libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmThread.c 49KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmMem.h"
  6. #include "cmMallocDebug.h"
  7. #include "cmThread.h"
  8. #include <pthread.h>
  9. #include <unistd.h> // usleep
  10. #ifdef OS_OSX
  11. #include <libkern/OSAtomic.h>
  12. #endif
  13. cmThreadH_t cmThreadNullHandle = {NULL};
  14. enum
  15. {
  16. kDoExitThFl = 0x01,
  17. kDoPauseThFl = 0x02,
  18. kDoRunThFl = 0x04
  19. };
  20. typedef struct
  21. {
  22. cmErr_t err;
  23. cmThreadFunc_t funcPtr;
  24. pthread_t pthreadH;
  25. cmThStateId_t state;
  26. void* funcParam;
  27. unsigned doFlags;
  28. unsigned pauseMicroSecs;
  29. unsigned waitMicroSecs;
  30. } cmThThread_t;
  31. cmThRC_t _cmThError( cmErr_t* err, cmThRC_t rc, int sysErr, const char* fmt, ... )
  32. {
  33. va_list vl;
  34. va_start(vl,fmt);
  35. cmErrVSysMsg(err,rc,sysErr,fmt,vl);
  36. va_end(vl);
  37. return rc;
  38. }
  39. void _cmThThreadCleanUpCallback(void* t)
  40. {
  41. ((cmThThread_t*)t)->state = kExitedThId;
  42. }
  43. void* _cmThThreadCallback(void* param)
  44. {
  45. cmThThread_t* t = (cmThThread_t*)param;
  46. // set a clean up handler - this will be called when the
  47. // thread terminates unexpectedly or pthread_cleanup_pop() is called.
  48. pthread_cleanup_push(_cmThThreadCleanUpCallback,t);
  49. while( cmIsFlag(t->doFlags,kDoExitThFl) == false )
  50. {
  51. if( t->state == kPausedThId )
  52. {
  53. cmSleepUs( t->pauseMicroSecs );
  54. if( cmIsFlag(t->doFlags,kDoRunThFl) )
  55. {
  56. t->doFlags = cmClrFlag(t->doFlags,kDoRunThFl);
  57. t->state = kRunningThId;
  58. }
  59. }
  60. else
  61. {
  62. if( t->funcPtr(t->funcParam)==false )
  63. break;
  64. if( cmIsFlag(t->doFlags,kDoPauseThFl) )
  65. {
  66. t->doFlags = cmClrFlag(t->doFlags,kDoPauseThFl);
  67. t->state = kPausedThId;
  68. }
  69. }
  70. }
  71. pthread_cleanup_pop(1);
  72. pthread_exit(NULL);
  73. return t;
  74. }
  75. cmThThread_t* _cmThThreadFromHandle( cmThreadH_t h )
  76. {
  77. cmThThread_t* tp = (cmThThread_t*)h.h;
  78. assert(tp != NULL);
  79. return tp->state==kNotInitThId ? NULL : tp;
  80. }
  81. cmThRC_t _cmThWaitForState( cmThThread_t* t, unsigned stateId )
  82. {
  83. unsigned waitTimeMicroSecs = 0;
  84. while( t->state != stateId && waitTimeMicroSecs < t->waitMicroSecs )
  85. {
  86. //cmSleepUs( t->waitMicroSecs );
  87. cmSleepUs( 15000 );
  88. waitTimeMicroSecs += 15000; //t->waitMicroSecs;
  89. }
  90. return t->state==stateId ? kOkThRC : kTimeOutThRC;
  91. }
  92. cmThRC_t cmThreadCreate( cmThreadH_t* hPtr, cmThreadFunc_t funcPtr, void* funcParam, cmRpt_t* rpt )
  93. {
  94. //pthread_attr_t attr;
  95. cmThRC_t rc = kOkThRC;
  96. cmThThread_t* tp = cmMemAllocZ( cmThThread_t, 1 );
  97. int sysErr;
  98. cmErrSetup(&tp->err,rpt,"Thread");
  99. tp->funcPtr = funcPtr;
  100. tp->funcParam = funcParam;
  101. tp->state = kPausedThId;
  102. tp->doFlags = 0;
  103. tp->pauseMicroSecs = 50000;
  104. tp->waitMicroSecs = 1000000;
  105. if((sysErr = pthread_create(&tp->pthreadH,NULL,_cmThThreadCallback, (void*)tp )) != 0 )
  106. {
  107. tp->state = kNotInitThId;
  108. rc = _cmThError(&tp->err,kCreateFailThRC,sysErr,"Thread create failed.");
  109. }
  110. hPtr->h = tp;
  111. return rc;
  112. }
  113. cmThRC_t cmThreadDestroy( cmThreadH_t* hPtr )
  114. {
  115. cmThRC_t rc = kOkThRC;
  116. if( hPtr==NULL || cmThreadIsValid(*hPtr)==false )
  117. return rc;
  118. cmThThread_t* t = _cmThThreadFromHandle(*hPtr );
  119. if( t == NULL )
  120. return kInvalidHandleThRC;
  121. // tell the thread to exit
  122. t->doFlags = cmSetFlag(t->doFlags,kDoExitThFl);
  123. // wait for the thread to exit and then deallocate the thread object
  124. if((rc = _cmThWaitForState(t,kExitedThId)) == kOkThRC )
  125. {
  126. cmMemFree(t);
  127. hPtr->h = NULL;
  128. }
  129. else
  130. {
  131. rc = _cmThError(&t->err,rc,0,"Thread timed out waiting for destroy.");
  132. }
  133. return rc;
  134. }
  135. cmThRC_t cmThreadPause( cmThreadH_t h, unsigned cmdFlags )
  136. {
  137. cmThRC_t rc = kOkThRC;
  138. bool pauseFl = cmIsFlag(cmdFlags,kPauseThFl);
  139. bool waitFl = cmIsFlag(cmdFlags,kWaitThFl);
  140. cmThThread_t* t = _cmThThreadFromHandle(h);
  141. unsigned waitId;
  142. if( t == NULL )
  143. return kInvalidHandleThRC;
  144. bool isPausedFl = t->state == kPausedThId;
  145. if( isPausedFl == pauseFl )
  146. return kOkThRC;
  147. if( pauseFl )
  148. {
  149. t->doFlags = cmSetFlag(t->doFlags,kDoPauseThFl);
  150. waitId = kPausedThId;
  151. }
  152. else
  153. {
  154. t->doFlags = cmSetFlag(t->doFlags,kDoRunThFl);
  155. waitId = kRunningThId;
  156. }
  157. if( waitFl )
  158. rc = _cmThWaitForState(t,waitId);
  159. if( rc != kOkThRC )
  160. _cmThError(&t->err,rc,0,"Thread timed out waiting for '%s'.", pauseFl ? "pause" : "un-pause");
  161. return rc;
  162. }
  163. cmThStateId_t cmThreadState( cmThreadH_t h )
  164. {
  165. cmThThread_t* tp = _cmThThreadFromHandle(h);
  166. if( tp == NULL )
  167. return kNotInitThId;
  168. return tp->state;
  169. }
  170. bool cmThreadIsValid( cmThreadH_t h )
  171. { return h.h != NULL; }
  172. unsigned cmThreadPauseTimeOutMicros( cmThreadH_t h )
  173. {
  174. cmThThread_t* tp = _cmThThreadFromHandle(h);
  175. return tp->pauseMicroSecs;
  176. }
  177. void cmThreadSetPauseTimeOutMicros( cmThreadH_t h, unsigned usecs )
  178. {
  179. cmThThread_t* tp = _cmThThreadFromHandle(h);
  180. tp->pauseMicroSecs = usecs;
  181. }
  182. unsigned cmThreadWaitTimeOutMicros( cmThreadH_t h )
  183. {
  184. cmThThread_t* tp = _cmThThreadFromHandle(h);
  185. return tp->waitMicroSecs;
  186. }
  187. void cmThreadSetWaitTimeOutMicros( cmThreadH_t h, unsigned usecs )
  188. {
  189. cmThThread_t* tp = _cmThThreadFromHandle(h);
  190. tp->waitMicroSecs = usecs;
  191. }
  192. bool _cmThreadTestCb( void* p )
  193. {
  194. unsigned* ip = (unsigned*)p;
  195. ip[0]++;
  196. return true;
  197. }
  198. void cmThreadTest(cmRpt_t* rpt)
  199. {
  200. cmThreadH_t th0;
  201. unsigned val = 0;
  202. if( cmThreadCreate(&th0,_cmThreadTestCb,&val,rpt) == kOkThRC )
  203. {
  204. if( cmThreadPause(th0,0) != kOkThRC )
  205. {
  206. cmRptPrintf(rpt,"Thread start failed.\n");
  207. return;
  208. }
  209. char c = 0;
  210. cmRptPrintf(rpt,"o=print p=pause s=state q=quit\n");
  211. while( c != 'q' )
  212. {
  213. c = (char)fgetc(stdin);
  214. fflush(stdin);
