1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214 |
- #ifdef cmVectOpsTemplateCode_h
-
- void VECT_OP_FUNC(VPrint)( cmRpt_t* rpt, const char* fmt, ... )
- {
- va_list vl;
- va_start(vl,fmt);
-
- if( rpt != NULL )
- cmRptVPrintf(rpt,fmt,vl);
- else
- vprintf(fmt,vl);
-
- va_end(vl);
- }
-
- void VECT_OP_FUNC(Printf)( cmRpt_t* rpt, unsigned rowCnt, unsigned colCnt, const VECT_OP_TYPE* sbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt, unsigned flags )
- {
- unsigned cci;
- unsigned outColCnt = 10;
-
- if( fieldWidth < 0 )
- fieldWidth = 10;
-
- if( decPlCnt < 0 )
- decPlCnt = 4;
-
- if( outColCnt == -1 )
- outColCnt = colCnt;
-
- for(cci=0; cci<colCnt; cci+=outColCnt)
- {
- unsigned ci0 = cci;
- unsigned cn = cci + outColCnt;
- unsigned ri;
-
- if(cn > colCnt)
- cn = colCnt;
-
- if( colCnt > outColCnt )
- {
- if( cmIsFlag(flags,cmPrintMatlabLabelsFl) )
- VECT_OP_FUNC(VPrint)(rpt,"Columns:%i to %i\n",ci0,cn-1);
- else
- if( cmIsFlag(flags,cmPrintShortLabelsFl) )
- VECT_OP_FUNC(VPrint)(rpt,"%3i: ",ci0);
- }
-
- if( rowCnt > 1 )
- VECT_OP_FUNC(VPrint)(rpt,"\n");
-
- for(ri=0; ri<rowCnt; ++ri)
- {
- unsigned ci;
-
- for(ci=ci0; ci<cn; ++ci )
- VECT_OP_FUNC(VPrint)(rpt,fmt,fieldWidth,decPlCnt,sbp[ (ci*rowCnt) + ri ]);
-
- if( cn > 0 )
- VECT_OP_FUNC(VPrint)(rpt,"\n");
- }
- }
- }
-
- void VECT_OP_FUNC(Print)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
- { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl); }
-
- void VECT_OP_FUNC(PrintE)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
- { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl); }
-
- void VECT_OP_FUNC(PrintLf)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt )
- {
- VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
- VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, fieldWidth, decPlCnt,fmt,cmPrintShortLabelsFl );
- }
-
- void VECT_OP_FUNC(PrintL)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
- {
- VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
- VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl );
- }
-
- void VECT_OP_FUNC(PrintLE)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
- {
- VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
- VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl );
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityVV)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
- {
- VECT_OP_TYPE sum = VECT_OP_FUNC(Sum)(sbp,dn);
-
- if( sum == 0 )
- sum = 1;
-
- return VECT_OP_FUNC(DivVVS)(dbp,dn,sbp,sum);
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbability)(VECT_OP_TYPE* dbp, unsigned dn)
- { return VECT_OP_FUNC(NormalizeProbabilityVV)(dbp,dn,dbp); }
-
- VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityN)(VECT_OP_TYPE* dbp, unsigned dn, unsigned stride)
- {
- VECT_OP_TYPE sum = VECT_OP_FUNC(SumN)(dbp,dn,stride);
-
- if( sum == 0 )
- return dbp;
-
-
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + (dn*stride);
- for(; dp < ep; dp+=stride )
- *dp /= sum;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(StandardizeRows)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
- {
- bool uFl = false;
- bool sFl = false;
- unsigned i;
-
- if( uV == NULL )
- {
- uV = cmMemAllocZ(VECT_OP_TYPE,drn);
- uFl = true;
- }
-
- if( sdV == NULL )
- {
- sdV = cmMemAllocZ(VECT_OP_TYPE,drn);
- sFl = true;
- }
-
- VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 1 );
-
- VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 1 );
-
- for(i=0; i<dcn; ++i)
- {
- VECT_OP_FUNC(SubVV)(dbp + i * drn, drn, uV );
- VECT_OP_FUNC(DivVV)(dbp + i * drn, drn, sdV );
- }
-
- if(uFl)
- cmMemFree(uV);
-
- if(sFl)
- cmMemFree(sdV);
-
- return dbp;
-
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(StandardizeCols)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
- {
- bool uFl = false;
- bool sFl = false;
- unsigned i;
-
- if( uV == NULL )
- {
- uV = cmMemAllocZ(VECT_OP_TYPE,dcn);
- uFl = true;
- }
-
- if( sdV == NULL )
- {
- sdV = cmMemAllocZ(VECT_OP_TYPE,dcn);
- sFl = true;
- }
-
- VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 0 );
-
- VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 0 );
-
- for(i=0; i<drn; ++i)
- {
- VECT_OP_FUNC(SubVVNN)(dbp + i, dcn, drn, uV, 1 );
- VECT_OP_FUNC(DivVVNN)(dbp + i, dcn, drn, sdV, 1 );
- }
-
- if(uFl)
- cmMemFree(uV);
-
- if(sFl)
- cmMemFree(sdV);
-
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
- {
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dbp + dn;
- for(; dp < ep; ++dp,++sp )
- *dp = *sp < 0 ? 0 : *sp;
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
- {
- VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
- VECT_OP_TYPE sum = 0;
- while( dbp < dep )
- {
- sum += *sbp++;
- *dbp++ = sum;
-
- }
- return rp;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(Mean)( const VECT_OP_TYPE* bp, unsigned n )
- { return VECT_OP_FUNC(Sum)(bp,n)/n; }
-
- VECT_OP_TYPE VECT_OP_FUNC(MeanN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
- { return VECT_OP_FUNC(SumN)(bp,n,stride)/n; }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MeanM)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim )
- {
- unsigned i;
- unsigned cn = dim == 0 ? scn : srn;
- unsigned rn = dim == 0 ? srn : scn;
- unsigned inc = dim == 0 ? srn : 1;
- unsigned stride = dim == 0 ? 1 : srn;
- unsigned d0 = 0;
-
- for(i=0; i<cn; ++i, d0+=inc)
- dp[i] = VECT_OP_FUNC(MeanN)(sp + d0, rn, stride );
-
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Mean2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* (*srcFuncPtr)(void* arg, unsigned idx ), unsigned D, unsigned N, void* argPtr )
- {
- unsigned i,n;
- const VECT_OP_TYPE* sp;
-
- VECT_OP_FUNC(Zero)(dp,D);
-
- if( N > 1 )
- {
- n = 0;
-
- for(i=0; i<N; ++i)
- if((sp = srcFuncPtr(argPtr,i)) != NULL )
- {
- VECT_OP_FUNC(AddVV)(dp,D,sp);
- ++n;
- }
-
- VECT_OP_FUNC(DivVS)(dp,D,n);
- }
-
- return dp;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(Variance)( const VECT_OP_TYPE* sp, unsigned sn, const VECT_OP_TYPE* avgPtr )
- { return VECT_OP_FUNC(VarianceN)(sp,sn,1,avgPtr); }
-
- VECT_OP_TYPE VECT_OP_FUNC(VarianceN)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride, const VECT_OP_TYPE* meanPtr )
- {
- VECT_OP_TYPE mean = 0;
-
- if( sn <= 1 )
- return 0;
-
- if( meanPtr == NULL )
- mean = VECT_OP_FUNC(MeanN)( sp, sn, stride );
- else
- mean = *meanPtr;
-
- const VECT_OP_TYPE* ep = sp + (sn*stride);
- VECT_OP_TYPE sum = 0;
- for(; sp < ep; sp += stride )
- sum += (*sp-mean) * (*sp-mean);
-
- return sum / (sn-1);
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(VarianceM)(VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, const VECT_OP_TYPE* avgPtr, unsigned dim )
- {
- unsigned i;
- unsigned cn = dim == 0 ? scn : srn;
- unsigned rn = dim == 0 ? srn : scn;
- unsigned inc = dim == 0 ? srn : 1;
- unsigned stride = dim == 0 ? 1 : srn;
- unsigned d0 = 0;
-
- for(i=0; i<cn; ++i, d0+=inc)
- dp[i] = VECT_OP_FUNC(VarianceN)(sp + d0, rn, stride, avgPtr==NULL ? NULL : avgPtr+i );
-
- return dp;
- }
-
- unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn )
- {
- unsigned i = VECT_OP_FUNC(MaxIndex)(dp,dn,1);
-
- if( i != cmInvalidIdx )
- {
- VECT_OP_TYPE v = dp[i];
- VECT_OP_FUNC(DivVS)(dp,dn,v);
- }
-
- return i;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha )
- {
- double sum = 0;
- const VECT_OP_TYPE* bp = sp;
- const VECT_OP_TYPE* ep = sp + sn;
- while( bp < ep )
- sum += pow(fabs(*bp++),alpha);
-
- return (VECT_OP_TYPE)pow(sum/sn,1.0/alpha);
- }
-
- void VECT_OP_FUNC(GaussCovariance)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* xM, unsigned xN, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
- {
- unsigned i,j,k,n = 0;
- VECT_OP_TYPE tV[ D ];
-
- VECT_OP_FUNC(Fill)(yM,D*D,0);
-
- // if the mean was not given - then calculate it
- if( uV == NULL )
- {
- VECT_OP_FUNC(Fill)(tV,D,0);
-
- // sum each row of xM[] into uM[]
- for(i=0; i<D; ++i)
- {
- n = 0;
- for(j=0; j<xN; ++j)
- if( selIdxV==NULL || selIdxV[j]==selKey )
- {
- tV[i] += xM[ (j*D) + i ];
- ++n;
- }
- }
- // form an average from the sum in tV[]
- VECT_OP_FUNC(DivVS)(tV,D,n);
-
- uV = tV;
- }
-
- for(i=0; i<D; ++i)
- for(j=i; j<D; ++j)
- {
- n = 0;
-
- for(k=0; k<xN; ++k)
- if( selIdxV==NULL || selIdxV[k]==selKey)
- {
- unsigned yi = (i*D)+j;
-
- yM[ yi ] += ((xM[ (k*D)+j ]-uV[j]) * (xM[ (k*D) + i ]-uV[i]));
- if( i != j )
- yM[ (j*D)+i ] = yM[ yi ];
-
- ++n;
- }
- }
-
- if( n>1 )
- VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
-
- }
-
- void VECT_OP_FUNC(GaussCovariance2)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned idx), unsigned xN, void* userPtr, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
- {
- unsigned i,j,k = 0,n;
- VECT_OP_TYPE tV[ D ];
- const VECT_OP_TYPE* sp;
-
- VECT_OP_FUNC(Fill)(yM,D*D,0);
-
- // if the mean was not given - then calculate it
- if( uV == NULL )
- {
- VECT_OP_FUNC(Fill)(tV,D,0);
-
- n = 0;
-
- // sum each row of xM[] into uM[]
- for(i=0; i<xN; ++i)
- if( (selIdxV==NULL || selIdxV[i]==selKey) && ((sp=srcFunc(userPtr,i))!=NULL) )
- {
- VECT_OP_FUNC(AddVV)(tV,D,sp);
- ++n;
- }
-
- // form an average from the sum in tV[]
- VECT_OP_FUNC(DivVS)(tV,D,n);
-
- uV = tV;
- }
-
- for(i=0; i<xN; ++i)
- if( selIdxV==NULL || selIdxV[i]==selKey )
- {
- // get a pointer to the ith data point
- const VECT_OP_TYPE* sV = srcFunc(userPtr,i);
-
- // note: this algorithm works because when a data point element (scalar)
- // is multiplied by another data point element those two elements
- // are always part of the same data point (vector). Two elements
- // from different data points are never multiplied.
