(; dbp < dep; ++sb0p )
|
|
if( *sb0p == 0 )
|
|
*dbp++ = 0;
|
|
else
|
|
*dbp++ /= *sb0p;
|
|
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivVVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
VECT_OP_TYPE* dp = dbp;
|
|
for(; dbp < dep; ++sb0p,++sb1p )
|
|
if( *sb1p == 0 )
|
|
*dbp++ = 0;
|
|
else
|
|
*dbp++ = *sb0p / *sb1p;
|
|
|
|
return dp;
|
|
}
|
|
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DivMS)( VECT_OP_TYPE* dp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sp )
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<dcn; ++i)
|
|
VECT_OP_FUNC(DivVS)( dp + i*drn, drn, sp[i] );
|
|
return dp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Sum)( const VECT_OP_TYPE* bp, unsigned n )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + n;
|
|
VECT_OP_TYPE s = 0;
|
|
while( bp < ep )
|
|
s += *bp++;
|
|
|
|
return s;
|
|
}
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(SumN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + (n*stride);
|
|
VECT_OP_TYPE s = 0;
|
|
for(; bp < ep; bp += stride )
|
|
s += *bp;
|
|
|
|
return s;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SumM)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<scn; ++i)
|
|
dp[i] = VECT_OP_FUNC(Sum)(sp + (i*srn), srn );
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(SumMN)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<srn; ++i)
|
|
dp[i] = VECT_OP_FUNC(SumN)(sp + i, scn, srn );
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn )
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<dn; ++i)
|
|
if( dbp[i]<0 )
|
|
dbp[i] = -dbp[i];
|
|
|
|
return dbp;
|
|
}
|
|
|
|
// mi is a target value - it holds the number of elements in ap[an] which must be be less than the median value.
|
|
// If the initial array contains an even number of values then the median value is formed by averaging the two center values.
|
|
// In this case *evenFlPtr is set and used to indicate that the center-upper value must be found during undwinding.
|
|
VECT_OP_TYPE VECT_OP_FUNC(MedianSearch)( unsigned mi, const VECT_OP_TYPE* ap, unsigned an, bool* evenFlPtr )
|
|
{
|
|
VECT_OP_TYPE x = ap[0]; // pick a random value as a potential median value
|
|
|
|
VECT_OP_TYPE a1[ an ]; // values below x
|
|
VECT_OP_TYPE a3[ an ]; // values above x
|
|
unsigned a1n = 0;
|
|
unsigned a2n = 0; // values equal to x
|
|
unsigned a3n = 0;
|
|
|
|
|
|
const VECT_OP_TYPE* abp = ap;
|
|
const VECT_OP_TYPE* aep = abp + an;
|
|
|
|
|
|
for(; abp < aep; ++abp )
|
|
{
|
|
if( *abp < x )
|
|
a1[a1n++] = *abp;
|
|
else
|
|
{
|
|
if( *abp > x )
|
|
a3[a3n++] = *abp;
|
|
else
|
|
++a2n;
|
|
}
|
|
}
|
|
|
|
//printf("%i : %i %i %i\n",mi,a1n,a2n,a3n);
|
|
|
|
// there are more values below x (mi remains the target split point)
|
|
if( a1n > mi )
|
|
{
|
|
x = VECT_OP_FUNC(MedianSearch)(mi,a1,a1n,evenFlPtr);
|
|
}
|
|
else
|
|
{
|
|
// the target was located
|
|
if( a1n+a2n >= mi )
|
|
{
|
|
|
|
// if a1n alone matches mi then the max value in a1[] holds the median value otherwise x is the median
|
|
if(a1n>=1 && a1n==mi)
|
|
{
|
|
VECT_OP_TYPE mv = VECT_OP_FUNC(Max)(a1,a1n,1);
|
|
x = *evenFlPtr ? (mv+x)/2 : mv;
|
|
*evenFlPtr = false;
|
|
}
|
|
|
|
// if the evenFl is set then the closest value above the median (x) must be located
|
|
if( *evenFlPtr )
|
|
{
|
|
// if the next greater value is in a2[]
|
|
if( a2n > 1 && (a1n+a2n) > mi )
|
|
*evenFlPtr = false;
|
|
else
|
|
// if the next greater value is in a3[]
|
|
if( a3n > 1 )
|
|
{
|
|
x = (x + VECT_OP_FUNC(Min)(a3,a3n,1))/2;
|
|
*evenFlPtr = false;
|
|
}
|
|
}
|
|
|
|
// no need for unwind processing - all the possibilities at this level have been exhausted
|
|
return x;
|
|
}
|
|
else
|
|
{
|
|
// There are more values above x - the median must therefore be in a3[].
