libcm is a C development framework with an emphasis on audio signal processing applications.
Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

cmAudioSys.c 44KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmFloatTypes.h"
  4. #include "cmRpt.h"
  5. #include "cmErr.h"
  6. #include "cmCtx.h"
  7. #include "cmMem.h"
  8. #include "cmMallocDebug.h"
  9. #include "cmTime.h"
  10. #include "cmAudioPort.h"
  11. #include "cmAudioNrtDev.h"
  12. #include "cmAudioPortFile.h"
  13. #include "cmApBuf.h"
  14. #include "cmJson.h"
  15. #include "cmThread.h"
  16. #include "cmUdpPort.h"
  17. #include "cmUdpNet.h"
  18. #include "cmAudioSysMsg.h"
  19. #include "cmAudioSys.h"
  20. #include "cmMidi.h"
  21. #include "cmMidiPort.h"
  22. #include "cmMath.h"
  23. cmAudioSysH_t cmAudioSysNullHandle = { NULL };
  24. struct cmAs_str;
  25. typedef struct
  26. {
  27. struct cmAs_str* p; // pointer to the audio system instance which owns this sub-system
  28. cmAudioSysSubSys_t ss; // sub-system configuration record
  29. cmAudioSysCtx_t ctx; // DSP context
  30. cmAudioSysStatus_t status; // current runtime status of this sub-system
  31. cmThreadH_t threadH; // audio system thread
  32. cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue
  33. cmThreadMutexH_t engMutexH; // thread mutex and condition variable
  34. cmUdpNetH_t netH;
  35. bool enableFl; // application controlled pause flag
  36. bool runFl; // false during finalization otherwise true
  37. bool statusFl; // true if regular status notifications should be sent
  38. unsigned audCbLock; //
  39. bool syncInputFl;
  40. double* iMeterArray; //
  41. double* oMeterArray; //
  42. unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples
  43. unsigned statusUpdateSmpIdx; // state update phase
  44. } _cmAsCfg_t;
  45. typedef struct cmAs_str
  46. {
  47. cmErr_t err;
  48. _cmAsCfg_t* ssArray;
  49. unsigned ssCnt;
  50. unsigned waitAsSubIdx; // index of the next sub-system to try with cmAudioSysIsMsgWaiting().
  51. cmTsMp1cH_t dthQueH;
  52. bool initFl; // true if the audio system is initialized
  53. } cmAs_t;
  54. cmAs_t* _cmAsHandleToPtr( cmAudioSysH_t h )
  55. {
  56. cmAs_t* p = (cmAs_t*)h.h;
  57. assert(p != NULL);
  58. return p;
  59. }
  60. cmAsRC_t _cmAsError( cmAs_t* p, cmAsRC_t rc, const char* fmt, ... )
  61. {
  62. va_list vl;
  63. va_start(vl,fmt);
  64. cmErrVMsg(&p->err,rc,fmt,vl);
  65. va_end(vl);
  66. return rc;
  67. }
  68. // Wrapper function to put msgs into thread safe queues and handle related errors.
  69. cmAsRC_t _cmAsEnqueueMsg( cmAs_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel )
  70. {
  71. cmAsRC_t rc = kOkAsRC;
  72. switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) )
  73. {
  74. case kOkThRC:
  75. break;
  76. case kBufFullThRC:
  77. {
  78. unsigned i;
  79. unsigned byteCnt = 0;
  80. for(i=0; i<segCnt; ++i)
  81. byteCnt += msgCntArray[i];
  82. rc = _cmAsError(p,kMsgEnqueueFailAsRC,"The %s queue was unable to load a msg containing %i bytes. The queue is currently allocated %i bytes and has %i bytes available.",queueLabel,byteCnt,cmTsMp1cAllocByteCount(qH),cmTsMp1cAvailByteCount(qH));
  83. }
  84. break;
  85. default:
  86. rc = _cmAsError(p,kMsgEnqueueFailAsRC,"A %s msg. enqueue failed.",queueLabel);
  87. }
  88. return rc;
  89. }
  90. // This is the function pointed to by ctx->dspToHostFunc.