-
- if( sV != NULL )
- for(j=0; j<D; ++j)
- for(k=j; k<D; ++k)
- yM[j + k*D] += (sV[j]-uV[j]) * (sV[k]-uV[k]);
- }
-
- if( n > 1 )
- VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
-
- // fill in the lower triangle
- for(j=0; j<D; ++j)
- for(k=j; k<D; ++k)
- yM[k + j*D] = yM[j + k*D];
-
- }
-
-
- bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- const VECT_OP_TYPE* ep = s0p + sn;
- while( s0p < ep )
- if( *s0p++ != *s1p++ )
- return false;
- return true;
- }
-
- bool VECT_OP_FUNC(IsNormal)( const VECT_OP_TYPE* sp, unsigned sn )
- {
- const VECT_OP_TYPE* ep = sp + sn;
- for(; sp<ep; ++sp)
- if( !isnormal(*sp) )
- return false;
-
- return true;
- }
-
- bool VECT_OP_FUNC(IsNormalZ)(const VECT_OP_TYPE* sp, unsigned sn )
- {
- const VECT_OP_TYPE* ep = sp + sn;
- for(; sp<ep; ++sp)
- if( (*sp != 0) && (!isnormal(*sp)) )
- return false;
-
- return true;
- }
-
- unsigned VECT_OP_FUNC(FindNonNormal)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
- {
- const VECT_OP_TYPE* sp = sbp;
- const VECT_OP_TYPE* ep = sp + dn;
- unsigned n = 0;
-
- for(; sp<ep; ++sp)
- if( !isnormal(*sp) )
- dp[n++] = sp - sbp;
-
- return n;
-
- }
-
- unsigned VECT_OP_FUNC(FindNonNormalZ)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
- {
- const VECT_OP_TYPE* sp = sbp;
- const VECT_OP_TYPE* ep = sp + dn;
- unsigned n = 0;
-
- for(; sp<ep; ++sp)
- if( (*sp!=0) && (!isnormal(*sp)) )
- dp[n++] = sp - sbp;
-
- return n;
- }
-
-
-
- unsigned VECT_OP_FUNC(ZeroCrossCount)( const VECT_OP_TYPE* bp, unsigned bn, VECT_OP_TYPE* delaySmpPtr)
- {
- unsigned n = delaySmpPtr != NULL ? ((*delaySmpPtr >= 0) != (*bp >= 0)) : 0 ;
- const VECT_OP_TYPE* ep = bp + bn;
- for(; bp<ep-1; ++bp)
- if( (*bp >= 0) != (*(bp+1) >= 0) )
- ++n;
-
- if( delaySmpPtr != NULL )
- *delaySmpPtr = *bp;
-
- return n;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(SquaredSum)( const VECT_OP_TYPE* bp, unsigned bn )
- {
- VECT_OP_TYPE sum = 0;
- const VECT_OP_TYPE* ep = bp + bn;
-
- for(; bp < ep; ++bp )
- sum += *bp * *bp;
- return sum;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(RMS)( const VECT_OP_TYPE* bp, unsigned bn, unsigned wndSmpCnt )
- {
- const VECT_OP_TYPE* ep = bp + bn;
-
- if( bn==0 )
- return 0;
-
- assert( bn <= wndSmpCnt );
-
- double sum = 0;
- for(; bp < ep; ++bp )
- sum += *bp * *bp;
-
- return (VECT_OP_TYPE)sqrt(sum/wndSmpCnt);
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RmsV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, unsigned sn, unsigned wndSmpCnt, unsigned hopSmpCnt )
- {
- const VECT_OP_TYPE* dep = dp + dn;
- const VECT_OP_TYPE* sep = sp + sn;
- VECT_OP_TYPE* rp = dp;
-
- for(; dp<dep && sp<sep; sp+=hopSmpCnt)
- *dp++ = VECT_OP_FUNC(RMS)( sp, cmMin(wndSmpCnt,sep-sp), wndSmpCnt );
-
-
- VECT_OP_FUNC(Zero)(dp,dep-dp);
-
- return rp;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(EuclidNorm)( const VECT_OP_TYPE* sp, unsigned sn )
- { return (VECT_OP_TYPE)sqrt( VECT_OP_FUNC(MultSumVV)(sp,sp,sn)); }
-
- /*
- From:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/distitpf.html
- [nf1,p2]=size(pf1);
- p1=p2-1;
- nf2=size(pf2,1);
- nx= min(nf1,nf2);
- r = pf1(1:nx,:)./pf2(1:nx,:);
- q = r-log(r);
- s = sum( q(:,2:p1),2) + 0.5 * (q(:,1)+q(:,p2))
- d= s/p1-1;
-
- */
-
- VECT_OP_TYPE VECT_OP_FUNC(ItakuraDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- VECT_OP_TYPE d = 0;
-
- VECT_OP_TYPE r[ sn ];
- VECT_OP_TYPE q[ sn ];
-
- // r = pf1(1:nx,:)./pf2(1:nx,:);
- VECT_OP_FUNC(DivVVV)(r,sn,s0p,s1p);
-
- //q=log(r);
- VECT_OP_FUNC(LogV)(q,sn,r);
-
- //r = r - q = r - log(r)
- VECT_OP_FUNC(SubVV)(r,sn,q);
-
- //r = r - sn = r - log(r) - 1
- VECT_OP_FUNC(SubVS)(r,sn,sn);
-
- // d = sum(r);
- d = VECT_OP_FUNC(Sum)(r,sn);
-
- return (VECT_OP_TYPE)(d / sn);
-
- //d = log( VECT_OP_FUNC(Sum)(r,sn) /sn );
-
- //d -= VECT_OP_FUNC(Sum)(q,sn)/sn;
-
- return d;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(CosineDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- VECT_OP_TYPE d0 = VECT_OP_FUNC(EuclidNorm)(s0p,sn);
- VECT_OP_TYPE d1 = VECT_OP_FUNC(EuclidNorm)(s1p,sn);
-
- if( d0 == 0 )
- d0 = cmReal_MIN;
-
- if( d1 == 0 )
- d1 = cmReal_MIN;
-
- return (VECT_OP_TYPE)(VECT_OP_FUNC(MultSumVV)(s0p,s1p,sn) / (d0 * d1));
- }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(EuclidDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- double d = 0;
-
- const VECT_OP_TYPE* sep = s0p + sn;
- for(; s0p<sep; ++s0p,++s1p)
- d += (*s0p - *s1p) * (*s0p - *s1p);
-
- return (VECT_OP_TYPE)(sqrt(d));
-
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(L1Distance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- double d = 0;
-
- const VECT_OP_TYPE* sep = s0p + sn;
- for(; s0p<sep; ++s0p,++s1p)
- d += (VECT_OP_TYPE)fabs(*s0p - *s1p);
-
- return d;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(MahalanobisDistance)( const VECT_OP_TYPE* x, unsigned D, const VECT_OP_TYPE* u, const VECT_OP_TYPE* invCovM )
- {
- VECT_OP_TYPE t[ D ];
- VECT_OP_TYPE d[ D ];
-
- // t[] = x[] - u[];
- VECT_OP_FUNC(SubVVV)(t,D,x,u);
-
- // d[1,D] = t[1,D] * covM[D,D]
- VECT_OP_FUNC(MultVVM)( d, D, t, D, invCovM );
-
- // d = sum(d[].*t[])
- VECT_OP_TYPE dist = VECT_OP_FUNC(MultSumVV)(d,t,D);
-
- return (VECT_OP_TYPE)sqrt(dist);
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(KL_Distance)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
- {
- VECT_OP_TYPE v[ sn ];
- VECT_OP_FUNC(DivVVV)(v,sn,up,sp); // v = up ./ sp
- VECT_OP_FUNC(LogV)(v,sn,v); // v = log(v)
- VECT_OP_FUNC(MultVV)(v,sn,up); // v *= up;
- return VECT_OP_FUNC(Sum)(v,sn); // sum(v)
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(KL_Distance2)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
- {
- VECT_OP_TYPE v0[ sn ];
- VECT_OP_TYPE v1[ sn ];
- VECT_OP_FUNC(NormalizeProbabilityVV)(v0,sn,up);
- VECT_OP_FUNC(NormalizeProbabilityVV)(v1,sn,sp);
- return VECT_OP_FUNC(KL_Distance)(v0,v1,sn);
- }
-
- /// If dv[scn] is non NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
- /// The function returns the index of the closest data point (column) in sm[].
- unsigned VECT_OP_FUNC(EuclidDistanceVM)( VECT_OP_TYPE* dv, const VECT_OP_TYPE* sv, const VECT_OP_TYPE* sm, unsigned srn, unsigned scn )
- {
-
- unsigned minIdx = cmInvalidIdx;
- VECT_OP_TYPE minDist = 0;
- unsigned i = 0;
-
- for(; i<scn; ++i )
- {
- VECT_OP_TYPE dist = VECT_OP_FUNC(EuclidDistance)(sv, sm + (i*srn), srn );
-
- if( dv != NULL )
- *dv++ = dist;
-
- if( dist < minDist || minIdx == cmInvalidIdx )
- {
- minIdx = i;
- minDist = dist;
- }
- }
-
- return minIdx;
- }
-
- void VECT_OP_FUNC(DistVMM)( VECT_OP_TYPE* dM, VECT_OP_TYPE* mvV, unsigned* miV, unsigned rn, const VECT_OP_TYPE* s0M, unsigned s0cn, const VECT_OP_TYPE* s1M, unsigned s1cn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
- {
- unsigned i,j,k;
-
- // for each col in s0M[];
- for(i=0,k=0; i<s0cn; ++i)
- {
- VECT_OP_TYPE min_val = VECT_OP_MAX;
- unsigned min_idx = cmInvalidIdx;
-
- // for each col in s1M[]
- for(j=0; j<s1cn; ++j,++k)
- {
- // v = distance(s0M[:,i],s1M[:,j]
- VECT_OP_TYPE v = distFunc( userPtr, s1M + (j*rn), s0M + (i*rn), rn );
-
- if( dM != NULL )
- dM[k] = v; // store distance
-
- // track closest col in s1M[]
- if( v < min_val || min_idx==cmInvalidIdx )
- {
- min_val = v;
- min_idx = j;
- }
- }
-
- if( mvV != NULL )
- mvV[i] = min_val;
-
- if( miV != NULL )
- miV[i] = min_idx;
- }
- }
-
- void VECT_OP_FUNC(SelectRandom) ( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn )
- {
- bool freeFl = false;
- unsigned i;
-
- assert( selIdxN != 0 );
-
- // if no selIdxV[] was given then create one
- if( selIdxV == NULL )
- {
- selIdxV = cmMemAlloc( unsigned, selIdxN );
- freeFl = true;
- }
-
- // select datapoints at random
- cmVOU_UniqueRandom(selIdxV,selIdxN,scn);
-
- // copy the data points into the output matrix
- if( dM != NULL )
- for(i=0; i<selIdxN; ++i)
- {
- assert( selIdxV[i] < scn );
-
- VECT_OP_FUNC(Copy)( dM + (i*srn), srn, sM + selIdxV[i]*srn );
- }
-
- if( freeFl )
- cmMemPtrFree(&selIdxV);
-
- }
-
- void VECT_OP_FUNC(_SelectDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr, bool avgFl )
- {
- unsigned i;
- unsigned dcn = 0;
- bool freeFl = false;
-
- assert( selIdxN > 0 );
-
- if( dM == NULL )
- {
- dM = cmMemAllocZ( VECT_OP_TYPE, srn*selIdxN );
- freeFl = true;
- }
-
- // allocate distM[scn,selIdxN] to hold the distances from each selected column to all columns in sM[]
- VECT_OP_TYPE* distM = cmMemAllocZ( VECT_OP_TYPE, scn*selIdxN );
-
- // sumV[] is a temp vector to hold the summed distances to from the selected columns to each column in sM[]
- VECT_OP_TYPE* sumV = cmMemAllocZ( VECT_OP_TYPE, scn );
-
- // select a random point from sM[] and copy it to the first column of dM[]
- cmVOU_Random(&i,1,scn);
- VECT_OP_FUNC(Copy)(dM, srn, sM + (i*srn));
-
- if( selIdxV != NULL )
- selIdxV[0] = i;
-
- for(dcn=1; dcn<selIdxN; ++dcn)
- {
- // set distM[scn,dcn] with the dist from dM[dcn,srn] to each column in sM[]
- VECT_OP_FUNC(DistVMM)( distM, NULL, NULL, srn, dM, dcn, sM, scn, distFunc, userPtr );
-
- // sum the rows of distM[ scn, dcn ] into sumV[scn]
- VECT_OP_FUNC(SumMN)( distM, scn, dcn, sumV );
-
- if( avgFl )
- VECT_OP_FUNC(DivVS)( sumV, scn, dcn );
-
- // find the point in sM[] which has the greatest combined distance to all previously selected points.