|
|
// Reset mi cmcounting for the fact that we know that there are
|
|
// a1n+a2n values below the lowest value in a3.
|
|
x = VECT_OP_FUNC(MedianSearch)(mi - (a1n+a2n), a3, a3n, evenFlPtr );
|
|
}
|
|
}
|
|
|
|
if( *evenFlPtr )
|
|
{
|
|
|
|
// find the first value greater than x
|
|
while( ap < aep && *ap <= x )
|
|
++ap;
|
|
|
|
if( ap < aep )
|
|
{
|
|
|
|
VECT_OP_TYPE v = *ap++;
|
|
|
|
// find the nearest value greater than x
|
|
for(; ap < aep; ++ap )
|
|
if( *ap > x && ((*ap - x) < (v-x)))
|
|
v = *ap;
|
|
|
|
|
|
x = (v + x)/2;
|
|
*evenFlPtr = false;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Median)( const VECT_OP_TYPE* bp, unsigned n )
|
|
{
|
|
bool evenFl = cmIsEvenU(n);
|
|
unsigned medIdx = evenFl ? n/2 : (n+1)/2;
|
|
return VECT_OP_FUNC(MedianSearch)( medIdx, bp, n, &evenFl );
|
|
}
|
|
|
|
|
|
unsigned VECT_OP_FUNC(MinIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + (n*stride);
|
|
if( bp >= ep )
|
|
return cmInvalidIdx;
|
|
|
|
const VECT_OP_TYPE* p = bp;
|
|
const VECT_OP_TYPE* mp = bp;
|
|
|
|
bp+=stride;
|
|
|
|
for(; bp < ep; bp+=stride )
|
|
if( *bp < *mp )
|
|
mp = bp;
|
|
|
|
return (mp - p)/stride;
|
|
}
|
|
|
|
unsigned VECT_OP_FUNC(MaxIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
|
|
{
|
|
const VECT_OP_TYPE* ep = bp + (n*stride);
|
|
|
|
if( bp >= ep )
|
|
return cmInvalidIdx;
|
|
|
|
const VECT_OP_TYPE* p = bp;
|
|
const VECT_OP_TYPE* mp = bp;
|
|
|
|
bp+=stride;
|
|
|
|
for(; bp < ep; bp+=stride )
|
|
if( *bp > *mp )
|
|
mp = bp;
|
|
|
|
return (mp - p)/stride;
|
|
}
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Min)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
|
|
{
|
|
unsigned i;
|
|
|
|
if((i = VECT_OP_FUNC(MinIndex)(bp,n,stride)) == cmInvalidIdx )
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
return bp[i*stride];
|
|
}
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Max)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
|
|
{
|
|
unsigned i;
|
|
|
|
|
|
if((i = VECT_OP_FUNC(MaxIndex)(bp,n,stride)) == cmInvalidIdx )
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
return bp[i*stride];
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MinVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<dn; ++i)
|
|
if( sp[i] < dp[i] )
|
|
dp[i] = sp[i];
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(MaxVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
|
|
{
|
|
unsigned i;
|
|
for(i=0; i<dn; ++i)
|
|
if( sp[i] > dp[i] )
|
|
dp[i] = sp[i];
|
|
|
|
return dp;
|
|
}
|
|
|
|
unsigned* VECT_OP_FUNC(MinIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
|
|
{
|
|
unsigned i = 0;
|
|
for(i=0; i<scn; ++i)
|
|
dp[i] = VECT_OP_FUNC(MinIndex)(sp + (i*srn), srn, 1 );
|
|
return dp;
|
|
}
|
|
|
|
unsigned* VECT_OP_FUNC(MaxIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
|
|
{
|
|
unsigned i = 0;
|
|
for(i=0; i<scn; ++i)
|
|
dp[i] = VECT_OP_FUNC(MaxIndex)(sp + (i*srn), srn, 1 );
|
|
return dp;
|
|
}
|
|
|
|
bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
|
|
{
|
|
const VECT_OP_TYPE* ep = s0p + sn;