  91. // It is called by the DSP proces to pass msgs to the host.
  92. // therefore it is always called from inside of _cmAsDspExecCallback().
  93. cmAsRC_t _cmAsDspToHostMsgCallback(struct cmAudioSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  94. {
  95. cmAs_t* p = (cmAs_t*)ctx->reserved;
  96. assert( ctx->asSubIdx < p->ssCnt );
  97. //return _cmAsEnqueueMsg(p,p->ssArray[ctx->asSubIdx].dthQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  98. return _cmAsEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  99. }
  100. cmAsRC_t _cmAsHostInitNotify( cmAs_t* p )
  101. {
  102. cmAsRC_t rc = kOkAsRC;
  103. unsigned i;
  104. for(i=0; i<p->ssCnt; ++i)
  105. {
  106. cmAudioSysSsInitMsg_t m;
  107. _cmAsCfg_t* cp = p->ssArray + i;
  108. const char* inDevLabel = cp->ss.args.inDevIdx == cmInvalidIdx ? "" : cmApDeviceLabel( cp->ss.args.inDevIdx );
  109. const char* outDevLabel = cp->ss.args.outDevIdx == cmInvalidIdx ? "" : cmApDeviceLabel( cp->ss.args.outDevIdx );
  110. m.asSubIdx = i;
  111. m.selId = kSsInitSelAsId;
  112. m.asSubCnt = p->ssCnt;
  113. m.inDevIdx = cp->ss.args.inDevIdx;
  114. m.outDevIdx = cp->ss.args.outDevIdx;
  115. m.dspFramesPerCycle = cp->ss.args.dspFramesPerCycle;
  116. m.srate = cp->ss.args.srate;
  117. m.inChCnt = cp->status.iMeterCnt;
  118. m.outChCnt = cp->status.oMeterCnt;
  119. unsigned segCnt = 3;
  120. const void* msgDataPtrArray[] = { &m, inDevLabel, outDevLabel };
  121. unsigned msgByteCntArray[] = { sizeof(m), strlen(cmStringNullGuard(inDevLabel))+1, strlen(cmStringNullGuard(outDevLabel))+1 };
  122. assert( sizeof(msgDataPtrArray)/sizeof(void*) == segCnt);
  123. assert( sizeof(msgByteCntArray)/sizeof(unsigned) == segCnt);
  124. if((rc = _cmAsDspToHostMsgCallback(&cp->ctx, msgDataPtrArray, msgByteCntArray, segCnt)) != kOkAsRC )
  125. return rc;
  126. }
  127. return rc;
  128. }
  129. cmAsRC_t _cmAsParseNonSubSysMsg( cmAs_t* p, const void* msg, unsigned msgByteCnt )
  130. {
  131. cmAsRC_t rc = kOkAsRC;
  132. cmAudioSysMstr_t* h = (cmAudioSysMstr_t*)msg;
  133. unsigned devIdx = cmAudioSysUiInstIdToDevIndex(h->instId);
  134. unsigned chIdx = cmAudioSysUiInstIdToChIndex(h->instId);
  135. unsigned inFl = cmAudioSysUiInstIdToInFlag(h->instId);
  136. unsigned ctlId = cmAudioSysUiInstIdToCtlId(h->instId);
  137. // if the valuu associated with this msg is a mtx then set
  138. // its mtx data area pointer to just after the msg header.