  215. switch(c)
  216. {
  217. case 'o':
  218. cmRptPrintf(rpt,"val: 0x%x\n",val);
  219. break;
  220. case 's':
  221. cmRptPrintf(rpt,"state=%i\n",cmThreadState(th0));
  222. break;
  223. case 'p':
  224. {
  225. cmRC_t rc;
  226. if( cmThreadState(th0) == kPausedThId )
  227. rc = cmThreadPause(th0,kWaitThFl);
  228. else
  229. rc = cmThreadPause(th0,kPauseThFl|kWaitThFl);
  230. if( rc == kOkThRC )
  231. cmRptPrintf(rpt,"new state:%i\n", cmThreadState(th0));
  232. else
  233. cmRptPrintf(rpt,"cmThreadPause() failed.");
  234. }
  235. break;
  236. case 'q':
  237. break;
  238. //default:
  239. //cmRptPrintf(rpt,"Unknown:%c\n",c);
  240. }
  241. }
  242. if( cmThreadDestroy(&th0) != kOkThRC )
  243. cmRptPrintf(rpt,"Thread destroy failed.\n");
  244. }
  245. }
  246. //-----------------------------------------------------------------------------
  247. //-----------------------------------------------------------------------------
  248. //-----------------------------------------------------------------------------
  249. typedef struct
  250. {
  251. cmErr_t err;
  252. pthread_mutex_t mutex;
  253. pthread_cond_t cvar;
  254. } cmThreadMutex_t;
  255. cmThreadMutexH_t kThreadMutexNULL = {NULL};
  256. cmThreadMutex_t* _cmThreadMutexFromHandle( cmThreadMutexH_t h )
  257. {
  258. cmThreadMutex_t* p = (cmThreadMutex_t*)h.h;
  259. assert(p != NULL);
  260. return p;
  261. }
  262. cmThRC_t cmThreadMutexCreate( cmThreadMutexH_t* hPtr, cmRpt_t* rpt )
  263. {
  264. int sysErr;
  265. cmThreadMutex_t* p = cmMemAllocZ( cmThreadMutex_t, 1 );
  266. cmErrSetup(&p->err,rpt,"Thread Mutex");
  267. if((sysErr = pthread_mutex_init(&p->mutex,NULL)) != 0 )
  268. return _cmThError(&p->err,kCreateFailThRC,sysErr,"Thread mutex create failed.");
  269. if((sysErr = pthread_cond_init(&p->cvar,NULL)) != 0 )
  270. return _cmThError(&p->err,kCreateFailThRC,sysErr,"Thread Condition var. create failed.");
  271. hPtr->h = p;
  272. return kOkThRC;
  273. }
  274. cmThRC_t cmThreadMutexDestroy( cmThreadMutexH_t* hPtr )
  275. {
  276. int sysErr;
  277. cmThreadMutex_t* p = _cmThreadMutexFromHandle(*hPtr);
  278. if( p == NULL )
  279. return kInvalidHandleThRC;
  280. if((sysErr = pthread_cond_destroy(&p->cvar)) != 0)
  281. return _cmThError(&p->err,kDestroyFailThRC,sysErr,"Thread condition var. destroy failed.");
  282. if((sysErr = pthread_mutex_destroy(&p->mutex)) != 0)
  283. return _cmThError(&p->err,kDestroyFailThRC,sysErr,"Thread mutex destroy failed.");
  284. cmMemFree(p);
  285. hPtr->h = NULL;
  286. return kOkThRC;
  287. }
  288. cmThRC_t cmThreadMutexTryLock( cmThreadMutexH_t h, bool* lockFlPtr )
  289. {
  290. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  291. if( p == NULL )
  292. return kInvalidHandleThRC;
  293. int sysErr = pthread_mutex_trylock(&p->mutex);
  294. switch(sysErr)
  295. {
  296. case EBUSY:
  297. *lockFlPtr = false;
  298. break;
  299. case 0:
  300. *lockFlPtr = true;
  301. break;
  302. default:
  303. return _cmThError(&p->err,kLockFailThRC,sysErr,"Thread mutex try-lock failed.");;
  304. }
  305. return kOkThRC;
  306. }
  307. cmThRC_t cmThreadMutexLock( cmThreadMutexH_t h )
  308. {
  309. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  310. if( p == NULL )
  311. return kInvalidHandleThRC;
  312. int sysErr = pthread_mutex_lock(&p->mutex);
  313. if( sysErr == 0 )
  314. return kOkThRC;
  315. return _cmThError(&p->err,kLockFailThRC,sysErr,"Thread mutex lock failed.");
  316. }
  317. cmThRC_t cmThreadMutexUnlock( cmThreadMutexH_t h )
  318. {
  319. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  320. if( p == NULL )
  321. return kInvalidHandleThRC;
  322. int sysErr = pthread_mutex_unlock(&p->mutex);
  323. if( sysErr == 0 )
  324. return kOkThRC;
  325. return _cmThError(&p->err,kUnlockFailThRC,sysErr,"Thread mutex unlock failed.");
  326. }
  327. bool cmThreadMutexIsValid( cmThreadMutexH_t h )
  328. { return h.h != NULL; }
  329. cmThRC_t cmThreadMutexWaitOnCondVar( cmThreadMutexH_t h, bool lockFl )
  330. {
  331. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  332. if( p == NULL )
  333. return kInvalidHandleThRC;
  334. int sysErr;
  335. if( lockFl )
  336. if( (sysErr=pthread_mutex_lock(&p->mutex)) != 0 )
  337. _cmThError(&p->err,kLockFailThRC,sysErr,"Thread lock failed on cond. var. wait.");
  338. if((sysErr = pthread_cond_wait(&p->cvar,&p->mutex)) != 0 )
  339. _cmThError(&p->err,kCVarWaitFailThRC,sysErr,"Thread cond. var. wait failed.");
  340. return kOkThRC;
  341. }
  342. cmThRC_t cmThreadMutexSignalCondVar( cmThreadMutexH_t h )
  343. {
  344. int sysErr;
  345. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  346. if( p == NULL )
  347. return kInvalidHandleThRC;
  348. if((sysErr = pthread_cond_signal(&p->cvar)) != 0 )
  349. return _cmThError(&p->err,kCVarSignalFailThRC,sysErr,"Thread cond. var. signal failed.");
  350. return kOkThRC;
  351. }
  352. //-----------------------------------------------------------------------------
  353. //-----------------------------------------------------------------------------
  354. //-----------------------------------------------------------------------------
  355. cmTsQueueH_t cmTsQueueNullHandle = { NULL };
  356. enum { cmTsQueueBufCnt = 2 };
  357. typedef struct
  358. {
  359. unsigned allocCnt; // count of bytes allocated for the buffer
  360. unsigned fullCnt; // count of bytes used in the buffer
  361. char* basePtr; // base of buffer memory
  362. unsigned* msgPtr; // pointer to first msg
  363. unsigned msgCnt;
  364. } cmTsQueueBuf;
  365. typedef struct
  366. {
  367. cmThreadMutexH_t mutexH;
  368. cmTsQueueBuf bufArray[cmTsQueueBufCnt];
  369. unsigned inBufIdx;
  370. unsigned outBufIdx;
  371. char* memPtr;
  372. cmTsQueueCb_t cbFunc;
  373. void* userCbPtr;
  374. } cmTsQueue_t;
  375. cmTsQueue_t* _cmTsQueueFromHandle( cmTsQueueH_t h )
  376. {
  377. cmTsQueue_t* p = h.h;
  378. assert(p != NULL);
  379. return p;
  380. }
  381. cmThRC_t _cmTsQueueDestroy( cmTsQueue_t* p )
  382. {
  383. cmThRC_t rc;
  384. if( p == NULL )
  385. return kInvalidHandleThRC;
  386. if( p->mutexH.h != NULL )
  387. if((rc = cmThreadMutexDestroy(&p->mutexH)) != kOkThRC )
  388. return rc;
  389. if( p->memPtr != NULL )
  390. cmMemPtrFree(&p->memPtr);
  391. cmMemPtrFree(&p);
  392. return kOkThRC;
  393. }
  394. cmThRC_t cmTsQueueCreate( cmTsQueueH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* userCbPtr, cmRpt_t* rpt )