|
|
for(; s0p < ep; ++s0p,++s1p )
|
|
if( *s0p != *s1p )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double pct )
|
|
{
|
|
const VECT_OP_TYPE* ep = s0p + sn;
|
|
for(; s0p < ep; ++s0p,++s1p )
|
|
{
|
|
double d = *s1p - *s0p;
|
|
double s = cmMin(*s1p,*s0p);
|
|
|
|
// take abs value of d and s
|
|
if( d < 0 )
|
|
d *= -1;
|
|
|
|
if( s < 0 )
|
|
s *= -1;
|
|
|
|
if( d*100.0/s > pct )
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn )
|
|
{
|
|
unsigned n[sn];
|
|
VECT_OP_TYPE v[sn];
|
|
unsigned i,j,k = 0;
|
|
unsigned n0 = 0; // idx of most freq occurring ele
|
|
unsigned n1 = -1; // idx of 2nd most freq occurring ele
|
|
|
|
for(i=0; i<sn; ++i)
|
|
{
|
|
// find sp[i] in v[]
|
|
for(j=0; j<k; ++j)
|
|
if( sp[i] == v[j] )
|
|
{
|
|
++n[j];
|
|
break;
|
|
}
|
|
|
|
// sp[i] was not found in v[]
|
|
if( k == j )
|
|
{
|
|
v[j] = sp[i];
|
|
n[j] = 1;
|
|
++k;
|
|
}
|
|
|
|
// n[j] holds frq of sp[i]
|
|
|
|
// do nothing if j is already most freq
|
|
if( j != n0 )
|
|
{
|
|
// if j is new most freq
|
|
if( n[j] > n[n0] )
|
|
{
|
|
n1 = n0;
|
|
n0 = j;
|
|
}
|
|
else
|
|
// if j is 2nd most freq
|
|
if( (n1==-1) || (n[j] > n[n1]) )
|
|
n1 = j;
|
|
}
|
|
|
|
// if diff between two most freq is greater than remaining ele's
|
|
if( (n1!=-1) && (n[n0]-n[n1]) >= (sn-i) )
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
// if there are no ele's with same count
|
|
if( n[n0] > n[n1] )
|
|
return v[n0];
|
|
|
|
// break tie between ele's with same count be returning min value
|
|
// (this is the same as Matlab tie break criteria)
|
|
j = 0;
|
|
for(i=1; i<k; ++i)
|
|
if( (n[i] > n[j]) || (n[i] == n[j] && v[i] < v[j]) )
|
|
j=i;
|
|
|
|
return v[j];
|
|
}
|
|
|
|
unsigned VECT_OP_FUNC(Find)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
|
|
{
|
|
const VECT_OP_TYPE* sbp = sp;
|
|
const VECT_OP_TYPE* ep = sp + sn;
|
|
while( sp<ep )
|
|
if( *sp++ == key )
|
|
break;
|
|
|
|
if( sp==ep )
|
|
return cmInvalidIdx;
|
|
|
|
return (sp-1) - sbp;
|
|
}
|
|
|
|
unsigned VECT_OP_FUNC(Count)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
|
|
{
|
|
unsigned cnt = 0;
|
|
const VECT_OP_TYPE* ep = sp + sn;
|
|
while( sp<ep )
|
|
if( *sp++ == key )
|
|
++cnt;
|
|
|
|
return cnt;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(ReplaceLte)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE lteKeyVal, VECT_OP_TYPE replaceVal )
|
|
{
|
|
VECT_OP_TYPE* rp = dp;
|
|
const VECT_OP_TYPE* ep = dp + dn;
|
|
|
|
for(; dp < ep; ++sp )
|
|
*dp++ = *sp <= lteKeyVal ? replaceVal : *sp;
|
|
|
|
|
|
|
|
return rp;
|
|
}
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
|
|
{
|
|
unsigned i,j;
|
|
for(i=0,j=0; i<n && j<n; ++i,++j)
|
|
dbp[ (i*n) + j ] = sbp[i];
|
|
|
|
return dbp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)(VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
|
|
{
|
|
VECT_OP_FUNC(Fill)(dbp,n*n,0);
|
|
return VECT_OP_FUNC(Diag)(dbp,n,sbp);
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
|
|
{
|
|
unsigned i,j;
|
|
for(i=0,j=0; i<cn && j<rn; ++i,++j)
|
|