  139. //if( cmDsvIsMtx(&h->value) )
  140. // h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t);
  141. unsigned flags = inFl ? kInApFl : kOutApFl;
  142. switch( ctlId )
  143. {
  144. case kSliderUiAsId: // slider
  145. cmApBufSetGain(devIdx,chIdx, flags, h->value);
  146. break;
  147. case kMeterUiAsId: // meter
  148. break;
  149. case kMuteUiAsId: // mute
  150. flags += h->value == 0 ? kEnableApFl : 0;
  151. cmApBufEnableChannel(devIdx,chIdx,flags);
  152. break;
  153. case kToneUiAsId: // tone
  154. flags += h->value > 0 ? kEnableApFl : 0;
  155. cmApBufEnableTone(devIdx,chIdx,flags);
  156. break;
  157. case kPassUiAsId: // pass
  158. flags += h->value > 0 ? kEnableApFl : 0;
  159. cmApBufEnablePass(devIdx,chIdx,flags);
  160. break;
  161. default:
  162. { assert(0); }
  163. }
  164. return rc;
  165. }
  166. // Process a UI msg sent from the host to the audio system
  167. cmAsRC_t _cmAsHandleNonSubSysMsg( cmAs_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt )
  168. {
  169. cmAsRC_t rc = kOkAsRC;
  170. // if the message is contained in a single segment it can be dispatched immediately ...
  171. if( msgSegCnt == 1 )
  172. rc = _cmAsParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]);
  173. else
  174. {
  175. // ... otherwise deserialize the message into contiguous memory ....
  176. unsigned byteCnt = 0;
  177. unsigned i;
  178. for(i=0; i<msgSegCnt; ++i)
  179. byteCnt += msgByteCntArray[i];
  180. char buf[ byteCnt ];
  181. char* b = buf;
  182. for(i=0; i<msgSegCnt; ++i)
  183. {
  184. memcpy(b, msgDataPtrArray[i], msgByteCntArray[i] );
  185. b += msgByteCntArray[i];
  186. }
  187. // ... and then dispatch it
  188. rc = _cmAsParseNonSubSysMsg(p,buf,byteCnt);
  189. }
  190. return rc;
  191. }
  192. cmAsRC_t _cmAsSendStateStatusToHost( _cmAsCfg_t* cp )
  193. {
  194. cmAsRC_t rc = kOkAsRC;
  195. unsigned hdr[] = { cp->ctx.asSubIdx, kStatusSelAsId };
  196. cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt );
  197. cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt );
  198. unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt;
  199. unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt;
  200. const void* msgDataPtrArray[] = { &hdr, &cp->status, cp->iMeterArray, cp->oMeterArray };
  201. unsigned msgByteCntArray[] = { sizeof(hdr), sizeof(cp->status), iMeterByteCnt, oMeterByteCnt };
  202. unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  203. _cmAsDspToHostMsgCallback(&cp->ctx,msgDataPtrArray,msgByteCntArray, segCnt );
  204. return rc;
  205. }
  206. // The DSP execution callback happens through this function.
  207. // This function is only called from inside _cmAsThreadCallback() with the engine mutex locked.
  208. void _cmAsDspExecCallback( _cmAsCfg_t* cp )
  209. {
  210. /*
  211. unsigned i;
  212. // get pointers to a set of audio out buffers - pointers to disabled channels will be set to NULL
  213. cmApBufGet( cp->ss.args.outDevIdx, kOutApFl, cp->ctx.oChArray, cp->ctx.oChCnt );
  214. cmApBufGet( cp->ss.args.inDevIdx, kInApFl, cp->ctx.iChArray, cp->ctx.iChCnt );
  215. // zero the output buffers on all enabled channels
  216. for(i=0; i<cp->ctx.oChCnt; ++i)
  217. if( cp->ctx.oChArray[i] != NULL )
  218. memset( cp->ctx.oChArray[i], 0, cp->ss.args.dspFramesPerCycle * sizeof(cmSample_t));
  219. */
  220. // Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers.
  221. // Notes:
  222. // 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[].
  223. // 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[].
  224. // 3) All samples returned in oChArray[] buffers will be set to zero.
  225. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, &cp->ctx.iTimeStamp,
  226. cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt, &cp->ctx.oTimeStamp );
  227. // call the application provided DSP process
  228. cp->ctx.audioRateFl = true;
  229. cp->ss.cbFunc( &cp->ctx, 0, NULL );
  230. cp->ctx.audioRateFl = false;
  231. // advance the audio buffer
  232. cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
  233. cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
  234. // handle periodic status messages to the host
  235. if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt )
  236. {
  237. cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt;
  238. if( cp->statusFl )
  239. _cmAsSendStateStatusToHost(cp);
  240. }
  241. }
  242. // Returns true if audio buffer is has waiting incoming samples and
  243. // available outgoing space.