- unsigned maxIdx = VECT_OP_FUNC(MaxIndex)(sumV, scn, 1 );
-
- // copy the point into dM[]
- VECT_OP_FUNC(Copy)(dM + (dcn*srn), srn, sM + (maxIdx*srn));
-
- if( selIdxV != NULL )
- selIdxV[dcn] = maxIdx;
- }
-
- cmMemPtrFree(&distM);
- cmMemPtrFree(&sumV);
-
- if( freeFl )
- cmMemPtrFree(&dM);
- }
-
- void VECT_OP_FUNC(SelectMaxDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
- { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,false); }
-
- void VECT_OP_FUNC(SelectMaxAvgDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
- { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,true); }
-
-
- #ifdef CM_VECTOP
-
- VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- { return VECT_OP_BLAS_FUNC(dot)(sn, s0p, 1, s1p, 1); }
-
- #else
-
- VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- VECT_OP_TYPE sum = 0;
- const VECT_OP_TYPE* sep = s0p + sn;
-
- while(s0p<sep)
- sum += *s0p++ * *s1p++;
-
- return sum;
- }
- #endif
-
- VECT_OP_TYPE VECT_OP_FUNC(MultSumVS)( const VECT_OP_TYPE* s0p, unsigned sn, VECT_OP_TYPE s1 )
- {
- VECT_OP_TYPE sum = 0;
- const VECT_OP_TYPE* sep = s0p + sn;
-
- while(s0p<sep)
- sum += *s0p++ * s1;
-
- return sum;
- }
-
- #ifdef CM_VECTOP
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
- {
- VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasNoTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
-
- return dbp;
- }
-
- #else
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
- {
- const VECT_OP_TYPE* dep = dbp + mrn;
- VECT_OP_TYPE* dp = dbp;
- const VECT_OP_TYPE* vep = vp + mcn;
-
- // for each dest element
- for(; dbp < dep; ++dbp )
- {
- const VECT_OP_TYPE* vbp = vp;
- const VECT_OP_TYPE* mbp = mp++;
-
- *dbp = 0;
-
- // for each source vector row and src mtx col
- while( vbp < vep )
- {
- *dbp += *mbp * *vbp++;
- mbp += mrn;
- }
- }
-
- return dp;
- }
- #endif
-
-
- #ifdef CM_VECTOP
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
- {
- VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, vn, dn, 1.0, mp, vn, vp, 1, 0.0, dbp, 1 );
- return dbp;
- }
-
- #else
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
- {
- unsigned i;
- for(i=0; i<dn; ++i)
- dbp[i] = VECT_OP_FUNC(MultSumVV)(vp,mp + (i*vn),vn);
- return dbp;
- }
- #endif
-
-
- #ifdef CM_VECTOP
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
- {
- VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
- return dbp;
- }
-
- #else
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
- {
- const VECT_OP_TYPE* dep = dbp + mcn;
- VECT_OP_TYPE* dp = dbp;
- const VECT_OP_TYPE* vep = vp + mrn;
-
- // for each dest element
- for(; dbp < dep; ++dbp )
- {
- const VECT_OP_TYPE* vbp = vp;
-
- *dbp = 0;
-
- // for each source vector row and src mtx col
- while( vbp < vep )
- *dbp += *mp++ * *vbp++;
-
-
- }
-
- return dp;
- }
-
- #endif
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultDiagVMV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
- {
- VECT_OP_TYPE* rp = dbp;
-
- const VECT_OP_TYPE* mep = mp + (dn*mcn);
-
- // for each dest element
- for(; mp < mep; mp += dn+1 )
- *dbp++ = *vp++ * *mp;
-
- return rp;
- }
-
- /*
- Fortran Doc: http://www.netlib.org/blas/cgemm.f
-
- C Doc: http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?cmd=getdoc&coll=0650&db=man&fname=3%20INTRO_CBLAS
-
- C = alpha * op(A) * op(B) + beta * C
-
- cblas_Xgemm(
- order, enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
- transposeA, enum CBLAS_TRANSPOSE { CblasNoTrans, CblasTrans, CBlasConjTrans }
- transposeB,
- M, row op(A) and rows C (i.e. rows of A 'after' optional transpose)
- N, col op(B) and cols C (i.e. rows of B 'after' optional transpose)
- K, col op(A) and rows op(B)
- alpha, A scalar
- A, pointer to source matrix A
- lda, number of rows in A as it is stored in memory (assuming col major order)
- B, pointer to source matrix B
- ldb, number of rows in B as it is stored in memory (assuming col major order)
- beta C scalar
- C, pointer to destination matrix C
- ldc number of rows in C as it is stored in memory (assuming col major order)
- )
-
- */
-
- #ifdef CM_VECTOP
- VECT_OP_TYPE* VECT_OP_FUNC(MultMMM1)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags )
- {
- bool t0fl = cmIsFlag(flags,kTransposeM0Fl);
- bool t1fl = cmIsFlag(flags,kTransposeM1Fl);
-
- VECT_OP_BLAS_FUNC(gemm)(
- CblasColMajor,
- t0fl ? CblasTrans : CblasNoTrans,
- t1fl ? CblasTrans : CblasNoTrans,
- drn, dcn, n,
- alpha,
- m0, t0fl ? n : drn,
- m1, t1fl ? dcn : n,
- beta,
- dbp, drn );
-
- return dbp;
-
- }
- #else
-
- // Not implemented.
-
- #endif
-
- #ifdef CM_VECTOP
- VECT_OP_TYPE* VECT_OP_FUNC(MultMMM2)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags, unsigned dprn, unsigned m0prn, unsigned m1prn )
- {
-
- VECT_OP_BLAS_FUNC(gemm)(
- CblasColMajor,
- cmIsFlag(flags,kTransposeM0Fl) ? CblasTrans : CblasNoTrans,
- cmIsFlag(flags,kTransposeM1Fl) ? CblasTrans : CblasNoTrans,
- drn, dcn, n,
- alpha,
- m0, m0prn,
- m1, m1prn,
- beta,
- dbp, dprn );
-
- return dbp;
- }
- #else
-
- // Not implemented.
-
- #endif
-
-
- #ifdef CM_VECTOP
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n )
- {
- VECT_OP_BLAS_FUNC(gemm)(
- CblasColMajor,
- CblasNoTrans, CblasNoTrans,
- drn, dcn, n,
- 1.0, m0, drn,
- m1, n,
- 0.0, dbp, drn );
- return dbp;
- }
-
- #else
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
- {
- unsigned i;
-
- for(i=0; i<dcn; ++i)
- VECT_OP_FUNC(MultVMV)(dbp+(i*drn),drn,m0,m0cn_m1rn,m1+(i*m0cn_m1rn));
-
- return dbp;
- }
-
- #endif
-
- #ifdef CM_VECTOP
- VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
- {
- VECT_OP_BLAS_FUNC(gemm)( CblasColMajor, CblasNoTrans, CblasTrans,
- drn, dcn, m0cn_m1rn,
- 1.0, m0, drn,
- m1, dcn,
- 0.0, dbp, drn );
-
- return dbp;
- }
- #else
- VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
- {
- unsigned i,j,k;
- VECT_OP_FUNC(Zero)(dbp,drn*dcn);
-
- for(i=0; i<dcn; ++i)
- for(j=0; j<drn; ++j)
- for(k=0; k<m0cn_m1rn; ++k)
- dbp[ i*drn + j ] += m0[ k*drn + j ] * m1[ k*dcn + i ];
-
- return dbp;
- }
- #endif
-
- VECT_OP_TYPE* VECT_OP_FUNC(PowVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE expo )
- {
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
- for(; dp < ep; ++dp )
- *dp = (VECT_OP_TYPE)pow(*dp,expo);
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(PowVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE expo )
- {
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
- for(; dp < ep; ++dp,++sp )
- *dp = (VECT_OP_TYPE)pow(*sp,expo);
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
- {
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
- for(; dp <ep; ++dp,++sbp)
- *dp = (VECT_OP_TYPE)log(*sbp);
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
- {
- VECT_OP_TYPE minVal = pow(10.0,minDb/20.0);
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
-
- for(; dp<ep; ++dp,++sbp)
- *dp = *sbp<minVal ? minDb : 20.0 * log10(*sbp);
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
- {
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
- for(; dp<ep; ++dp,++sbp)
- *dp = pow(10.0,*sbp/20.0);
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
- {
- VECT_OP_TYPE minVal = pow(10.0,minDb/10.0);
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
-
- for(; dp<ep; ++dp,++sbp)
- *dp = *sbp<minVal ? minDb : 10.0 * log10(*sbp);
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
- {
- VECT_OP_TYPE* dp = dbp;
- VECT_OP_TYPE* ep = dp + dn;
- for(; dp<ep; ++dp,++sbp)
- *dp = pow(10.0,*sbp/10.0);
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandSymPosDef)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE* t )
- {
- unsigned i,j;
-
- bool fl = t == NULL;
-
- if( fl )
- t = cmMemAlloc( VECT_OP_TYPE , dn*dn );
-
- do
- {
- // intialize t[] as a square symetric matrix with random values
- for(i=0; i<dn; ++i)
- for(j=i; j<dn; ++j)
- {
- VECT_OP_TYPE v = (VECT_OP_TYPE)rand()/RAND_MAX;
-
- t[ (i*dn) + j ] = v;
-
- if( i != j )
- t[ (j*dn) + i ] = v;
- }
-
-
- // square t[] to force the eigenvalues to be positive
- VECT_OP_FUNC(MultMMM)(dbp,dn,dn,t,t,dn);
-
- VECT_OP_FUNC(Copy)(t,dn*dn,dbp);
-
- // test that func is positive definite
- }while( VECT_OP_FUNC(Chol)(t,dn)==NULL );
-
-
- if( fl )
- cmMemFree(t);
-
- return dbp;
- }
-
-
- // Calculate the determinant of a matrix previously factored by
- // the lapack function dgetrf_()
- VECT_OP_TYPE VECT_OP_FUNC(LUDet)( const VECT_OP_TYPE* lu, const int_lap_t* ipiv, int rn )
- {
- VECT_OP_TYPE det1 = 1;
- int det2 = 0;
- int i;
-
- for(i=0; i<rn; ++i)
- {
- if( ipiv != NULL && ipiv[i] != (i+1) )
- det1 = -det1;
-
- det1 = lu[ (i*rn) + i ] * det1;
-
- if( det1 == 0 )
- break;
-
- while( fabs(det1) <= 1 )
- {
- det1 *= 10;
- det2 -= 1;
- }
- //continue;
-
- while( fabs(det1) >= 10 )
- {
- det1 /= 10;
- det2 += 1;
- }
- }
-
- // Here's where underflow or overflow might happen.