  395. {
  396. cmTsQueue_t* p = cmMemAllocZ( cmTsQueue_t, 1 );
  397. unsigned i;
  398. if( cmThreadMutexCreate(&p->mutexH,rpt) != kOkThRC )
  399. goto errLabel;
  400. p->memPtr = cmMemAllocZ( char, bufByteCnt*cmTsQueueBufCnt );
  401. p->outBufIdx = 0;
  402. p->inBufIdx = 1;
  403. p->cbFunc = cbFunc;
  404. p->userCbPtr = userCbPtr;
  405. for(i=0; i<cmTsQueueBufCnt; ++i)
  406. {
  407. p->bufArray[i].allocCnt = bufByteCnt;
  408. p->bufArray[i].fullCnt = 0;
  409. p->bufArray[i].basePtr = p->memPtr + (i*bufByteCnt);
  410. p->bufArray[i].msgPtr = NULL;
  411. p->bufArray[i].msgCnt = 0;
  412. }
  413. hPtr->h = p;
  414. return kOkThRC;
  415. errLabel:
  416. _cmTsQueueDestroy(p);
  417. return kCreateFailThRC;
  418. }
  419. cmThRC_t cmTsQueueDestroy( cmTsQueueH_t* hPtr )
  420. {
  421. cmThRC_t rc = kOkThRC;
  422. if( (hPtr != NULL) && cmTsQueueIsValid(*hPtr))
  423. if((rc = _cmTsQueueDestroy(_cmTsQueueFromHandle(*hPtr))) == kOkThRC )
  424. hPtr->h = NULL;
  425. return rc;
  426. }
  427. cmThRC_t cmTsQueueSetCallback( cmTsQueueH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  428. {
  429. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  430. p->cbFunc = cbFunc;
  431. p->userCbPtr = cbArg;
  432. return kOkThRC;
  433. }
  434. unsigned cmTsQueueAllocByteCount( cmTsQueueH_t h )
  435. {
  436. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  437. unsigned n = 0;
  438. if( cmThreadMutexLock(p->mutexH) == kOkThRC )
  439. {
  440. n = p->bufArray[ p->inBufIdx ].allocCnt;
  441. cmThreadMutexUnlock(p->mutexH);
  442. }
  443. return n;
  444. }
  445. unsigned cmTsQueueAvailByteCount( cmTsQueueH_t h )
  446. {
  447. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  448. unsigned n = 0;
  449. if(cmThreadMutexLock(p->mutexH) == kOkThRC )
  450. {
  451. n = p->bufArray[ p->inBufIdx ].allocCnt - p->bufArray[ p->inBufIdx].fullCnt;
  452. cmThreadMutexUnlock(p->mutexH);
  453. }
  454. return n;
  455. }
  456. cmThRC_t _cmTsQueueEnqueueMsg( cmTsQueueH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  457. {
  458. cmThRC_t rc;
  459. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  460. if( p == NULL )
  461. return kInvalidHandleThRC;
  462. // lock the mutex
  463. if((rc = cmThreadMutexLock(p->mutexH)) == kOkThRC )
  464. {
  465. cmTsQueueBuf* b = p->bufArray + p->inBufIdx; // ptr to buf recd
  466. const char* ep = b->basePtr + b->allocCnt; // end of buf data space
  467. unsigned *mp = (unsigned*)(b->basePtr + b->fullCnt); // ptr to size of new msg space
  468. char* dp = (char*)(mp+1); // ptr to data area of new msg space
  469. unsigned ttlByteCnt = 0; // track size of msg data
  470. unsigned i = 0;
  471. // get the total size of the msg
  472. for(i=0; i<arrayCnt; ++i)
  473. ttlByteCnt += msgByteCntArray[i];
  474. // if the msg is too big for the queue buf
  475. if( dp + ttlByteCnt > ep )
  476. rc = kBufFullThRC;
  477. else
  478. {
  479. // for each segment of the incoming msg
  480. for(i=0; i<arrayCnt; ++i)
  481. {
  482. // get the size of the segment
  483. unsigned n = msgByteCntArray[i];
  484. // copy in the segment
  485. memcpy(dp,msgPtrArray[i],n);
  486. dp += n; //
  487. }
  488. assert(dp <= ep );
  489. // write the size ofthe msg into the buffer
  490. *mp = ttlByteCnt;
  491. // update the pointer to the first msg
  492. if( b->msgPtr == NULL )
  493. b->msgPtr = mp;
  494. // track the count of msgs in this buffer
  495. ++b->msgCnt;
  496. // update fullCnt last since dequeue uses fullCnt to
  497. // notice that a msg may be waiting
  498. b->fullCnt += sizeof(unsigned) + ttlByteCnt;
  499. }
  500. cmThreadMutexUnlock(p->mutexH);
  501. }
  502. return rc;
  503. }
  504. cmThRC_t cmTsQueueEnqueueSegMsg( cmTsQueueH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  505. { return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,arrayCnt); }
  506. cmThRC_t cmTsQueueEnqueueMsg( cmTsQueueH_t h, const void* dataPtr, unsigned byteCnt )
  507. {
  508. const void* msgPtrArray[] = { dataPtr };
  509. unsigned msgByteCntArray[] = { byteCnt };
  510. return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,1);
  511. }
  512. cmThRC_t cmTsQueueEnqueueIdMsg( cmTsQueueH_t h, unsigned id, const void* dataPtr, unsigned byteCnt )
  513. {
  514. const void* msgPtrArray[] = { &id, dataPtr };
  515. unsigned msgByteCntArray[] = { sizeof(id), byteCnt };
  516. return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,2);
  517. }
  518. cmThRC_t _cmTsQueueDequeueMsg( cmTsQueue_t* p, void* retBuf, unsigned refBufByteCnt )
  519. {
  520. cmTsQueueBuf* b = p->bufArray + p->outBufIdx;
  521. // if the output buffer is empty - there is nothing to do
  522. if( b->fullCnt == 0 )
  523. return kBufEmptyThRC;
  524. assert( b->msgPtr != NULL );
  525. // get the output msg size and data
  526. unsigned msgByteCnt = *b->msgPtr;
  527. char* msgDataPtr = (char*)(b->msgPtr + 1);
  528. // transmit the msg via a callback
  529. if( retBuf == NULL && p->cbFunc != NULL )
  530. p->cbFunc(p->userCbPtr,msgByteCnt,msgDataPtr);
  531. else
  532. {
  533. // retBuf may be NULL if the func is being used by cmTsQueueDequeueByteCount()
  534. if( retBuf == NULL || msgByteCnt > refBufByteCnt )
  535. return kBufTooSmallThRC;
  536. // copy the msg to a buffer
  537. if( retBuf != NULL )
  538. memcpy(retBuf,msgDataPtr,msgByteCnt);
  539. }
  540. // update the buffer
  541. b->fullCnt -= sizeof(unsigned) + msgByteCnt;
  542. b->msgPtr = (unsigned*)(msgDataPtr + msgByteCnt);
  543. --(b->msgCnt);
  544. if( b->fullCnt == 0 )
  545. {
  546. assert(b->msgCnt == 0);
  547. b->msgPtr = NULL;
  548. }
  549. return kOkThRC;
  550. }
  551. cmThRC_t cmTsQueueDequeueMsg( cmTsQueueH_t h, void* retBuf, unsigned refBufByteCnt )
  552. {
  553. cmThRC_t rc;
  554. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  555. if( p == NULL )
  556. return kInvalidHandleThRC;
  557. // dequeue the next msg from the current output buffer
  558. if((rc =_cmTsQueueDequeueMsg( p, retBuf, refBufByteCnt )) != kBufEmptyThRC )
  559. return rc;
  560. // the current output buffer was empty
  561. cmTsQueueBuf* b = p->bufArray + p->inBufIdx;
  562. // if the input buffer has msg's ...
  563. if( b->fullCnt > 0 )
  564. {
  565. bool lockFl = false;
  566. // ...attempt to lock the mutex ...
  567. if( (cmThreadMutexTryLock(p->mutexH,&lockFl) == kOkThRC) && lockFl )
  568. {
  569. // ... swap the input and the output buffers ...