dbp[ (i*rn) + j ] = 1;
|
|
|
|
return dbp;
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
|
|
{
|
|
VECT_OP_FUNC(Fill)(dbp,rn*cn,0);
|
|
return VECT_OP_FUNC(Identity)(dbp,rn,cn);
|
|
}
|
|
|
|
|
|
VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
|
|
{
|
|
VECT_OP_TYPE* dp = dbp;
|
|
const VECT_OP_TYPE* dep = dbp + (srn*scn);
|
|
|
|
while( dbp < dep )
|
|
{
|
|
const VECT_OP_TYPE* sbp = sp++;
|
|
const VECT_OP_TYPE* sep = sbp + (srn*scn);
|
|
|
|
for(; sbp < sep; sbp+=srn )
|
|
*dbp++ = *sbp;
|
|
}
|
|
|
|
return dp;
|
|
}
|
|
|
|
VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr )
|
|
{
|
|
const VECT_OP_TYPE* dep = dbp + dn;
|
|
unsigned i = 0;
|
|
for(; dbp<dep; ++i)
|
|
*dbp++ = beg + (incr*i);
|
|
return beg + (incr*i);
|
|
}
|
|
|
|
|
|
void VECT_OP_FUNC(FnThresh)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride, VECT_OP_TYPE (*fnPtr)(const VECT_OP_TYPE*, unsigned) )
|
|
{
|
|
int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
|
|
int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
|
|
int i,j;
|
|
|
|
i0 = -i0;
|
|
|
|
if( fnPtr == NULL )
|
|
fnPtr = &(VECT_OP_FUNC(Median));
|
|
|
|
for(i=0; i<xN; ++i,++i0,++i1)
|
|
{
|
|
j = (i*yStride);
|
|
if( i0 < 0 )
|
|
if( i1 >= xN )
|
|
yV[j] = (*fnPtr)(xV,xN);
|
|
else
|
|
yV[j] = (*fnPtr)(xV,i1+1);
|
|
else if( i1 >= xN )
|
|
yV[j] = (*fnPtr)(xV+i0,xN-i0);
|
|
else
|
|
yV[j] = (*fnPtr)(xV+i0,wndN);
|
|
}
|
|
}
|
|
|
|
|
|
void VECT_OP_FUNC(MedianFilt)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride )
|
|
{
|
|
int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
|
|
int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
|
|
int i,j;
|
|
VECT_OP_TYPE tV[ wndN ];
|
|
|
|
i0 = -i0;
|
|
|
|
VECT_OP_FUNC(Fill)(tV,wndN,0);
|
|
|
|
for(i=0; i<xN; ++i,++i0,++i1)
|
|
{
|
|
|
|
j = (i*yStride);
|
|
|
|
// note that the position of the zero padding in tV[]
|
|
// does not matter because the median calcluation does
|
|
// not make any assumptions about the order of the argument
|
|
// vector.
|
|
|
|
if( i0 < 0 )
|
|
{
|
|
VECT_OP_FUNC(Copy)(tV,wndN+i0,xV);
|
|
VECT_OP_FUNC(Fill)(tV+wndN+i0,labs(i0),0);
|
|
//VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
|
|
|
|
yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
|
|
continue;
|
|
}
|
|
|
|
|
|
|
|
if( i1 >= xN )
|
|
{
|
|
VECT_OP_FUNC(Copy)(tV,wndN-(i1-xN+1),xV+i0);
|
|
VECT_OP_FUNC(Fill)(tV+wndN-(i1-xN+1),i1-xN+1,0);
|
|
//VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
|
|
|
|
yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
|
|
continue;
|
|
}
|
|
|
|
//VECT_OP_FUNC(Print)(NULL,1,wndN,xV+i0,-1,-1);
|
|
yV[j] = VECT_OP_FUNC(Median)(xV+i0,wndN);
|
|
|
|
}
|
|
}
|
|
|
|
unsigned* VECT_OP_FUNC(LevEditDistAllocMtx)(unsigned maxN)
|
|
{
|
|
maxN += 1;
|
|
|
|
unsigned* m = cmMemAllocZ(unsigned,maxN*maxN);
|
|
unsigned* p = m;
|
|
unsigned i;
|
|
|
|
// initialize the comparison matrix with the default costs in the
|
|
// first row and column
|
|
// (Note that this matrix is not oriented in column major order like most 'cm' matrices.)