- // Enable floating point exception handling to trap.
- det1 *= pow(10.0,det2);
-
- return det1;
- }
-
- // take the inverse of a matrix factored via lapack dgetrf_()
- VECT_OP_TYPE* VECT_OP_FUNC(LUInverse)(VECT_OP_TYPE* dp, int_lap_t* ipiv, int drn )
- {
-
- int_lap_t ispec = 1;
- int_lap_t rn = drn;
- int_lap_t n1 = drn;
- int_lap_t n2 = drn;
- int_lap_t n3 = drn;
- int_lap_t n4 = drn;
-
-
- char funcNameStr[] = {"DGETRI"};
-
- // Calculate the NB factor for LWORK -
- // The two args are length of string args 'funcNameStr' and ' '.
- // It is not clear how many 'n' args are requred so all are passed set to 'drn'
- int nb = ilaenv_(&ispec, funcNameStr, " ", &n1,&n2,&n3,&n4, strlen(funcNameStr), 1 );
-
- VECT_OP_TYPE w[drn * nb]; // allocate working memory
- int_lap_t info;
-
- // calculate inv(A) base on LU factorization
- VECT_OP_LAP_FUNC(getri_)(&rn,dp,&rn,ipiv,w,&rn,&info);
-
- assert(info==0);
-
- return info ==0 ? dp : NULL;
-
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(DetM)( const VECT_OP_TYPE* sp, unsigned srn )
- {
- int_lap_t arn = srn;
- VECT_OP_TYPE A[ arn * arn ];
- int_lap_t ipiv[ arn ];
- int_lap_t info;
-
- VECT_OP_FUNC(Copy)(A,arn*arn,sp);
-
- // PLU factor
- VECT_OP_LAP_FUNC(getrf_)(&arn,&arn,A,&arn,ipiv,&info);
-
- if( info == 0 )
- return VECT_OP_FUNC(LUDet)(A,ipiv,arn);
-
- return 0;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(DetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
- { return VECT_OP_FUNC(LUDet)(sp,NULL,srn); }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(LogDetM)( const VECT_OP_TYPE* sp, unsigned srn )
- {
- cmReal_t det = 0;
- unsigned ne2 = srn * srn;
-
- VECT_OP_TYPE U[ne2];
- const VECT_OP_TYPE* up = U;
- const VECT_OP_TYPE* ep = up + ne2;
-
- VECT_OP_FUNC(Copy)(U,ne2,sp);
- VECT_OP_FUNC(Chol)(U,srn);
-
- for(; up<ep; up += (srn+1) )
- det += log(*up);
-
- return 2*det;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(LogDetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
- { return log(VECT_OP_FUNC(DetDiagM)(sp,srn)); }
-
- VECT_OP_TYPE* VECT_OP_FUNC(InvM)( VECT_OP_TYPE* dp, unsigned drn )
- {
- int_lap_t rn = drn;
- int_lap_t ipiv[ rn ];
- int_lap_t info;
-
- // PLU factor
- VECT_OP_LAP_FUNC(getrf_)(&rn,&rn,dp,&rn,ipiv,&info);
-
- if( info == 0 )
- return VECT_OP_FUNC(LUInverse)(dp,ipiv,rn );
-
- return NULL;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(InvDiagM)( VECT_OP_TYPE* dp, unsigned drn )
- {
- const VECT_OP_TYPE* dep = dp + (drn*drn);
- VECT_OP_TYPE* rp = dp;
-
- for(; dp < dep; dp += drn+1 )
- {
- *dp = 1.0 / *dp;
-
- // if any element on the diagonal is zero then the
- // determinant is zero and the matrix is not invertable
- if( *dp == 0 )
- break;
- }
-
- return dp < dep ? NULL : rp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(SolveLS)( VECT_OP_TYPE* A, unsigned an, VECT_OP_TYPE* B, unsigned bcn )
- {
- int_lap_t aN = an;
- int_lap_t bcN = bcn;
- int_lap_t ipiv[ an ];
- int_lap_t info = 0;
-
- VECT_OP_LAP_FUNC(gesv_)(&aN,&bcN,(VECT_OP_TYPE*)A,&aN,ipiv,B,&aN,&info);
-
- return info == 0 ? B : NULL;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Chol)(VECT_OP_TYPE* A, unsigned an )
- {
- char uplo = 'U';
-
- int_lap_t N = an;
- int_lap_t lda = an;
- int_lap_t info = 0;
-
- VECT_OP_LAP_FUNC(potrf_(&uplo,&N,(VECT_OP_TYPE*)A,&lda,&info));
-
- return info == 0 ? A : NULL;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CholZ)(VECT_OP_TYPE* A, unsigned an )
- {
- unsigned i,j;
- VECT_OP_FUNC(Chol)(A,an);
-
- // zero the lower triangle of A
- for(i=0; i<an; ++i)
- for(j=i+1; j<an; ++j)
- A[ (i*an) + j ] = 0;
-
- return A;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(FracAvg)( double bi, double ei, const VECT_OP_TYPE* sbp, unsigned sn )
- {
- unsigned bii = cmMax(0,cmMin(sn-1,(unsigned)ceil(bi)));
- unsigned eii = cmMax(0,cmMin(sn,(unsigned)floor(ei)+1));
-
- double begW = bii - bi;
- double endW = eii - floor(ei);
-
- double cnt = eii - bii;
-
- double sum = (double)VECT_OP_FUNC(Sum)(sbp+bii,eii-bii);
-
- if( begW>0 && bii > 0 )
- {
- cnt += begW;
- sum += begW * sbp[ bii-1 ];
- }
-
- if( endW>0 && eii+1 < sn )
- {
- cnt += endW;
- sum += endW * sbp[ eii+1 ];
-
- }
-
- return (VECT_OP_TYPE)(sum / cnt);
-
-
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DownSampleAvg)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
- unsigned i = 0;
- double fact = (double)sn / dn;
-
- assert( sn >= dn );
-
- for(i=0; dbp < dep; ++i )
- *dbp++ = VECT_OP_FUNC(FracAvg)( fact*i, fact*(i+1), sbp, sn );
-
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(UpSampleInterp)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- const VECT_OP_TYPE* sep = sbp + sn;
- VECT_OP_TYPE* rp = dbp;
- double fact = (double)sn / dn;
- double phs = 0;
-
- assert( sn <= dn );
-
- while( dbp<dep )
- {
- if( sbp < sep )
- *dbp++ = (VECT_OP_TYPE)((*sbp) + (phs * ((*(sbp+1)) - (*sbp))));
- else
- *dbp++ = (*(sep-1));
-
- phs += fact;
-
- while( phs > 1.0 )
- {
- phs -= 1.0;
- sbp++;
- }
- }
-
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(FitToSize)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
- {
- if( dn == sn )
- return VECT_OP_FUNC(Copy)(dbp,dn,sbp);
-
- if( dn < sn )
- return VECT_OP_FUNC(DownSampleAvg)(dbp,dn,sbp,sn);
-
- return VECT_OP_FUNC(UpSampleInterp)(dbp,dn,sbp,sn);
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(LinearMap)(VECT_OP_TYPE* dV, unsigned dn, VECT_OP_TYPE* sV, unsigned sn )
- {
- if( dn == sn )
- {
- memcpy(dV,sV,dn*sizeof(VECT_OP_TYPE));
- return dV;
- }
-
- unsigned i,j,k;
-
- // if stretching
- if( dn > sn )
- {
- VECT_OP_TYPE f_n = (VECT_OP_TYPE)dn/sn;
- VECT_OP_TYPE f_nn = f_n;
- unsigned i_n = floor(f_n);
-
- k = 0;
- i = 0;
-
- // for each set of ceiling(dn/sn) dst values
- while(1)
- {
- // repeat floor(dn/sn) src val into dst
- for(j=0; j<i_n; ++j,++i)
- dV[i] = sV[k];
-
- if( k + 1 == sn )
- break;
-
- // interpolate between the cur and nxt source value
- VECT_OP_TYPE w = f_nn - floor(f_nn);
- dV[i] = sV[k] + w * (sV[k+1]-sV[k]);
- ++i;
- ++k;
-
- i_n = floor(f_n - (1.0-w));
- f_nn += f_n;
- }
- }
- else // if shrinking
- {
- VECT_OP_TYPE f_n = (VECT_OP_TYPE)sn/dn;
- VECT_OP_TYPE f_nn = f_n;
- unsigned i_n = floor(f_n);
-
- k = 0;
- i = 0;
-
- VECT_OP_TYPE acc = 0;
-
- // for each seq of ceil(sn/dn) src values
- while(1)
- {
- // accum first floor(sn/dn) src values
- for(j=0; j<i_n; ++j,++i)
- acc += sV[i];
-
- if( k == dn-1 )
- {
- dV[k] = acc/f_n;
- break;
- }
-
- // interpolate frac of last src value
- VECT_OP_TYPE w = f_nn - floor(f_nn);
-
- // form avg
- dV[k] = (acc + (w*sV[i]))/f_n;
-
-
- // reload acc with inverse frac of src value
- acc = (1.0-w) * sV[i];
-
- ++i;
- ++k;
-
- i_n = floor(f_n-(1.0-w));
- f_nn += f_n;
-
- }
- }
-
- return dV;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Random)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE minVal, VECT_OP_TYPE maxVal )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp =dbp;
- double fact = (maxVal - minVal)/RAND_MAX;
-
- while( dbp < dep )
- *dbp++ = fact * rand() + minVal;
-
- return dp;
- }
-
- unsigned* VECT_OP_FUNC(WeightedRandInt)( unsigned *dbp, unsigned dn, const VECT_OP_TYPE* wp, unsigned wn )
- {
- unsigned i,j;
- VECT_OP_TYPE a[ wn ];
-
- // form bin boundaries by taking a cum. sum of the weight values.
- VECT_OP_FUNC(CumSum)(a,wn,wp);
-
- for(j=0; j<dn; ++j)
- {
- // gen a random number from a uniform distribution betwen 0 and the max value from the cumsum.