  570. unsigned tmp = p->inBufIdx;
  571. p->inBufIdx = p->outBufIdx;
  572. p->outBufIdx = tmp;
  573. // .. unlock the mutex
  574. cmThreadMutexUnlock(p->mutexH);
  575. // ... and dequeue the first msg from the new output buffer
  576. rc = _cmTsQueueDequeueMsg( p, retBuf, refBufByteCnt );
  577. }
  578. }
  579. return rc;
  580. }
  581. bool cmTsQueueMsgWaiting( cmTsQueueH_t h )
  582. {
  583. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  584. if( p == NULL )
  585. return false;
  586. if( p->bufArray[p->outBufIdx].fullCnt )
  587. return true;
  588. return p->bufArray[p->inBufIdx].fullCnt > 0;
  589. }
  590. unsigned cmTsQueueDequeueMsgByteCount( cmTsQueueH_t h )
  591. {
  592. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  593. if( p == NULL )
  594. return 0;
  595. // if output msgs are available then the msgPtr points to the size of the msg
  596. if( p->bufArray[p->outBufIdx].fullCnt )
  597. return *(p->bufArray[p->outBufIdx].msgPtr);
  598. // no msgs are waiting in the output buffer
  599. // force the buffers to swap - returns kBufEmptyThRC if there are
  600. // still no msgs waiting after the swap (the input buf was also empty)
  601. if( cmTsQueueDequeueMsg(h,NULL,0) == kBufTooSmallThRC )
  602. {
  603. // the buffers swapped so there must be msg waiting
  604. assert( p->bufArray[p->outBufIdx].fullCnt );
  605. return *(p->bufArray[p->outBufIdx].msgPtr);
  606. }
  607. return 0;
  608. }
  609. bool cmTsQueueIsValid( cmTsQueueH_t h )
  610. { return h.h != NULL; }
  611. //--------------------------------------------------------------------------------------------------
  612. //--------------------------------------------------------------------------------------------------
  613. //--------------------------------------------------------------------------------------------------
  614. #ifdef NOT_DEF
  615. enum { kThBufCnt=2 };
  616. typedef struct
  617. {
  618. char* buf;
  619. volatile unsigned ii;
  620. volatile unsigned oi;
  621. } cmThBuf_t;
  622. typedef struct
  623. {
  624. cmErr_t err;
  625. cmThBuf_t a[kThBufCnt];
  626. volatile unsigned ibi;
  627. unsigned bn;
  628. cmTsQueueCb_t cbFunc;
  629. void* cbArg;
  630. } cmTs1p1c_t;
  631. cmTs1p1c_t* _cmTs1p1cHandleToPtr( cmTs1p1cH_t h )
  632. {
  633. cmTs1p1c_t* p = (cmTs1p1c_t*)h.h;
  634. assert( p != NULL );
  635. return p;
  636. }
  637. cmThRC_t _cmTs1p1cDestroy( cmTs1p1c_t* p )
  638. {
  639. unsigned i;
  640. for(i=0; i<kThBufCnt; ++i)
  641. cmMemFree(p->a[i].buf);
  642. cmMemFree(p);
  643. return kOkThRC;
  644. }
  645. cmThRC_t cmTs1p1cCreate( cmTs1p1cH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  646. {
  647. cmThRC_t rc;
  648. if((rc = cmTs1p1cDestroy(hPtr)) != kOkThRC )
  649. return rc;
  650. unsigned i;
  651. cmTs1p1c_t* p = cmMemAllocZ(cmTs1p1c_t,1);
  652. cmErrSetup(&p->err,rpt,"TS 1p1c Queue");
  653. for(i=0; i<kThBufCnt; ++i)
  654. {
  655. p->a[i].buf = cmMemAllocZ(char,bufByteCnt);
  656. p->a[i].ii = 0;
  657. p->a[i].oi = bufByteCnt;
  658. }
  659. p->ibi = 0;
  660. p->bn = bufByteCnt;
  661. p->cbFunc = cbFunc;
  662. p->cbArg = cbArg;
  663. hPtr->h = p;
  664. return rc;
  665. }
  666. cmThRC_t cmTs1p1cDestroy( cmTs1p1cH_t* hp )
  667. {
  668. cmThRC_t rc = kOkThRC;
  669. if( hp == NULL || cmTs1p1cIsValid(*hp)==false )
  670. return kOkThRC;
  671. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(*hp);
  672. if(( rc = _cmTs1p1cDestroy(p)) != kOkThRC )
  673. return rc;
  674. hp->h = NULL;
  675. return rc;
  676. }
  677. cmThRC_t cmTs1p1cEnqueueSegMsg( cmTs1p1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  678. {
  679. cmThRC_t rc = kOkThRC;
  680. unsigned mn = 0;
  681. unsigned i;
  682. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  683. cmThBuf_t* ib = p->a + p->ibi;
  684. // get the total count of bytes for this msg
  685. for(i=0; i<arrayCnt; ++i)
  686. mn += msgByteCntArray[i];
  687. unsigned dn = mn + sizeof(unsigned);
  688. // if the message is too big for even an empty buffer
  689. if( dn > p->bn )
  690. return cmErrMsg(&p->err,kBufFullThRC,"A msg containing %i bytes will never be able to fit in a queue with an empty size of %i bytes.",dn,p->bn);
  691. // if the msg won't fit in the current input buffer then try swapping buffers.
  692. if( ib->ii + dn > p->bn )
  693. {
  694. // get the current output buffer
  695. cmThBuf_t* ob = p->a + (p->ibi==0 ? 1 : 0);
  696. // Empty buffers will be set such that: oi==bn and ii==0.
  697. //
  698. // Note that setting ii to 0 in an output buffer is the last operation
  699. // performed on an empty output buffer. ii==0 is therefore the
  700. // signal that an output buffer can be reused for input.
  701. // if the output buffer is not empty - then an overflow occurred
  702. if( ob->ii != 0 )
  703. return cmErrMsg(&p->err,kBufFullThRC,"The msq queue cannot accept a %i byte msg into %i bytes.",dn, p->bn - ib->ii);
  704. // setup the initial output location of the new output buffer
  705. ib->oi = 0;
  706. // swap buffers
  707. p->ibi = (p->ibi + 1) % kThBufCnt;
  708. // get the new input buffer
  709. ib = ob;
  710. }
  711. // get a pointer to the base of the write location
  712. char* dp = ib->buf + ib->ii;
  713. // write the length of the message
  714. *(unsigned*)dp = mn;
  715. dp += sizeof(unsigned);
  716. // write the body of the message
  717. for(i=0; i<arrayCnt; ++i)
  718. {
  719. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  720. dp += msgByteCntArray[i];
  721. }
  722. // this MUST be executed last - we'll use 'dp' in the calculation
  723. // (even though ib->ii += dn would be more straight forward way
  724. // to accomplish the same thing) to prevent the optimizer from
  725. // moving the assignment prior to the for loop.
  726. ib->ii += dp - (ib->buf + ib->ii);
  727. return rc;
  728. }
  729. cmThRC_t cmTs1p1cEnqueueMsg( cmTsQueueH_t h, const void* dataPtr, unsigned byteCnt )
  730. { return cmTs1p1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  731. unsigned cmTs1p1cAllocByteCount( cmTs1p1cH_t h )
  732. {
  733. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  734. return p->bn;
  735. }
  736. unsigned cmTs1p1cAvailByteCount( cmTs1p1cH_t h )
  737. {
  738. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  739. return p->bn - p->a[ p->ibi ].ii;
  740. }
  741. cmThRC_t cmTs1p1cDequeueMsg( cmTs1p1cH_t h, void* dataPtr, unsigned byteCnt )
  742. {
  743. cmThRC_t rc = kOkThRC;
  744. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  745. cmThBuf_t* ob = p->a + (p->ibi == 0 ? 1 : 0);
  746. // empty buffers always are set to: oi==bn && ii==0
  747. if( ob->oi >= ob->ii )
  748. return kBufEmptyThRC;
  749. // get the size of the msg
  750. unsigned mn = *(unsigned*)(ob->buf + ob->oi);
  751. // increment the current output location to the msg body
  752. ob->oi += sizeof(unsigned);
  753. // copy or send the msg
  754. if( dataPtr != NULL )
  755. {
  756. if( byteCnt < mn )
  757. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,mn);
  758. memcpy(dataPtr, ob->buf + ob->oi, mn);
  759. }
  760. else
  761. {
  762. p->cbFunc(p->cbArg, mn, ob->buf + ob->oi );
  763. }
  764. ob->oi += mn;
  765. // if we are reading correctly ob->oi should land
  766. // exactly on ob->ii when the buffer is empty
  767. assert( ob->oi <= ob->ii );
  768. // if the buffer is empty
  769. if( ob->oi == ob->ii )
  770. {
  771. ob->oi = p->bn; // mark the buffer as empty
  772. ob->ii = 0; //
  773. }
  774. return rc;
  775. }
  776. unsigned cmTs1p1cDequeueMsgByteCount( cmTsQueueH_t h )
  777. {
  778. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  779. cmThBuf_t* ob = p->a + (p->ibi == 0 ? 1 : 0);
  780. // empty buffers always are set to: oi==bn && ii==0
  781. if( ob->oi >= ob->ii )
  782. return 0;
  783. // get the size of the msg
  784. return *(unsigned*)(ob->buf + ob->oi);
  785. }
  786. bool cmTs1p1cMsgWaiting( cmTsQueueH_t h )
  787. { return cmTs1p1cDequeueMsgByteCount(h) > 0; }
  788. bool cmTs1p1cIsValid( cmTs1p1cH_t h )
  789. { return h.h != NULL; }
  790. #endif
  791. //--------------------------------------------------------------------------------------------------
  792. //--------------------------------------------------------------------------------------------------
  793. //--------------------------------------------------------------------------------------------------
  794. typedef struct
  795. {
  796. volatile unsigned ii;
  797. cmErr_t err;
  798. char* buf;
  799. unsigned bn;
  800. cmTsQueueCb_t cbFunc;
  801. void* cbArg;
  802. volatile unsigned oi;
  803. } cmTs1p1c_t;
  804. cmTs1p1c_t* _cmTs1p1cHandleToPtr( cmTs1p1cH_t h )
  805. {
  806. cmTs1p1c_t* p = (cmTs1p1c_t*)h.h;
  807. assert( p != NULL );
  808. return p;
  809. }
  810. cmThRC_t cmTs1p1cCreate( cmTs1p1cH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  811. {
  812. cmThRC_t rc;
  813. if((rc = cmTs1p1cDestroy(hPtr)) != kOkThRC )
  814. return rc;
  815. cmTs1p1c_t* p = cmMemAllocZ(cmTs1p1c_t,1);
  816. cmErrSetup(&p->err,rpt,"1p1c Queue");
  817. p->buf = cmMemAllocZ(char,bufByteCnt+sizeof(unsigned));
  818. p->ii = 0;
  819. p->oi = 0;
  820. p->bn = bufByteCnt;
  821. p->cbFunc = cbFunc;
  822. p->cbArg = cbArg;
  823. hPtr->h = p;
  824. return rc;
  825. }
  826. cmThRC_t cmTs1p1cDestroy( cmTs1p1cH_t* hp )
  827. {
  828. cmThRC_t rc = kOkThRC;
  829. if( hp == NULL || cmTs1p1cIsValid(*hp)==false )
  830. return kOkThRC;
  831. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(*hp);
  832. cmMemFree(p->buf);
  833. cmMemFree(p);
  834. hp->h = NULL;
  835. return rc;
  836. }
  837. cmThRC_t cmTs1p1cEnqueueSegMsg( cmTs1p1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  838. {
  839. cmThRC_t rc = kOkThRC;
  840. unsigned mn = 0;
  841. unsigned i;
  842. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  843. // get the total count of bytes for this msg
  844. for(i=0; i<arrayCnt; ++i)
  845. mn += msgByteCntArray[i];
  846. int dn = mn + sizeof(unsigned);
  847. int oi = p->oi;
  848. int bi = p->ii; // 'bi' is the idx of the leftmost cell which can be written
  849. int en = p->bn; // 'en' is the idx of the cell just to the right of the rightmost cell that can be written
  850. // note: If 'oi' marks the rightmost location then 'en' must be set
  851. // one cell to the left of 'oi', because 'ii' can never be allowed to
  852. // advance onto 'oi' - because 'oi'=='ii' marks an empty (NOT a full)
  853. // queue.