|
|
for(i=0; i<maxN; ++i)
|
|
{
|
|
p[i] = i; // 0th row
|
|
p[ i * maxN ] = i; // 0th col
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
double VECT_OP_FUNC(LevEditDist)(unsigned mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, unsigned maxN )
|
|
{
|
|
mtxMaxN += 1;
|
|
|
|
assert( n0 < mtxMaxN && n1 < mtxMaxN );
|
|
|
|
int v = 0;
|
|
unsigned i;
|
|
// Note that m[maxN,maxN] is not oriented in column major order like most 'cm' matrices.
|
|
|
|
for(i=1; i<n0+1; ++i)
|
|
{
|
|
unsigned ii = i * mtxMaxN; // current row
|
|
unsigned i_1 = ii - mtxMaxN; // previous row
|
|
unsigned j;
|
|
for( j=1; j<n1+1; ++j)
|
|
{
|
|
int cost = s0[i-1] == s1[j-1] ? 0 : 1;
|
|
|
|
//m[i][j] = min( m[i-1][j] + 1, min( m[i][j-1] + 1, m[i-1][j-1] + cost ) );
|
|
|
|
m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
|
|
}
|
|
}
|
|
return (double) v / maxN;
|
|
}
|
|
|
|
|
|
double VECT_OP_FUNC(LevEditDistWithCostThresh)( int mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, double maxCost, unsigned maxN )
|
|
{
|
|
mtxMaxN += 1;
|
|
|
|
int v = 0;
|
|
|
|
maxCost = cmMin(1.0,cmMax(0.0,maxCost));
|
|
|
|
int iMaxCost = ceil( maxCost * maxN );
|
|
|
|
assert( iMaxCost > 0 && maxCost > 0 );
|
|
|
|
// If the two strings are different lengths and the min possible distance is
|
|
// greater than the threshold then return the threshold as the cost.
|
|
// (Note: For strings of different length the min possible distance is the
|
|
// difference in length between the two strings).
|
|
if( abs(n0-n1) > iMaxCost )
|
|
return maxCost;
|
|
|
|
int i;
|
|
// for each row in the matrix ...
|
|
for(i=1; i<n0+1; ++i)
|
|
{
|
|
int ii = i * mtxMaxN; // current row
|
|
int i_1 = ii - mtxMaxN; // previous row
|
|
|
|
// Limit the row to (2*iMaxCost)+1 diagnal strip.
|
|
// This strip is based on the idea that the best case can be precomputed for
|
|
// all matrix elements in advance - where the best case for position i,j is:
|
|
// abs(i-j). This can be justified based on the idea that the least possible
|
|
// distance between two strings of length i and j is abs(i-1). The minimum least
|
|
// possible distance is therefore found on the matrix diagnal and grows as the
|
|
// distance from the diagnal increases.
|
|
|
|
int ji = cmMax( 1, i - iMaxCost );
|
|
int jn = cmMin(iMaxCost + i, n1) + 1;
|
|
int j;
|
|
|
|
// fill in (max cost + 1) as the value in the column before the starting column
|
|
// (it will be referred to during the first computation in this row)
|
|
if( ji >= 2 )
|
|
m[ ii + (ji-1) ] = iMaxCost + 1;
|
|
|
|
// for each column in the diagnal stripe - beginning with the leftmost column.
|
|
for( j=ji; j<jn; ++j)
|
|
{
|
|
int cost = s0[i-1] == s1[j-1] ? 0 : 1;
|
|
|
|
m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
|
|
}
|
|
|
|
// fill in (max cost + 1) in the column following the last column
|
|
// (it will be referred to during computation of the following row)
|
|
if( j < n1+1 )
|
|
m[ii + j] = iMaxCost + 1;
|
|
}
|
|
|
|
assert( v >= 0 );
|
|
|
|
|
|
return cmMin( maxCost , (double) v / maxN);
|
|
}
|
|
|
|
#endif
|