- VECT_OP_TYPE rv = (VECT_OP_TYPE)rand() * a[wn-1] / RAND_MAX;
-
- // find the bin the rv falls into
- for(i=0; i<wn-1; ++i)
- if( rv <= a[i] )
- {
- dbp[j] = i;
- break;
- }
-
- if(i==wn-1)
- dbp[j]= wn-1;
- }
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGauss)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE mean, VECT_OP_TYPE var )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
-
- // The code below implements the Box-Muller uniform to
- // Gaussian distribution transformation. In rectangular
- // coordinates this transform is defined as:
- // y1 = sqrt( - 2.0 * log(x1) ) * cos( 2.0*M_PI*x2 )
- // y2 = sqrt( - 2.0 * log(x1) ) * sin( 2.0*M_PI*x2 )
- //
-
- while( dbp < dep )
- *dbp++ = sqrt( -2.0 * log((VECT_OP_TYPE)rand()/RAND_MAX)) * cos(2.0*M_PI*((VECT_OP_TYPE)rand()/RAND_MAX)) * var + mean;
-
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
- {
- VECT_OP_TYPE* rp = dbp;
- const VECT_OP_TYPE* dep = dbp + dn;
- while( dbp < dep )
- VECT_OP_FUNC(RandomGauss)( dbp++, 1, *meanV++, *varV++ );
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussM)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
- {
- unsigned i;
- for(i=0; i<cn; ++i)
- VECT_OP_FUNC(RandomGaussV)( dbp+(i*rn), rn, meanV, varV );
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM )
- {
- unsigned i,j;
- for(i=0; i<dcn; ++i)
- for(j=0; j<drn; ++j)
- VECT_OP_FUNC(RandomGauss)(dbp + (i*drn)+j, 1, meanV[j], covarM[ (j*drn) + j]);
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, VECT_OP_TYPE* t )
- {
-
- bool fl = t == NULL;
- if( fl )
- t = cmMemAlloc(VECT_OP_TYPE, drn * drn );
-
- VECT_OP_FUNC(Copy)(t,drn*drn,covarM);
-
- if( VECT_OP_FUNC(CholZ)(t,drn) == NULL )
- {
- // Cholesky decomposition failed - should try eigen analysis next
- // From octave mvnrnd.m
- // [E,Lambda]=eig(Sigma);
- // if (min(diag(Lambda))<0),error('Sigma must be positive semi-definite.'),end
- // U = sqrt(Lambda)*E';
-
- assert(0);
- }
- /*
- unsigned i,j;
- for(i=0; i<drn; ++i)
- {
- for(j=0; j<drn; ++j)
- printf("%f ",t[ (j*drn) + i]);
- printf("\n");
- }
- */
-
- VECT_OP_FUNC(RandomGaussNonDiagM2)(dbp,drn,dcn,meanV,t);
-
- if(fl)
- cmMemFree(t);
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM2)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* uM )
- {
- unsigned i;
-
- for(i=0; i<dcn; ++i)
- {
- VECT_OP_TYPE r[ drn ];
- VECT_OP_FUNC(RandomGauss)(r,drn,0,1); // r = randn(drn,1);
- VECT_OP_FUNC(MultVVM)( dbp+(i*drn),drn,r,drn,uM); // dbp[:i] = r * uM;
- VECT_OP_FUNC(AddVV)( dbp+(i*drn),drn,meanV); // dbp[:,i] += meanV;
- }
-
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanM, const VECT_OP_TYPE* varM, unsigned K )
- {
- unsigned k;
- unsigned D = drn;
- unsigned N = dcn/K;
- for(k=0; k<K; ++k)
- VECT_OP_FUNC(RandomGaussM)( dbp + (k*N*D), drn, N, meanM + (k*D), varM + (k*D) );
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY )
- {
- unsigned i;
- for(i=0; i<dn; ++i)
- {
- double a = 2.0*M_PI*i/(dn-1);
-
- dbp[ i ] = (VECT_OP_TYPE)(varX * cos(a) + x);
- dbp[ i+dn ] = (VECT_OP_TYPE)(varY * sin(a) + y);
- }
-
- return dbp;
- }
-
-
- unsigned VECT_OP_FUNC(SynthSine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- double rps = 2.0*M_PI*hz/srate;
-
- while( dbp < dep )
- *dbp++ = (VECT_OP_TYPE)sin( rps * phase++ );
-
- return phase;
- }
-
- unsigned VECT_OP_FUNC(SynthCosine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- double rps = 2.0*M_PI*hz/srate;
-
- while( dbp < dep )
- *dbp++ = (VECT_OP_TYPE)cos( rps * phase++ );
-
- return phase;
- }
-
- unsigned VECT_OP_FUNC(SynthSquare)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
-
- if( otCnt > 0 )
- {
- unsigned i;
-
- // initialize the buffer with the fundamental
- VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
-
- otCnt *= 2;
-
- // sum in each additional harmonic
- for(i=3; i<otCnt; i+=2)
- {
-
- VECT_OP_TYPE* dp = dbp;
- double rps = 2.0 * M_PI * i * hz / srate;
- unsigned phs = phase;
- double g = 1.0/i;
-
- while( dp < dep )
- *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
-
- }
- }
- return phase + (dep - dbp);
- }
-
- unsigned VECT_OP_FUNC(SynthTriangle)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- if( otCnt > 0 )
- {
- unsigned i;
-
- // initialize the buffer with the fundamental
- VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
-
- otCnt *= 2;
-
- // sum in each additional harmonic
- for(i=3; i<otCnt; i+=2)
- {
-
- VECT_OP_TYPE* dp = dbp;
- double rps = 2.0 * M_PI * i * hz / srate;
- unsigned phs = phase;
- double g = 1.0/(i*i);
- while( dp < dep )
- *dp++ += (VECT_OP_TYPE)(g * cos( rps * phs++ ));
- }
- }
- return phase + (dep - dbp);
- }
-
- unsigned VECT_OP_FUNC(SynthSawtooth)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- if( otCnt > 0 )
- {
- unsigned i;
-
- // initialize the buffer with the fundamental
- VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
-
- // sum in each additional harmonic
- for(i=2; i<otCnt; ++i)
- {
-
- VECT_OP_TYPE* dp = dbp;
- double rps = 2.0 * M_PI * i * hz / srate;
- unsigned phs = phase;
- double g = 1.0/i;
-
- while( dp < dep )
- *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
- }
-
- VECT_OP_FUNC(MultVS)(dbp,dn,2.0/M_PI);
- }
- return phase + (dep - dbp);
- }
-
- unsigned VECT_OP_FUNC(SynthPulseCos)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- if( otCnt > 0 )
- {
- unsigned i;
-
-
- // initialize the buffer with the fundamental
- VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
-
- // sum in each additional harmonic
- for(i=1; i<otCnt; ++i)
- {
-
- VECT_OP_TYPE* dp = dbp;
- double rps = 2.0 * M_PI * i * hz / srate;
- unsigned phs = phase;
-
- while( dp < dep )
- *dp++ += (VECT_OP_TYPE)cos( rps * phs++ );
- }
-
- VECT_OP_FUNC(MultVS)(dbp,dn,1.0/otCnt);
- }
- return phase + (dep - dbp);
- }
-
- unsigned VECT_OP_FUNC(SynthImpulse)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- double pi2 = 2.0*M_PI;
- double rps = pi2*hz/srate;
-
- double v0,v1 = fmod( rps * phase, pi2);
-
- if( dbp == dep )
- return phase;
-
- // the phase is set to zero when the first output should be a 1
- if( phase == 0 )
- {
- *dbp++ = 1;
- ++phase;
- }
-
-
- while( dbp < dep )
- {
- // the phase vector will always be increasing
- // the modulus of the phase vector will wrap with frequency 'hz'
- v0 = fmod( rps * phase++, pi2 );
-
- // notice when wrapping occurs
- *dbp++ = (VECT_OP_TYPE)(v0 < v1);
-
- v1 = v0;
- }
-
- // check if the next output should be a 1
- // (this eliminates the problem of not having access to v1 on the next call to this function
- if( fmod( rps * phase, pi2 ) < v1 )
- phase = 0;
-
-
- return phase;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(SynthPinkNoise)( VECT_OP_TYPE* dbp, unsigned n, VECT_OP_TYPE delaySmp )
- {
- const VECT_OP_TYPE* dep = dbp + n;
- VECT_OP_TYPE tmp[ n ];
- VECT_OP_FUNC(Random)(tmp,n,-1.0,1.0);
- VECT_OP_TYPE* sp = tmp;
- VECT_OP_TYPE reg = delaySmp;
-
- for(; dbp < dep; ++sp)
- {
- *dbp++ = (*sp + reg)/2.0;
- reg = *sp;
- }
- return *sp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(LinearToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
- while( dbp < dep )
- *dbp++ = (VECT_OP_TYPE)(mult * log10( VECT_OP_EPSILON + *sp++ ));
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(dBToLinear)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
- while( dbp < dep )
- *dbp++ = (VECT_OP_TYPE)pow(10.0, *sp++ / mult );
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AmplitudeToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
- { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,20.0); }
-
- VECT_OP_TYPE* VECT_OP_FUNC(PowerToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
- { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,10.0); }
-
- VECT_OP_TYPE* VECT_OP_FUNC(dBToAmplitude)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
- { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,20); }
-
- VECT_OP_TYPE* VECT_OP_FUNC(dBToPower)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
- { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,10); }
-
-
- unsigned VECT_OP_FUNC(SynthPhasor)(VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- while( dbp < dep )
- *dbp++ = (VECT_OP_TYPE)fmod( (hz * phase++)/srate, 1.0 );
-
- return phase;
- }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(KaiserBetaFromSidelobeReject)( double sidelobeRejectDb )
- {
- double beta;
-
- if( sidelobeRejectDb < 13.26 )
- sidelobeRejectDb = 13.26;
- else
- if( sidelobeRejectDb > 120.0)
- sidelobeRejectDb = 120.0;
-
- if( sidelobeRejectDb < 60.0 )
- beta = (0.76609 * pow(sidelobeRejectDb - 13.26,0.4)) + (0.09834*(sidelobeRejectDb-13.26));
- else
- beta = 0.12438 * (sidelobeRejectDb + 6.3);
-
- return (VECT_OP_TYPE)beta;
- }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(KaiserFreqResolutionFactor)( double sidelobeRejectDb )
- { return (6.0 * (sidelobeRejectDb + 12.0))/155.0; }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Kaiser)( VECT_OP_TYPE* dbp, unsigned n, double beta )
- {
- bool zeroFl = false;
- int M = 0;
- double den = cmBessel0(beta); // wnd func denominator
- int cnt = n;
- int i;
-
- assert( n >= 3 );
-
- // force ele cnt to be odd
- if( cmIsEvenU(cnt) )
- {
- cnt--;
- zeroFl = true;
- }
-
- // at this point cnt is odd and >= 3
-
- // calc half the window length
- M = (int)((cnt - 1.0)/2.0);
-
- double Msqrd = M*M;
-
- for(i=0; i<cnt; i++)
- {
- double v0 = (double)(i - M);
-
- double num = cmBessel0(beta * sqrt(1.0 - ((v0*v0)/Msqrd)));
-
- dbp[i] = (VECT_OP_TYPE)(num/den);
- }
-
-
- if( zeroFl )
- dbp[cnt] = 0.0; // zero the extra element in the output array