  854. //
  855. // If 'bn' marks the rightmost location then 'ii' can advance onto 'bn'
  856. // beause the true queue length is bn+1.
  857. // if we need to wrap
  858. if( en-bi < dn && oi<=bi )
  859. {
  860. bi = 0;
  861. en = oi - 1; // note if oi==0 then en is negative - see note above re: oi==ii
  862. assert( p->ii>=0 && p->ii <= p->bn );
  863. *(unsigned*)(p->buf + p->ii) = cmInvalidIdx; // mark the wrap location
  864. }
  865. // if oi is between ii and bn
  866. if( oi > bi )
  867. en = oi - 1; // never allow ii to advance onto oi - see note above
  868. // if the msg won't fit
  869. if( en - bi < dn )
  870. return cmErrMsg(&p->err,kBufFullThRC,"%i consecutive bytes is not available in the queue.",dn);
  871. // set the msg byte count - the msg byte cnt precedes the msg body
  872. char* dp = p->buf + bi;
  873. *(unsigned*)dp = dn - sizeof(unsigned);
  874. dp += sizeof(unsigned);
  875. // copy the msg into the buffer
  876. for(i=0,dn=0; i<arrayCnt; ++i)
  877. {
  878. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  879. dp += msgByteCntArray[i];
  880. dn += msgByteCntArray[i];
  881. }
  882. // incrementing p->ii must occur last - the unnecessary accumulation
  883. // of dn in the above loop is intended to prevent this line from
  884. // begin moved before the copy loop.
  885. p->ii = bi + dn + sizeof(unsigned);
  886. assert( p->ii >= 0 && p->ii <= p->bn);
  887. return rc;
  888. }
  889. cmThRC_t cmTs1p1cEnqueueMsg( cmTs1p1cH_t h, const void* dataPtr, unsigned byteCnt )
  890. { return cmTs1p1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  891. unsigned cmTs1p1cAllocByteCount( cmTs1p1cH_t h )
  892. {
  893. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  894. return p->bn;
  895. }
  896. unsigned cmTs1p1cAvailByteCount( cmTs1p1cH_t h )
  897. {
  898. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  899. unsigned oi = p->oi;
  900. unsigned ii = p->ii;
  901. return oi < ii ? p->bn - ii + oi : oi - ii;
  902. }
  903. unsigned _cmTs1p1cDequeueMsgByteCount( cmTs1p1c_t* p )
  904. {
  905. // if the buffer is empty
  906. if( p->ii == p->oi )
  907. return 0;
  908. // get the length of the next msg
  909. unsigned mn = *(unsigned*)(p->buf + p->oi);
  910. // if the msg length is cmInvalidIdx ...
  911. if( mn == cmInvalidIdx )
  912. {
  913. p->oi = 0; // ... wrap to buf begin and try again
  914. return _cmTs1p1cDequeueMsgByteCount(p);
  915. }
  916. return mn;
  917. }
  918. cmThRC_t cmTs1p1cDequeueMsg( cmTs1p1cH_t h, void* dataPtr, unsigned byteCnt )
  919. {
  920. cmThRC_t rc = kOkThRC;
  921. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  922. unsigned mn;
  923. if((mn = _cmTs1p1cDequeueMsgByteCount(p)) == 0 )
  924. return kBufEmptyThRC;
  925. void* mp = p->buf + p->oi + sizeof(unsigned);
  926. if( dataPtr != NULL )
  927. {
  928. if( byteCnt < mn )
  929. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,mn);
  930. memcpy(dataPtr,mp,mn);
  931. }
  932. else
  933. {
  934. p->cbFunc(p->cbArg,mn,mp);
  935. }
  936. p->oi += mn + sizeof(unsigned);
  937. return rc;
  938. }
  939. unsigned cmTs1p1cDequeueMsgByteCount( cmTs1p1cH_t h )
  940. {
  941. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  942. return _cmTs1p1cDequeueMsgByteCount(p);
  943. }
  944. bool cmTs1p1cMsgWaiting( cmTs1p1cH_t h )
  945. { return cmTs1p1cDequeueMsgByteCount(h) > 0; }
  946. bool cmTs1p1cIsValid( cmTs1p1cH_t h )
  947. { return h.h != NULL; }
  948. //============================================================================================================================
  949. bool cmThIntCAS( int* addr, int old, int new )
  950. {
  951. #ifdef OS_OSX
  952. int rv = OSAtomicCompareAndSwap32Barrier(old,new,addr);
  953. return rv;
  954. #endif
  955. #ifdef OS_LINUX
  956. return __sync_bool_compare_and_swap(addr,old,new);
  957. #endif
  958. }
  959. bool cmThUIntCAS( unsigned* addr, unsigned old, unsigned new )
  960. {
  961. #ifdef OS_OSX
  962. return OSAtomicCompareAndSwap32Barrier((int)old,(int)new,(int*)addr);
  963. #endif
  964. #ifdef OS_LINUX
  965. return __sync_bool_compare_and_swap(addr,old,new);
  966. #endif
  967. }
  968. bool cmThFloatCAS( float* addr, float old, float new )
  969. {
  970. #ifdef OS_OSX
  971. return OSAtomicCompareAndSwap32Barrier(*(int*)(&old),*(int*)(&new),(int*)addr );
  972. #endif
  973. #ifdef OS_LINUX
  974. return __sync_bool_compare_and_swap((unsigned*)addr, *(unsigned*)(&old),*(unsigned*)(&new));
  975. #endif
  976. }
  977. bool cmThPtrCAS( void* addr, void* old, void* neww )
  978. {
  979. #ifdef OS_OSX
  980. // REMOVE THIS HACK AND USE OSAtomicCompareAndSwapPtrBarrier() WHEN
  981. // A 64 BIT BUILD IS POSSIBLE ON OS-X.
  982. typedef struct
  983. {
  984. union
  985. {
  986. void* addr;
  987. int64_t val;
  988. } u;
  989. } s_t;
  990. s_t ov,nv;
  991. ov.u.addr = old;
  992. nv.u.addr = neww;
  993. int rv = OSAtomicCompareAndSwap64Barrier(ov.u.val,nv.u.val,(int64_t*)addr);
  994. //int rv = OSAtomicCompareAndSwapPtrBarrier(old,neww,&addr);
  995. return rv;
  996. #endif
  997. #ifdef OS_LINUX
  998. #ifdef OS_64
  999. return __sync_bool_compare_and_swap((long long*)addr, (long long)old, (long long)neww);
  1000. #else
  1001. return __sync_bool_compare_and_swap((int*)addr,(int)old,(int)neww);
  1002. #endif
  1003. #endif
  1004. }
  1005. void cmThIntIncr( int* addr, int incr )
  1006. {
  1007. #ifdef OS_OSX
  1008. OSAtomicAdd32Barrier(incr,addr);
  1009. #endif
  1010. #ifdef OS_LINUX
  1011. // ... could also use __sync_add_and_fetch() ...
  1012. __sync_fetch_and_add(addr,incr);
  1013. #endif
  1014. }
  1015. void cmThUIntIncr( unsigned* addr, unsigned incr )
  1016. {
  1017. #ifdef OS_OSX
  1018. OSAtomicAdd32Barrier((int)incr,(int*)addr);
  1019. #endif
  1020. #ifdef OS_LINUX
  1021. __sync_fetch_and_add(addr,incr);
  1022. #endif
  1023. }
  1024. void cmThFloatIncr(float* addr, float incr )
  1025. {
  1026. float old,new;
  1027. do
  1028. {
  1029. old = *addr;
  1030. new = old + incr;
  1031. }while( cmThFloatCAS(addr,old,new)==0 );
  1032. }
  1033. void cmThIntDecr( int* addr, int decr )
  1034. {
  1035. #ifdef OS_OSX
  1036. OSAtomicAdd32Barrier(-decr,addr);
  1037. #endif
  1038. #ifdef OS_LINUX
  1039. __sync_fetch_and_sub(addr,decr);
  1040. #endif
  1041. }
  1042. void cmThUIntDecr( unsigned* addr, unsigned decr )
  1043. {
  1044. #ifdef OS_OSX
  1045. OSAtomicAdd32Barrier(-((int)decr),(int*)addr);
  1046. #endif
  1047. #ifdef OS_LINUX
  1048. __sync_fetch_and_sub(addr,decr);
  1049. #endif
  1050. }
  1051. void cmThFloatDecr(float* addr, float decr )
  1052. {
  1053. float old,new;
  1054. do
  1055. {
  1056. old = *addr;
  1057. new = old - decr;
  1058. }while( cmThFloatCAS(addr,old,new)==0 );
  1059. }
  1060. //============================================================================================================================
  1061. //
  1062. //
  1063. typedef pthread_t cmThreadId_t;
  1064. typedef struct
  1065. {
  1066. cmThreadId_t id; // id of this thread as returned by pthread_self()
  1067. char* buf; // buf[bn]
  1068. int ii; // input index
  1069. int oi; // output index (oi==ii == empty buffer)
  1070. } cmTsBuf_t;
  1071. // msg header - which is actually written AFTER the msg it is associated with
  1072. typedef struct cmTsHdr_str
  1073. {
  1074. int mn; // length of the msg
  1075. int ai; // buffer index
  1076. struct cmTsHdr_str* link; // pointer to next msg
  1077. } cmTsHdr_t;
  1078. typedef struct
  1079. {
  1080. cmErr_t err;
  1081. int bn; // bytes per thread buffer
  1082. cmTsBuf_t* a; // a[an] buffer array
  1083. unsigned an; // length of a[] - one buffer per thread
  1084. cmTsQueueCb_t cbFunc;
  1085. void* cbArg;
  1086. cmTsHdr_t* ilp; // prev msg hdr record
  1087. cmTsHdr_t* olp; // prev msg hdr record (wait for olp->link to be set to go to next record)
  1088. } cmTsMp1c_t;
  1089. cmTsMp1cH_t cmTsMp1cNullHandle = cmSTATIC_NULL_HANDLE;
  1090. void _cmTsMp1cPrint( cmTsMp1c_t* p )
  1091. {
  1092. unsigned i;
  1093. for(i=0; i<p->an; ++i)
  1094. printf("%2i ii:%3i oi:%3i\n",i,p->a[i].ii,p->a[i].oi);
  1095. }
  1096. cmTsMp1c_t* _cmTsMp1cHandleToPtr( cmTsMp1cH_t h )
  1097. {
  1098. cmTsMp1c_t* p = (cmTsMp1c_t*)h.h;
  1099. assert(p != NULL);
  1100. return p;
  1101. }
  1102. unsigned _cmTsMp1cBufIndex( cmTsMp1c_t* p, cmThreadId_t id )
  1103. {
  1104. unsigned i;
  1105. for(i=0; i<p->an; ++i)
  1106. if( p->a[i].id == id )
  1107. return i;
  1108. p->an = i+1;
  1109. p->a = cmMemResizePZ(cmTsBuf_t,p->a,p->an);
  1110. p->a[i].buf = cmMemAllocZ(char,p->bn);
  1111. p->a[i].id = id;
  1112. return i;
  1113. }
  1114. cmThRC_t cmTsMp1cDestroy( cmTsMp1cH_t* hp )
  1115. {
  1116. if( hp == NULL || cmTsMp1cIsValid(*hp) == false )
  1117. return kOkThRC;
  1118. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(*hp);
  1119. unsigned i;
  1120. for(i=0; i<p->an; ++i)
  1121. cmMemFree(p->a[i].buf);
  1122. cmMemPtrFree(&p->a);
  1123. cmMemFree(p);
  1124. hp->h = NULL;
  1125. return kOkThRC;
  1126. }
  1127. cmThRC_t cmTsMp1cCreate( cmTsMp1cH_t* hp, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  1128. {
  1129. cmThRC_t rc;
  1130. if((rc = cmTsMp1cDestroy(hp)) != kOkThRC )
  1131. return rc;
  1132. cmTsMp1c_t* p = cmMemAllocZ(cmTsMp1c_t,1);
  1133. cmErrSetup(&p->err,rpt,"TsMp1c Queue");
  1134. p->a = NULL;
  1135. p->an = 0;
  1136. p->bn = bufByteCnt;
  1137. p->cbFunc = cbFunc;
  1138. p->cbArg = cbArg;
  1139. p->ilp = NULL;
  1140. p->olp = NULL;
  1141. hp->h = p;
  1142. return rc;
  1143. }
  1144. void cmTsMp1cSetCbFunc( cmTsMp1cH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  1145. {
  1146. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1147. p->cbFunc = cbFunc;
  1148. p->cbArg = cbArg;
  1149. }
  1150. cmTsQueueCb_t cmTsMp1cCbFunc( cmTsMp1cH_t h )
  1151. {
  1152. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1153. return p->cbFunc;
  1154. }
  1155. void* cmTsMp1cCbArg( cmTsMp1cH_t h )
  1156. {
  1157. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1158. return p->cbArg;
  1159. }
  1160. //#define CAS(addr,old,new) __sync_bool_compare_and_swap(addr,old,new)
  1161. //#define CAS(addr,old,neww) cmThPtrCAS(addr,old,neww)
  1162. cmThRC_t cmTsMp1cEnqueueSegMsg( cmTsMp1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  1163. {
  1164. cmThRC_t rc = kOkThRC;
  1165. unsigned mn = 0;
  1166. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1167. unsigned ai = _cmTsMp1cBufIndex( p, pthread_self() );
  1168. cmTsBuf_t* b = p->a + ai;
  1169. int i,bi,ei;
  1170. cmTsHdr_t hdr;
  1171. // Use a stored oi for the duration of this function.
  1172. // b->oi may be changed by the dequeue thread but storing it here
  1173. // at least prevents it from changing during the course of the this function.
  1174. // Note: b->oi is only used to check for buffer full. Even if it changes
  1175. // it would only mean that more bytes were available than calculated based
  1176. // on the stored value. A low estimate of the actual bytes available is
  1177. // never unsafe.
  1178. volatile int oi = b->oi;
  1179. // get the total count of bytes for this msg
  1180. for(i=0; i<arrayCnt; ++i)
  1181. mn += msgByteCntArray[i];
  1182. // dn = count of msg bytes + count of header bytes
  1183. int dn = mn + sizeof(hdr);
  1184. // if oi is ahead of ii in the queue then we must write
  1185. // in the area between ii and oi
  1186. if( oi > b->ii )
  1187. {
  1188. ei = oi-1; // (never allow ii to equal oi (that's the empty condition))
  1189. bi = b->ii;
  1190. }
  1191. else // otherwise oi is same or before ii in the queue and we have the option to wrap
  1192. {
  1193. // if the new msg will not fit at the end of the queue ....