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Gaussian)( VECT_OP_TYPE* dbp, unsigned dn, double mean, double variance )
- {
-
- int M = dn-1;
- double sqrt2pi = sqrt(2.0*M_PI);
- unsigned i;
-
- for(i=0; i<dn; i++)
- {
- double arg = ((((double)i/M) - 0.5) * M);
-
- arg = pow( (double)(arg-mean), 2.0);
-
- arg = exp( -arg / (2.0*variance));
-
- dbp[i] = (VECT_OP_TYPE)(arg / (sqrt(variance) * sqrt2pi));
- }
-
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Hamming)( VECT_OP_TYPE* dbp, unsigned dn )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- double fact = 2.0 * M_PI / (dn-1);
- unsigned i;
-
- for(i=0; dbp < dep; ++i )
- *dbp++ = (VECT_OP_TYPE)(.54 - (.46 * cos(fact*i)));
-
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Hann)( VECT_OP_TYPE* dbp, unsigned dn )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- double fact = 2.0 * M_PI / (dn-1);
- unsigned i;
-
- for(i=0; dbp < dep; ++i )
- *dbp++ = (VECT_OP_TYPE)(.5 - (.5 * cos(fact*i)));
-
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(HannMatlab)( VECT_OP_TYPE* dbp, unsigned dn )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- double fact = 2.0 * M_PI / (dn+1);
- unsigned i;
-
- for(i=0; dbp < dep; ++i )
- *dbp++ = (VECT_OP_TYPE)(0.5*(1.0-cos(fact*(i+1))));
-
- return dp;
- }
-
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Triangle)( VECT_OP_TYPE* dbp, unsigned dn )
- {
- unsigned n = dn/2;
- VECT_OP_TYPE incr = 1.0/n;
-
- VECT_OP_FUNC(Seq)(dbp,n,0,incr);
-
- VECT_OP_FUNC(Seq)(dbp+n,dn-n,1,-incr);
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(GaussWin)( VECT_OP_TYPE* dbp, unsigned dn, double arg )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
- int N = (dep - dbp) - 1;
- int n = -N/2;
-
- if( N == 0 )
- *dbp = 1.0;
- else
- {
- while( dbp < dep )
- {
- double a = (arg * n++) / (N/2);
-
- *dbp++ = (VECT_OP_TYPE)exp( -(a*a)/2 );
- }
- }
- return rp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Filter)(
- VECT_OP_TYPE* y,
- unsigned yn,
- const VECT_OP_TYPE* x,
- unsigned xn,
- cmReal_t b0,
- const cmReal_t* b,
- const cmReal_t* a,
- cmReal_t* d,
- unsigned dn )
- {
- int i,j;
- VECT_OP_TYPE y0 = 0;
- unsigned n = cmMin( yn, xn );
-
- // This is a direct form II algorithm based on the MATLAB implmentation
- // http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
-
- for(i=0; i<n; ++i)
- {
- y[i] = (x[i] * b0) + d[0];
-
- y0 = y[i];
-
- for(j=0; j<dn; ++j)
- d[j] = (b[j] * x[i]) - (a[j] * y0) + d[j+1];
-
- }
-
-
- // if fewer input samples than output samples - zero the end of the output buffer
- if( yn > xn )
- VECT_OP_FUNC(Fill)(y+i,yn-i,0);
-
- return cmOkRC;
-
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(FilterFilter)(struct cmFilter_str* f, cmRC_t (*func)( struct cmFilter_str* f, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn ), const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn )
- {
- int i,j;
- int nfilt = cmMax(bn,an);
- int nfact = 3*(nfilt-1);
- const cmReal_t* a = aa;
- const cmReal_t* b = bb;
- cmReal_t* m = NULL;
- cmReal_t* p;
- unsigned zn = (nfilt-1)*(nfilt-1);
- unsigned mn = 2*zn; // space for mtx z0 and z1
-
- mn += nfilt; // space for zero padded coeff vector
-
- mn += 2*nfact; // space for begin/end sequences
-
- if( nfact >= xn )
- {
- return cmOkRC;
- }
-
- m = cmMemAllocZ( cmReal_t, mn );
- p = m;
-
- cmReal_t* z0 = p;
- p += zn;
-
- cmReal_t* z1 = p;
- p += zn;
-
- cmReal_t* s0 = p;
- p += nfact;
-
- cmReal_t* s1 = p;
- p += nfact;
-
- // zero pad the shorter coeff vect
- if( bn < nfilt )
- {
- cmVOR_Copy(p,bn,bb);
- b = p;
- p += nfilt;
- }
- else
- if( an < nfilt )
- {
- cmVOR_Copy(p,an,aa);
- a = p;
- p += nfilt;
- }
-
-
- // z0=eye(nfilt-1)
- cmVOR_Identity(z0,nfilt-1,nfilt-1);
-
- // z1=[eye(nfilt-1,nfilt-2); zeros(1,nfilt-1)];
- cmVOR_Identity(z1,nfilt-1,nfilt-2);
-
- // z0(:,1) -= a(:)
- for(i=0; i<nfilt-1; ++i)
- z0[i] -= -a[i+1];
-
- // z0(:,2:end) -= z1;
- for(i=1; i<nfilt-1; ++i)
- for(j=0; j<nfilt-1; ++j)
- z0[ (i*(nfilt-1)) + j ] -= z1[ ((i-1)*(nfilt-1)) + j ];
-
- // z1 = b - (a * b[0])
- for(i=1; i<nfilt; ++i)
- z1[i-1] = b[i] - (a[i] * b[0]);
-
- // z1 = z0\z1
- cmVOR_SolveLS(z0,nfilt-1,z1,1);
-
- // if yn<xn then truncate x.
- xn = cmMin(xn,yn);
- yn = xn;
-
- // fill in the beginning sequence
- for(i=0; i<nfact; ++i)
- s0[i] = 2*x[0] - x[ nfact-i ];
-
- // fill in the ending sequence
- for(i=0; i<nfact; ++i)
- s1[i] = 2*x[xn-1] - x[ xn-2-i ];
-
-
- cmVOR_MultVVS( z0, nfact, z1, s0[0]);
-
- unsigned pn = cmMin(1024,xn);
- //acFilter* f = cmFilterAlloc(c,NULL,b,bn,a,an,pn,z0);
-
- cmFilterInit(f,b,bn,a,an,pn,z0);
-
- const VECT_OP_TYPE* xx = x;
-
- for(j=0; j<2; ++j)
- {
- unsigned n = pn;
-
- // filter begining sequence
- cmFilterExecR(f,s0,nfact,s0,nfact);
-
- // filter middle sequence
- for(i=0; i<xn; i+=n)
- {
- n = cmMin(pn,xn-i);
- func(f,xx+i,n,y+i,n);
- }
-
- // filter ending sequence
- cmFilterExecR(f,s1,nfact,s1,nfact);
-
-
- // flip all the sequences
- cmVOR_Flip(s0,nfact);
- cmVOR_Flip(s1,nfact);
- VECT_OP_FUNC(Flip)(y,yn);
-
- if( j==0)
- {
-
- // swap the begin and end sequences
- cmReal_t* t = s0;
- s0 = s1;
- s1 = t;
-
- xx = y;
-
- cmVOR_MultVVS( z0, nfact, z1, s0[0]);
-
- cmFilterInit(f,b,bn,a,an,pn,z0);
-
- }
-
- }
-
- //cmFilterFree(&f);
- cmMemPtrFree(&m);
-
- return y;
- }
-
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(LP_Sinc)(VECT_OP_TYPE* dp, unsigned dn, double srate, double fcHz, unsigned flags )
- {
- VECT_OP_TYPE* rp = dp;
-
- int dM = dn % 2; // dM is used to handle odd length windows
- int M = (dn - dM)/2;
- int Mi = -M;
- double signFact = cmIsFlag(flags, kHighPass_LPSincFl) ? -0.5 : 0.5;
- double phsFact = 2.0 * M_PI * fcHz / srate;
- double sum = 0;
-
-
- M += dM;
-
- //printf("M=%i Mi=%i sign:%f phs:%f\n",M,Mi,signFact,phsFact);
-
-
- for(; Mi<M; ++Mi,++dp)
- {
- double phs = phsFact * Mi;
- *dp = Mi == 0 ? 0.5 : signFact * sin(phs)/phs;
- sum += *dp;
- }
-
- if( cmIsFlag(flags,kNormalize_LPSincFl) )
- VECT_OP_FUNC(DivVS)(rp,dn,sum);
-
- return rp;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt )
- {
- double sum = 0;
- const VECT_OP_TYPE* ep = mag0V + binCnt;
-
- unsigned i = 0;
-
- for(; mag0V < ep; ++i )
- {
- // calc phase deviation from expected
- double dev_rads = *phs0V++ - (2 * *phs1V++) + *phs2V++;
-
- // map deviation into range: -pi to pi
- //double dev_rads1 = mod(dev_rads0 + M_PI, -2*M_PI ) + M_PI;
-
- while( dev_rads > M_PI)
- dev_rads -= 2*M_PI;
-
- while( dev_rads < -M_PI)
- dev_rads += 2*M_PI;
-
- // convert into rect coord's
- double m1r = *mag1V++;
- double m0r = *mag0V * cos(dev_rads);
- double m0i = *mag0V++ * sin(dev_rads);
-
- // calc the combined amplitude and phase deviation
- // sum += hypot( m1 - (m0 * e^(-1*dev_rads)));
-
- sum += hypot( m1r-m0r, -m0i );
-
- }
-
- return (VECT_OP_TYPE)sum;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MelMask)( VECT_OP_TYPE* maskMtx, unsigned filterCnt, unsigned binCnt, double srate, unsigned flags )
- {
- unsigned fi,bi;
-
- double mxh = srate/2.0; // nyquist
- double dh = mxh/(binCnt-1) ; // binHz
- double mxm = 1127.0 * log( 1.0 + mxh/700.0); // max mel value in Hz
- double dm = mxm / (filterCnt+1); // avg mel band hz
- double sum = 0;
-
- for(fi=0; fi<filterCnt; ++fi)
- {
- double m = (fi+1) * dm;
-
- // calc min/center/max frequencies for this band
- double minHz = 700.0 * (exp((m-dm)/1127.01048)-1.0);
- double ctrHz = 700.0 * (exp( m /1127.01048)-1.0);
- double maxHz = 700.0 * (exp((m+dm)/1127.01048)-1.0);
-
-
- // shift the band min/ctr/max to the nearest bin ctr frequency
- if( cmIsFlag(flags,kShiftMelFl) )
- {
- unsigned i;
-
- i = (unsigned)floor(minHz/dh);
- minHz = minHz - (dh*i) < dh*(i+1) - minHz ? dh*i : dh*(i+1);
-
- i = (unsigned)floor(ctrHz/dh);
- ctrHz = ctrHz - (dh*i) < dh*(i+1) - ctrHz ? dh*i : dh*(i+1);
-
- i = (unsigned)floor(maxHz/dh);
- maxHz = maxHz - (dh*i) < dh*(i+1) - maxHz ? dh*i : dh*(i+1);
-
- }
-
- // calc the height of the triangle - such that all bands have equal area
- double a = 2.0/(maxHz - minHz);
-
- for(bi=0; bi<binCnt; ++bi)
- {
- double h = bi*dh;
- unsigned mi = bi*filterCnt + fi;
-
-
- if( h < minHz || h > maxHz )
- maskMtx[mi] = 0;
- else
- {
- if( h <= ctrHz )
- maskMtx[mi] = a * (h - minHz)/(ctrHz-minHz);
- else
- maskMtx[mi] = a * (maxHz - h)/(maxHz-ctrHz);
-
- sum += maskMtx[mi];
- }
-
- }
- }
-
- if( cmIsFlag(flags,kNormalizeMelFl) )
- VECT_OP_FUNC(DivVS)( maskMtx, (filterCnt*binCnt), sum );
-
-
- return maskMtx;
- }
-
- unsigned VECT_OP_FUNC(BarkMap)(unsigned* binIdxV, unsigned* cntV, unsigned bandCnt, unsigned binCnt, double srate )
- {
- if( bandCnt == 0 )
- return 0;
-
- //zwicker & fastl: psychoacoustics 1999, page 159
- double bandUprHz[] = { 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500 };
-
- unsigned hn = sizeof(bandUprHz)/sizeof(double);
-
- unsigned i, bi = 0;
-
- bandCnt = cmMin(hn,bandCnt);
-
- binIdxV[0] = 0;
- cntV[0] = 1;
-
- for(i=1; bi < bandCnt && i<binCnt; ++i)
- {
- double hz = srate * i / (2 * (binCnt-1));
-
- if( hz <= bandUprHz[bi] )
- cntV[bi]++;
- else
- {
- //printf("%i %i %i %f\n",bi,binIdxV[bi],cntV[bi],bandUprHz[bi]);
-
- ++bi;
- if( bi < bandCnt )
- {
- binIdxV[bi] = i;
- cntV[bi] = 1;
- }
- }
-
-
- }
-
- return bi;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(TriangleMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, const VECT_OP_TYPE* ctrHzV, VECT_OP_TYPE binHz, VECT_OP_TYPE stSpread, const VECT_OP_TYPE* lfV, const VECT_OP_TYPE* hfV )
- {
- unsigned i,j;
- VECT_OP_TYPE v0[ bandCnt ];
- VECT_OP_TYPE v1[ bandCnt ];
-
- // if no lower/upper band limits were give use a fixed semitone band width
- if( lfV==NULL || hfV==NULL)
- {
-
- for(i=0; i<bandCnt; ++i)
- {
- v0[i] = ctrHzV[i] * pow(2.0,-stSpread/12.0);