  1194. if( b->ii + dn > p->bn )
  1195. {
  1196. bi = 0; // ... then wrap to the beginning
  1197. ei = oi-1; // (never allow ii to equal oi (that's the empty condition))
  1198. }
  1199. else
  1200. {
  1201. ei = p->bn; // otherwise write at the current location
  1202. bi = b->ii;
  1203. }
  1204. }
  1205. if( bi + dn > ei )
  1206. return cmErrMsg(&p->err,kBufFullThRC,"%i consecutive bytes is not available in the queue.",dn);
  1207. char* dp = b->buf + bi;
  1208. // write the msg
  1209. for(i=0; i<arrayCnt; ++i)
  1210. {
  1211. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  1212. dp += msgByteCntArray[i];
  1213. }
  1214. // setup the msg header
  1215. hdr.ai = ai;
  1216. hdr.mn = mn;
  1217. hdr.link = NULL;
  1218. // write the msg header (following the msg body in memory)
  1219. cmTsHdr_t* hp = (cmTsHdr_t*)dp;
  1220. memcpy(hp,&hdr,sizeof(hdr));
  1221. // increment the buffers input index
  1222. b->ii = bi + dn;
  1223. // update the link list head to point to this msg hdr
  1224. cmTsHdr_t* old_hp, *new_hp;
  1225. do
  1226. {
  1227. old_hp = p->ilp;
  1228. new_hp = hp;
  1229. }while(!cmThPtrCAS(&p->ilp,old_hp,new_hp));
  1230. // link the prev recd to this recd
  1231. if( old_hp != NULL )
  1232. old_hp->link = hp;
  1233. // if this is the first record written by this queue then prime the output list
  1234. do
  1235. {
  1236. old_hp = p->olp;
  1237. new_hp = hp;
  1238. if( old_hp != NULL )
  1239. break;
  1240. }while(!cmThPtrCAS(&p->olp,old_hp,new_hp));
  1241. //printf("%p %p %i\n",p->ilp,p->olp,p->olp->mn);
  1242. return rc;
  1243. }
  1244. cmThRC_t cmTsMp1cEnqueueMsg( cmTsMp1cH_t h, const void* dataPtr, unsigned byteCnt )
  1245. { return cmTsMp1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  1246. unsigned cmTsMp1cAllocByteCount( cmTsMp1cH_t h )
  1247. {
  1248. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1249. return p->bn;
  1250. }
  1251. unsigned cmTsMp1cAvailByteCount( cmTsMp1cH_t h )
  1252. {
  1253. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1254. unsigned ai = _cmTsMp1cBufIndex(p,pthread_self());
  1255. const cmTsBuf_t* b = p->a + ai;
  1256. if( b->oi > b->ii )
  1257. return b->oi - b->ii - 1;
  1258. return (p->bn - b->ii) + b->oi - 1;
  1259. }
  1260. unsigned _cmTsMp1cNextMsgByteCnt( cmTsMp1c_t* p )
  1261. {
  1262. if( p->olp == NULL )
  1263. return 0;
  1264. // if the current msg has not yet been read
  1265. if( p->olp->mn != 0 )
  1266. return p->olp->mn;
  1267. // if the current msg has been read but a new next msg has been linked
  1268. if( p->olp->mn == 0 && p->olp->link != NULL )
  1269. {
  1270. // advance the buffer output msg past the prev msg header
  1271. char* hp = (char*)(p->olp + 1);
  1272. p->a[p->olp->ai].oi = hp - p->a[p->olp->ai].buf;
  1273. // advance msg pointer to point to the new msg header
  1274. p->olp = p->olp->link;
  1275. // return the size of the new msg
  1276. return p->olp->mn;
  1277. }
  1278. return 0;
  1279. }
  1280. cmThRC_t cmTsMp1cDequeueMsg( cmTsMp1cH_t h, void* dataPtr, unsigned byteCnt )
  1281. {
  1282. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1283. // if there are no messages waiting
  1284. if( _cmTsMp1cNextMsgByteCnt(p) == 0 )
  1285. return kBufEmptyThRC;
  1286. char* hp = (char*)p->olp;
  1287. char* dp = hp - p->olp->mn; // the msg body is before the msg hdr
  1288. if( dataPtr == NULL )
  1289. {
  1290. p->cbFunc(p->cbArg,p->olp->mn,dp);
  1291. }
  1292. else
  1293. {
  1294. if( p->olp->mn > byteCnt )
  1295. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,p->olp->mn);
  1296. memcpy(dataPtr,dp,p->olp->mn);
  1297. }
  1298. // advance the buffers output index past the msg body
  1299. p->a[p->olp->ai].oi = hp - p->a[p->olp->ai].buf;
  1300. // mark the msg as read
  1301. p->olp->mn = 0;
  1302. return kOkThRC;
  1303. }
  1304. bool cmTsMp1cMsgWaiting( cmTsMp1cH_t h )
  1305. {
  1306. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1307. return _cmTsMp1cNextMsgByteCnt(p) != 0;
  1308. }
  1309. unsigned cmTsMp1cDequeueMsgByteCount( cmTsMp1cH_t h )
  1310. {
  1311. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1312. return _cmTsMp1cNextMsgByteCnt(p);
  1313. }
  1314. bool cmTsMp1cIsValid( cmTsMp1cH_t h )
  1315. { return h.h != NULL; }
  1316. //============================================================================================================================/
  1317. //
  1318. // cmTsQueueTest()
  1319. //
  1320. // param recd for use by _cmTsQueueCb0() and
  1321. // the msg record passed between the sender
  1322. // threads and the receiver thread
  1323. typedef struct
  1324. {
  1325. unsigned id;
  1326. cmTsQueueH_t qH;
  1327. int val;
  1328. } _cmTsQCbParam_t;
  1329. // Generate a random number and put it in a TS queue
  1330. bool _cmTsQueueCb0(void* param)
  1331. {
  1332. _cmTsQCbParam_t* p = (_cmTsQCbParam_t*)param;
  1333. p->val = rand(); // generate a random number
  1334. // send the msg
  1335. if( cmTsQueueEnqueueMsg( p->qH, p, sizeof(_cmTsQCbParam_t)) == kOkThRC )
  1336. printf("in:%i %i\n",p->id,p->val);
  1337. else
  1338. printf("in error %i\n",p->id);
  1339. cmSleepUs(100*1000);
  1340. return true;
  1341. }
  1342. // Monitor a TS queue for incoming messages from _cmTsQueueCb1()
  1343. bool _cmTsQueueCb1(void* param)
  1344. {
  1345. // the thread param is a ptr to the TS queue to monitor.
  1346. cmTsQueueH_t* qp = (cmTsQueueH_t*)param;
  1347. cmThRC_t rc;
  1348. _cmTsQCbParam_t msg;
  1349. // dequeue any waiting messages
  1350. if((rc = cmTsQueueDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1351. printf("out:%i %i\n",msg.id,msg.val);
  1352. else
  1353. {
  1354. if( rc != kBufEmptyThRC )
  1355. printf("out error:%i\n", rc);
  1356. }
  1357. return true;
  1358. }
  1359. // Test the TS queue by starting sender threads (threads 0 & 1)
  1360. // and a receiver thread (thread 2) and sending messages
  1361. // from the sender to the receiver.
  1362. void cmTsQueueTest( cmRpt_t* rpt )
  1363. {
  1364. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1365. cmTsQueueH_t q=cmTsQueueNullHandle;
  1366. _cmTsQCbParam_t param0, param1;
  1367. // create a TS Queue
  1368. if( cmTsQueueCreate(&q,100,NULL,NULL,rpt) != kOkThRC )
  1369. goto errLabel;
  1370. // create thread 0
  1371. param0.id = 0;
  1372. param0.qH = q;
  1373. if( cmThreadCreate(&th0,_cmTsQueueCb0,&param0,rpt) != kOkThRC )
  1374. goto errLabel;
  1375. // create thread 1
  1376. param1.id = 1;
  1377. param1.qH = q;
  1378. if( cmThreadCreate(&th1,_cmTsQueueCb0,&param1,rpt) != kOkThRC )
  1379. goto errLabel;
  1380. // create thread 2
  1381. if( cmThreadCreate(&th2,_cmTsQueueCb1,&q,rpt) != kOkThRC )
  1382. goto errLabel;
  1383. // start thread 0
  1384. if( cmThreadPause(th0,0) != kOkThRC )
  1385. goto errLabel;
  1386. // start thread 1
  1387. if( cmThreadPause(th1,0) != kOkThRC )
  1388. goto errLabel;
  1389. // start thread 2
  1390. if( cmThreadPause(th2,0) != kOkThRC )
  1391. goto errLabel;
  1392. printf("any key to quit.");
  1393. getchar();
  1394. errLabel:
  1395. if( cmThreadIsValid(th0) )
  1396. if( cmThreadDestroy(&th0) != kOkThRC )
  1397. printf("Error destroying thread 0\n");
  1398. if( cmThreadIsValid(th1) )
  1399. if( cmThreadDestroy(&th1) != kOkThRC )
  1400. printf("Error destroying thread 1\n");
  1401. if( cmThreadIsValid(th2) )
  1402. if( cmThreadDestroy(&th2) != kOkThRC )
  1403. printf("Error destroying thread 1\n");
  1404. if( cmTsQueueIsValid(q) )
  1405. if( cmTsQueueDestroy(&q) != kOkThRC )
  1406. printf("Error destroying queue\n");
  1407. }
  1408. //============================================================================================================================/
  1409. //
  1410. // cmTs1p1cTest()
  1411. //
  1412. // param recd for use by _cmTsQueueCb0() and
  1413. // the msg record passed between the sender
  1414. // threads and the receiver thread
  1415. typedef struct
  1416. {
  1417. unsigned id;
  1418. cmTs1p1cH_t qH;
  1419. int val;
  1420. } _cmTs1p1cCbParam_t;
  1421. cmTs1p1cH_t cmTs1p1cNullHandle = cmSTATIC_NULL_HANDLE;
  1422. // Generate a random number and put it in a TS queue
  1423. bool _cmTs1p1cCb0(void* param)
  1424. {
  1425. _cmTs1p1cCbParam_t* p = (_cmTs1p1cCbParam_t*)param;
  1426. p->val = rand(); // generate a random number
  1427. // send the msg
  1428. if( cmTs1p1cEnqueueMsg( p->qH, p, sizeof(_cmTs1p1cCbParam_t)) == kOkThRC )
  1429. printf("in:%i %i\n",p->id,p->val);
  1430. else
  1431. printf("in error %i\n",p->id);
  1432. ++p->id;
  1433. cmSleepUs(100*1000);
  1434. return true;
  1435. }
  1436. // Monitor a TS queue for incoming messages from _cmTs1p1cCb1()
  1437. bool _cmTs1p1cCb1(void* param)
  1438. {
  1439. // the thread param is a ptr to the TS queue to monitor.
  1440. cmTs1p1cH_t* qp = (cmTs1p1cH_t*)param;
  1441. cmThRC_t rc;
  1442. _cmTs1p1cCbParam_t msg;
  1443. // dequeue any waiting messages
  1444. if((rc = cmTs1p1cDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1445. printf("out:%i %i\n",msg.id,msg.val);
  1446. else
  1447. {
  1448. if( rc != kBufEmptyThRC )
  1449. printf("out error:%i\n", rc);
  1450. }
  1451. return true;
  1452. }
  1453. // Test the TS queue by starting sender threads (threads 0 & 1)
  1454. // and a receiver thread (thread 2) and sending messages
  1455. // from the sender to the receiver.
  1456. void cmTs1p1cTest( cmRpt_t* rpt )
  1457. {
  1458. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1459. cmTs1p1cH_t q=cmTs1p1cNullHandle;
  1460. _cmTs1p1cCbParam_t param1;
  1461. // create a TS Queue
  1462. if( cmTs1p1cCreate(&q,28*2,NULL,NULL,rpt) != kOkThRC )
  1463. goto errLabel;
  1464. // create thread 1
  1465. param1.id = 0;
  1466. param1.qH = q;
  1467. if( cmThreadCreate(&th1,_cmTs1p1cCb0,&param1,rpt) != kOkThRC )
  1468. goto errLabel;
  1469. // create thread 2
  1470. if( cmThreadCreate(&th2,_cmTs1p1cCb1,&q,rpt) != kOkThRC )
  1471. goto errLabel;
  1472. // start thread 1
  1473. if( cmThreadPause(th1,0) != kOkThRC )
  1474. goto errLabel;
  1475. // start thread 2
  1476. if( cmThreadPause(th2,0) != kOkThRC )
  1477. goto errLabel;
  1478. printf("any key to quit.");
  1479. getchar();
  1480. errLabel:
  1481. if( cmThreadIsValid(th0) )
  1482. if( cmThreadDestroy(&th0) != kOkThRC )
  1483. printf("Error destroying thread 0\n");
  1484. if( cmThreadIsValid(th1) )
  1485. if( cmThreadDestroy(&th1) != kOkThRC )
  1486. printf("Error destroying thread 1\n");
  1487. if( cmThreadIsValid(th2) )
  1488. if( cmThreadDestroy(&th2) != kOkThRC )
  1489. printf("Error destroying thread 1\n");
  1490. if( cmTs1p1cIsValid(q) )
  1491. if( cmTs1p1cDestroy(&q) != kOkThRC )
  1492. printf("Error destroying queue\n");
  1493. }
  1494. //============================================================================================================================/
  1495. //
  1496. // cmTsMp1cTest()
  1497. //
  1498. // param recd for use by _cmTsQueueCb0() and
  1499. // the msg record passed between the sender
  1500. // threads and the receiver thread
  1501. typedef struct
  1502. {
  1503. unsigned id;
  1504. cmTsMp1cH_t qH;
  1505. int val;
  1506. } _cmTsMp1cCbParam_t;
  1507. unsigned _cmTsMp1cVal = 0;
  1508. // Incr the global value _cmTsMp1cVal and put it in a TS queue
  1509. bool _cmTsMp1cCb0(void* param)
  1510. {
  1511. _cmTsMp1cCbParam_t* p = (_cmTsMp1cCbParam_t*)param;
  1512. //p->val = __sync_fetch_and_add(&_cmTsMp1cVal,1);
  1513. cmThUIntIncr(&_cmTsMp1cVal,1);
  1514. p->val = _cmTsMp1cVal;
  1515. // send the msg
  1516. if( cmTsMp1cEnqueueMsg( p->qH, p, sizeof(_cmTsMp1cCbParam_t)) == kOkThRC )
  1517. printf("in:%i %i\n",p->id,p->val);
  1518. else
  1519. printf("in error %i\n",p->id);
  1520. cmSleepUs(100*1000);
  1521. return true;
  1522. }
  1523. // Monitor a TS queue for incoming messages from _cmTsMp1cCb1()
  1524. bool _cmTsMp1cCb1(void* param)
  1525. {
  1526. // the thread param is a ptr to the TS queue to monitor.
  1527. cmTsMp1cH_t* qp = (cmTsMp1cH_t*)param;
  1528. cmThRC_t rc;
  1529. _cmTsMp1cCbParam_t msg;
  1530. // dequeue any waiting messages
  1531. if((rc = cmTsMp1cDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1532. printf("out - cons id:%i val:%i\n",msg.id,msg.val);
  1533. else
  1534. {
  1535. if( rc != kBufEmptyThRC )
  1536. printf("out error:%i\n", rc);
  1537. }
  1538. return true;
  1539. }
  1540. // Test the TS queue by starting sender threads (threads 0 & 1)
  1541. // and a receiver thread (thread 2) and sending messages
  1542. // from the sender to the receiver.
  1543. void cmTsMp1cTest( cmRpt_t* rpt )
  1544. {
  1545. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1546. cmTsMp1cH_t q=cmTsMp1cNullHandle;
  1547. _cmTsMp1cCbParam_t param0, param1;
  1548. // create a TS Queue
  1549. if( cmTsMp1cCreate(&q,1000,NULL,NULL,rpt) != kOkThRC )
  1550. goto errLabel;
  1551. // create thread 0 - producer 0
  1552. param0.id = 0;
  1553. param0.qH = q;
  1554. if( cmThreadCreate(&th0,_cmTsMp1cCb0,&param0,rpt) != kOkThRC )
  1555. goto errLabel;
  1556. // create thread 1 - producer 1
  1557. param1.id = 1;
  1558. param1.qH = q;
  1559. if( cmThreadCreate(&th1,_cmTsMp1cCb0,&param1,rpt) != kOkThRC )
  1560. goto errLabel;
  1561. // create thread 2 - consumer 0
  1562. if( cmThreadCreate(&th2,_cmTsMp1cCb1,&q,rpt) != kOkThRC )
  1563. goto errLabel;
  1564. // start thread 0
  1565. if( cmThreadPause(th0,0) != kOkThRC )
  1566. goto errLabel;
  1567. // start thread 1
  1568. if( cmThreadPause(th1,0) != kOkThRC )
  1569. goto errLabel;
  1570. // start thread 2
  1571. if( cmThreadPause(th2,0) != kOkThRC )
  1572. goto errLabel;
  1573. printf("any key to quit.");
  1574. getchar();
  1575. errLabel:
  1576. if( cmThreadIsValid(th0) )
  1577. if( cmThreadDestroy(&th0) != kOkThRC )
  1578. printf("Error destroying thread 0\n");
  1579. if( cmThreadIsValid(th1) )
  1580. if( cmThreadDestroy(&th1) != kOkThRC )
  1581. printf("Error destroying thread 1\n");
  1582. if( cmThreadIsValid(th2) )
  1583. if( cmThreadDestroy(&th2) != kOkThRC )
  1584. printf("Error destroying thread 1\n");
  1585. if( cmTsMp1cIsValid(q) )
  1586. if( cmTsMp1cDestroy(&q) != kOkThRC )
  1587. printf("Error destroying queue\n");
  1588. }
  1589. void cmSleepUs( unsigned microseconds )
  1590. { usleep(microseconds); }
  1591. void cmSleepMs( unsigned milliseconds )
  1592. { cmSleepUs(milliseconds*1000); }