- v1[i] = ctrHzV[i] * pow(2.0, stSpread/12.0);
- }
-
- lfV = v0;
- hfV = v1;
-
- }
-
- VECT_OP_FUNC(Zero)(maskMtx,bandCnt*binCnt);
-
- // for each band
- for(i=0; i<bandCnt; ++i)
- {
- // calc bin index of first possible bin in this band
- // j = (unsigned)floor(lfV[i] / binHz);
-
- double binHz_j = 0;
-
- // for each bin whose ctr frq is <= the band upper limit
- for(j=0; j<binCnt; ++j)
- {
- double v;
-
- // if bin[j] is inside the lower leg of the triangle
- if( lfV[i] <= binHz_j && binHz_j <= ctrHzV[i] )
- v = (binHz_j - lfV[i]) / cmMax(VECT_OP_MIN, ctrHzV[i] - lfV[i] );
- else
-
- // if bin[j] is inside the upper leg of the triangle
- if( ctrHzV[i] < binHz_j && binHz_j <= hfV[i] )
- v = (hfV[i] - binHz_j) / cmMax(VECT_OP_MIN, hfV[i] - ctrHzV[i] );
- else
- v = 0;
-
- maskMtx[ (j*bandCnt)+i ] = v;
-
- binHz_j = binHz * (j+1);
-
- }
- }
-
- return maskMtx;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(BarkMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, double binHz )
- {
- // -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (23+1)
- VECT_OP_TYPE b[]= {0, 50,150,250,350,450,570,700,840,1000,1170,1370,1600,1850,2150,2500,2900,3400,4000,4800,5800,7000,8500,10500,13500, 15500 };
-
- bandCnt = cmMin(bandCnt,kDefaultBarkBandCnt);
-
- VECT_OP_FUNC(TriangleMask)(maskMtx, bandCnt, binCnt, b+1, binHz, 0, b+0, b+2 );
-
- return maskMtx;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(TerhardtThresholdMask)(VECT_OP_TYPE* maskV, unsigned binCnt, double srate, unsigned flags )
- {
- unsigned i;
-
- double c0 = cmIsFlag(flags,kModifiedTtmFl) ? 0.6 : 1.0;
- double c1 = cmIsFlag(flags,kModifiedTtmFl) ? 0.5 : 6.5;
-
- maskV[0]=0;
-
- for(i=0; i<binCnt; ++i)
- {
- double hz = srate * i / (2 * (binCnt-1));
- maskV[i] = pow(pow(10,(c0 * -3.64* pow(hz/1000,-0.8) + c1 * exp(-0.6 * pow(hz/1000 - 3.3,2)) - 0.001* pow(hz/1000,4))/20),2);
- }
-
- return maskV;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(ShroederSpreadingFunc)(VECT_OP_TYPE* m, unsigned bandCnt, double srate)
- {
- int fi,bi;
-
- for(fi=0; fi<bandCnt; ++fi)
- for(bi=0; bi<bandCnt; ++bi )
- m[ fi + (bi*bandCnt) ] = pow(10,(15.81 + 7.5 * ((fi-bi)+0.474)-17.5*pow(1+pow((fi-bi)+0.474,2),0.5))/10);
-
- return m;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt )
- {
- VECT_OP_TYPE* dbp = dp;
-
- double c0 = 1.0/sqrt(filtCnt/2); // row 1-coeffCnt factor
- double c1 = c0 * sqrt(2)/2; // row 0 factor
-
- unsigned i,j;
-
- // for each column
- for(i=0; i<filtCnt; ++i)
- // for each row
- for(j=0; j<coeffCnt; ++j)
- *dp++ = (j==0 ? c1 : c0) * cos( (0.5 + i) * M_PI * j / filtCnt);
-
- return dbp;
- }
-
- unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold )
- {
- unsigned pkCnt = 0;
- const unsigned* dep = dbp + dn;
- const VECT_OP_TYPE* sep = sbp + sn;
- const VECT_OP_TYPE* s2p = sbp;
- const VECT_OP_TYPE* s0p = s2p++;
- const VECT_OP_TYPE* s1p = s2p++;
-
-
- while( dbp < dep && s2p < sep )
- {
- if( (*s0p < *s1p) && (*s1p > *s2p) && (*s1p >= threshold) )
- {
- *dbp++ = s1p - sbp;
- s0p = s2p++;
- s1p = s2p++;
- ++pkCnt;
- }
- else
- {
- s0p = s1p;
- s1p = s2p++;
- }
- }
-
- return pkCnt;
- }
-
- unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v )
- {
- const VECT_OP_TYPE* sep = sbp + sn;
- const VECT_OP_TYPE* bp = sbp;
- sep--;
- for(; sbp < sep; ++sbp )
- if( *sbp <= v && v < *(sbp+1) )
- return sbp - bp;
-
- return cmInvalidIdx;
- }
-
-
-
- unsigned VECT_OP_FUNC(Kmeans)(
- unsigned* classIdxV, // classIdxV[scn] - data point class assignments
- VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
- unsigned K, // count of clusters
- const VECT_OP_TYPE* sM, // sM[srn,scn] source data matrix
- unsigned srn, // dimensionality of each data point
- unsigned scn, // count of data points
- const unsigned* selIdxV, // data subset selection id vector (optional)
- unsigned selKey, // data subset selection key (optional)
- bool initFromCentroidFl,// true if the starting centroids are in centroidM[]
- VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
- void* userDistPtr
- )
- {
- unsigned D = srn; // data dimensionality
- unsigned N = scn; // count of data points to cluster
- unsigned iterCnt = 0;
- unsigned ki;
- unsigned i = 0;
- unsigned selN = N;
-
- // if a data point selection vector was given
- if( selIdxV != NULL )
- {
- selN = 0;
-
- for(i=0; i<N; ++i)
- {
- selN += selIdxV[i]==selKey;
- classIdxV[i] = K;
- }
- }
-
-
- assert(K<=selN);
-
- // if the numer of datapoints and the number of clusters is the same
- // make the datapoints the centroids and return
- if( K == selN )
- {
- ki = 0;
- for(i=0; i<N; ++i)
- if( selIdxV==NULL || selIdxV[i]==selKey )
- {
- VECT_OP_FUNC(Copy)(centroidM+(ki*D),D,sM+(i*D));
- classIdxV[ki] = ki;
- ++ki;
- }
- return 0;
- }
-
-
- // if centroidM[] has not been initialized with the starting centroid vectors.
- if( initFromCentroidFl == false )
- {
- unsigned* kiV = cmMemAlloc( unsigned, N );
-
- // select K unique datapoints at random as the initial centroids
- cmVOU_RandomSeq(kiV,N);
-
- for(i=0,ki=0; i<N && ki<K; ++i)
- {
- if( selIdxV==NULL || selIdxV[ kiV[i] ]==selKey )
- {
- VECT_OP_FUNC(Copy)( centroidM + (ki*D), D, sM + (kiV[i]*D) );
- ++ki;
- }
- }
-
- cmMemPtrFree(&kiV);
- }
-
- unsigned* nV = cmMemAllocZ( unsigned,K);
-
- while(1)
- {
- unsigned changeCnt = 0;
-
- cmVOU_Zero(nV,K);
-
- // for each data point - assign data point to a cluster
- for(i=0; i<N; ++i)
- if( selIdxV==NULL || selIdxV[i] == selKey )
- {
- // set ki with the index of the centroid closest to sM[:,i]
- VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sM + (i*srn), 1, centroidM, K, distFunc, userDistPtr );
-
- assert(ki<K);
-
- nV[ki]++;
-
- changeCnt += ( ki != classIdxV[i] );
- classIdxV[i] = ki;
- }
-
-
- // if no data points change classes then the centroids have converged
- if( changeCnt == 0 )
- break;
-
- ++iterCnt;
-
- // zero the centroid matrix
- VECT_OP_FUNC(Fill)(centroidM, D*K, 0 );
-
- // update the centroids
- for(ki=0; ki<K; ++ki)
- {
- unsigned n = 0;
-
- // sum the all datapoints belonging to class ki
- for(i=0; i<N; ++i)
- if( classIdxV[i] == ki )
- {
- VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sM + (i*srn) );
- ++n;
- }
-
- // convert the sum to a mean to form the centroid
- if( n > 0 )
- VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
-
-
- }
- }
-
- cmVOU_PrintL("class cnt:",NULL,1,K,nV);
- cmMemPtrFree(&nV);
- return iterCnt;
- }
-
- unsigned VECT_OP_FUNC(Kmeans2)(
- unsigned* classIdxV, // classIdxV[scn] - data point class assignments
- VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
- unsigned K, // count of clusters
- const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned frmIdx ),
- unsigned srn, // dimensionality of each data point
- unsigned scn, // count of data points
- void* userSrcPtr, // callback data for srcFunc
- VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
- void* distUserPtr,
- int maxIterCnt,
- int deltaStopCnt
- )
- {
- unsigned D = srn; // data dimensionality
- unsigned N = scn; // count of data points to cluster
- unsigned iterCnt = 0;
- unsigned ki;
- unsigned i = 0;
- const VECT_OP_TYPE* sp;
-
- assert(K<N);
-
- deltaStopCnt = cmMax(0,deltaStopCnt);
-
- // nV[K] - class assignment vector
- unsigned* nV = cmMemAllocZ( unsigned,2*K);
-
- // roV[K] - read-only flag centroid
- // centroids flagged as read-only will not be updated by the clustering routine
- unsigned* roV = nV + K;
-
- // copy the read-only flags into roV[K]
- for(i=0; i<K; ++i)
- roV[i] = classIdxV[i];
-
- while(1)
- {
- unsigned changeCnt = 0;
-
- cmVOU_Zero(nV,K);
-
- // for each data point - assign data point to a cluster
- for(i=0; i<N; ++i)
- if((sp = srcFunc(userSrcPtr,i)) != NULL)
- {
- // set ki with the index of the centroid closest to sM[:,i]
- VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sp, 1, centroidM, K, distFunc, distUserPtr );
-
- assert(ki<K);
-
- // track the number of data points assigned to each centroid
- nV[ki]++;
-
- // track the number of data points which change classes
- changeCnt += ( ki != classIdxV[i] );
-
- // update the class that this data point belongs to
- classIdxV[i] = ki;
- }
-
-
- // if the count of data points which changed classes is less than deltaStopCnt
- // then the centroids have converged
- if( changeCnt <= deltaStopCnt )
- break;
-
- if( maxIterCnt!=-1 && iterCnt>=maxIterCnt )
- break;
-
- // track the number of interations required to converge
- ++iterCnt;
-
- fprintf(stderr,"%i:%i (", iterCnt,changeCnt );
- for(i=0; i<K; ++i)
- fprintf(stderr,"%i ",nV[i]);
- fprintf(stderr,") ");
- fflush(stderr);
-
- // update the centroids
- for(ki=0; ki<K; ++ki)
- if( roV[ki]==0 )
- {
- unsigned n = 0;
-
- VECT_OP_FUNC(Zero)(centroidM + (ki*D), D );
-
- // sum the all datapoints belonging to class ki
- for(i=0; i<N; ++i)
- if( classIdxV[i] == ki && ((sp=srcFunc(userSrcPtr,i))!=NULL))
- {
- VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sp );
- ++n;
- }
-
- // convert the sum to a mean to form the centroid
- if( n > 0 )
- VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
-
- }
- }
-
- cmMemPtrFree(&nV);
- return iterCnt;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev )
- {
- VECT_OP_TYPE* rp = dbp;
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE var = stdDev * stdDev;
- VECT_OP_TYPE fact0 = 1.0/sqrt(2*M_PI*var);
- VECT_OP_TYPE fact1 = 2.0 * var;
-
- for(; dbp < dep; ++sbp )
- *dbp++ = fact0 * exp( -((*sbp-mean)*(*sbp-mean))/ fact1 );
-
- return rp;
- }
-
- /// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
- /// at the data points held in the columns of xM[D,N]. Return the evaluation
- /// results in the vector yV[N].
- bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl )
- {
- VECT_OP_TYPE det0;
-
- // calc the determinant of the covariance matrix
- if( diagFl )
- // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetDiagM)(covarM,D);
- det0 = VECT_OP_FUNC(DetDiagM)(covarM,D);
- else
- // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetM)(covarM,D);
- det0 = VECT_OP_FUNC(DetM)(covarM,D);
-
- assert(det0 != 0 );
-
- if( det0 == 0 )
- return false;
-
- // calc the inverse of the covariance matrix
- VECT_OP_TYPE icM[D*D];
- VECT_OP_FUNC(Copy)(icM,D*D,covarM);
-
- VECT_OP_TYPE* r;
- if( diagFl )
- r = VECT_OP_FUNC(InvDiagM)(icM,D);
- else
- r = VECT_OP_FUNC(InvM)(icM,D);
-
- if( r == NULL )
- return false;
-
- VECT_OP_FUNC(MultVarGaussPDF2)( yV, xM, meanV, icM, det0, D, N, diagFl );
-
- return true;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* icM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl )
- {
- unsigned i;
-
- double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
-
- for(i=0; i<N; ++i)
- {
- VECT_OP_TYPE dx[D];
- VECT_OP_TYPE t[D];
-
- // dx[] difference between mean and ith data point
- VECT_OP_FUNC(SubVVV)(dx,D, xM + (i*D), meanV);
-
- // t[] = dx[] * inv(covarM);
- if( diagFl )
- VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
- else
- VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
-
- // dist = sum(dx[] * t[])
- cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
-
- yV[i] = exp( fact - (0.5*dist) );
-
- }
-
- return yV;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
- VECT_OP_TYPE* yV,
- const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
- void* funcDataPtr,
- const VECT_OP_TYPE* meanV,
- const VECT_OP_TYPE* icM,
- VECT_OP_TYPE logDet,
- unsigned D,
- unsigned N,
- bool diagFl )
- {
- unsigned i;
-
- double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
-
- for(i=0; i<N; ++i)
- {
- VECT_OP_TYPE dx[D];
- VECT_OP_TYPE t[D];
-
- const VECT_OP_TYPE* xV = srcFunc( funcDataPtr, i );
-
- if( xV == NULL )
- yV[i] = 0;
- else
- {
- // dx[] difference between mean and ith data point
- VECT_OP_FUNC(SubVVV)(dx, D, xV, meanV);
-
- // t[] = dx[] * inv(covarM);
- if( diagFl )
- VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
- else
- VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
-
- // dist = sum(dx[] * t[])
- cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
-
- yV[i] = exp( fact - (0.5*dist) );
- }
- }
-
- return yV;
- }
-
-
- /// stateV[timeN]
- /// a[stateN,stateN],
- /// b[stateN,timeN]
- /// phi[stateN].
- void VECT_OP_FUNC(DiscreteViterbi)(unsigned* stateV, unsigned tN, unsigned sN, const VECT_OP_TYPE* phi, const VECT_OP_TYPE* a, const VECT_OP_TYPE* b )
- {
- unsigned* psiM = cmMemAlloc( unsigned, sN*tN ); // psi[sN,tN]
- VECT_OP_TYPE* dV = cmMemAlloc( VECT_OP_TYPE, 2*sN );
- VECT_OP_TYPE* d0V = dV;
- VECT_OP_TYPE* d1V = dV + sN;
-
- int t,i,j;
-
- // calc the prob of starting in each state given the observations
- VECT_OP_FUNC(MultVVV)( d0V, sN, phi, b );
- VECT_OP_FUNC(NormalizeProbability)( d0V, sN ); // scale to prevent underflow
-
- // for each time step
- for(t=1; t<tN; ++t)
- {
- // for each possible next state
- for(j=0; j<sN; ++j)
- {
- VECT_OP_TYPE mv = 0;
- unsigned mi = 0;
-
- // The following loop could be replaced with these vector op's:
- // VECT_OP_TYPE tV[ sN ];
- // VECT_OP_TYPE(MultVVV)(tV,sN,d0V,a + (j*sN));
- // mi = VECT_OP_TYPE(MaxIndex)(tV,sN);
- // mv = tV[mi];
-
- // for each possible prev state
- for(i=0; i<sN; ++i)
- {
- // calc prob of having ended in state i and transitioning to state j
- VECT_OP_TYPE v = d0V[i] * a[ i + (j*sN) ];
-
- // track the most likely transition ending in state j
- if( v > mv )
- {
- mv = v;
- mi = i;
- }
- }
-
- // scale the prob of the most likely state by the prob of the obs given that state
- d1V[j] = mv * b[ (t*sN) + j ];
-
- // store the most likely previous state given that the current state is j
- // (this is the key to understanding the backtracking step below)
- psiM[ (t*sN) + j ] = mi;
- }
-
- VECT_OP_FUNC(NormalizeProbability)( d1V, sN ); // scale to prevent underflow
-
- // swap d0V and d1V
- VECT_OP_TYPE* tmp = d0V;
- d0V = d1V;
- d1V = tmp;
- }
-
- // store the most likely ending state
- stateV[tN-1] = VECT_OP_FUNC(MaxIndex)( d0V, sN, 1 );
-
- // given the most likely next step select the most likely previous step
- for(t=tN-2; t>=0; --t)
- stateV[t] = psiM[ ((t+1)*sN) + stateV[t+1] ];
-
-
- cmMemPtrFree( &psiM );
- cmMemPtrFree( &dV );
- }
-
- bool VECT_OP_FUNC(ClipLine2)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax, VECT_OP_TYPE* t0, VECT_OP_TYPE* t1 )
- {
-
- VECT_OP_TYPE dx = x1 - x0;
- VECT_OP_TYPE dy = y1 - y0;
-
- VECT_OP_TYPE p=0,q=0,r=0;
-
- *t0 = 0.0;
- *t1 = 1.0;
-
- unsigned i;
- for(i=0; i<4; ++i)
- {
- switch(i)
- {
- case 0: p=-dx; q=-(xMin - x0); break; // left
- case 1: p= dx; q= (xMax - x0); break; // right
- case 2: p=-dy; q=-(yMin - y0); break; // bottom
- case 3: p= dy; q= (yMax - y0); break; // top
- }
-
- // if parallel to edge i
- if( p == 0 )
- {
- // if entirely outside of window
- if( q < 0 )
- return false;
-
- continue;
- }
-
- r = p/q;
-
- // if travelling right/up
- if( p < 0 )
- {
- // travelling away from x1,y1
- if( r > *t1 )
- return false;
-
- // update distance on line to point of intersection
- if( r > *t0 )
- *t0 = r;
- }
- else // if travelling left/down
- {
- // travelling away from x1,y1
- if( r < *t0 )
- return false;
-
- // update distance on line to point of intersection
- if( r < *t1 )
- *t1 = r;
- }
-
- }
-
-
- return true;
-
- }
-
-
- /// (Uses the Laing-Barsky clipping algorithm)
- /// From: http://www.skytopia.com/project/articles/compsci/clipping.html
- bool VECT_OP_FUNC(ClipLine)( VECT_OP_TYPE* x0, VECT_OP_TYPE* y0, VECT_OP_TYPE* x1, VECT_OP_TYPE* y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
- {
- VECT_OP_TYPE t0;
- VECT_OP_TYPE t1;
-
- if( VECT_OP_FUNC(ClipLine2)(*x0,*y0,*x1,*y1,xMin,yMin,xMax,yMax,&t0,&t1) )
- {
- VECT_OP_TYPE dx = *x1 - *x0;
- VECT_OP_TYPE dy = *y1 - *y0;
-
- *x0 = *x0 + t0*dx;
- *x1 = *x0 + t1*dx;
-
- *y0 = *y0 + t0*dy;
- *y1 = *y0 + t1*dy;
-
- return true;
- }
-
- return false;
-
- }
-
- bool VECT_OP_FUNC(IsLineInRect)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
- {
- VECT_OP_TYPE t0;
- VECT_OP_TYPE t1;
-
- return VECT_OP_FUNC(ClipLine2)(x0,y0,x1,y1,xMin,yMin,xMax,yMax,&t0,&t1);
-
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(PtToLineDistance)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE px, VECT_OP_TYPE py)
- {
- // from:http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
- double normalLength = sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
-
- if( normalLength <= 0 )
- return 0;
-
- return (VECT_OP_TYPE)fabs((px - x0) * (y1 - y0) - (py - y0) * (x1 - x0)) / normalLength;
- }
-
- void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 )
- {
- VECT_OP_TYPE sx = 0;
- VECT_OP_TYPE sy = 0;
- VECT_OP_TYPE sx_2 = 0;
- VECT_OP_TYPE sxy = 0;
- unsigned i;
-
- if( x == NULL )
- {
- for(i=0; i<n; ++i)
- {
- VECT_OP_TYPE xx = i;
- sx += xx;
- sx_2 += xx * xx;
- sxy += xx * y[i];
- sy += y[i];
- }
- }
- else
- {
- for(i=0; i<n; ++i)
- {
- sx += x[i];
- sx_2 += x[i] * x[i];
- sxy += x[i] * y[i];
- sy += y[i];
- }
- }
-
- *b1 = (sxy * n - sx * sy) / (sx_2 * n - sx*sx);
- *b0 = (sy - (*b1) * sx) / n;
-
- }
-
-
-
-
- #endif
|