  244. bool _cmAsBufIsReady( const _cmAsCfg_t* cp )
  245. {
  246. // if there neither the input or output device is valid
  247. if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx )
  248. return false;
  249. bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl);
  250. bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl);
  251. bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl;
  252. bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl;
  253. //printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl);
  254. return iFl && oFl;
  255. }
  256. // This is only called with _cmAsRecd.engMutexH locked
  257. cmAsRC_t _cmAsDeliverMsgsWithLock( _cmAsCfg_t* cp )
  258. {
  259. int i;
  260. cmAsRC_t rc = kOkThRC;
  261. // as long as their may be a msg wating in the incoming msg queue
  262. for(i=0; rc == kOkThRC; ++i)
  263. {
  264. // if a msg is waiting transmit it via cfg->cbFunc()
  265. if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC)
  266. ++cp->status.msgCbCnt;
  267. }
  268. return rc;
  269. }
  270. // This is the main audio system loop (and thread callback function).
  271. // It blocks by waiting on a cond. var (which simultaneously unlocks a mutex).
  272. // With the mutex unlocked messages can pass directly to the DSP process
  273. // via calls to cmAsDeliverMsg().
  274. // When the audio buffers need to be serviced the audio device callback
  275. // signals the cond. var. which results in this thread waking up (and
  276. // simultaneously locking the mutex) as soon as the mutex is available.
  277. bool _cmAsThreadCallback(void* arg)
  278. {
  279. cmAsRC_t rc;
  280. _cmAsCfg_t* cp = (_cmAsCfg_t*)arg;
  281. // lock the cmAudioSys mutex
  282. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkAsRC )
  283. {
  284. _cmAsError(cp->p,rc,"The cmAudioSys thread mutex lock failed.");
  285. return false;
  286. }
  287. // runFl is always set except during finalization
  288. while( cp->runFl )
  289. {
  290. // if the buffer is NOT ready or the cmAudioSys is disabled
  291. if(_cmAsBufIsReady(cp) == false || cp->enableFl==false )
  292. {
  293. // block on the cond var and unlock the mutex
  294. if( cmThreadMutexWaitOnCondVar(cp->engMutexH,false) != kOkAsRC )
  295. {
  296. cmThreadMutexUnlock(cp->engMutexH);
  297. _cmAsError(cp->p,rc,"The cmAudioSys cond. var. wait failed.");
  298. return false;
  299. }
  300. //
  301. // the cond var was signaled and the mutex is now locked
  302. //
  303. ++cp->status.wakeupCnt;
  304. }
  305. // be sure we are still enabled and the buffer is still ready
  306. if( cp->enableFl && cp->runFl )
  307. {
  308. while( _cmAsBufIsReady(cp) )
  309. {
  310. ++cp->status.audioCbCnt;
  311. // calling this function results in callbacks to cmAudDsp.c:_cmAdUdpNetCallback()
  312. // which in turn calls cmAudioSysDeliverMsg() which queues any incoming messages
  313. // which are then transferred to the DSP processes by the the call to
  314. // _cmAsDeliverMsgWithLock() below.
  315. cmUdpNetReceive(cp->netH,NULL);
  316. // if there are msgs waiting to be sent to the DSP process send them.
  317. if( cmTsMp1cMsgWaiting(cp->htdQueueH) )
  318. _cmAsDeliverMsgsWithLock(cp);
  319. // make the cmAudioSys callback
  320. _cmAsDspExecCallback( cp );
  321. // update the signal time
  322. cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle;
  323. }
  324. }
  325. }
  326. // unlock the mutex
  327. cmThreadMutexUnlock(cp->engMutexH);
  328. return true;
  329. }
  330. // This is the audio port callback function.
  331. //
  332. // _cmAudioSysAudioUpdate() assumes that at most two audio device threads (input and output) may call it.
  333. // cmApBufUpdate() is safe under these conditions since the input and output buffers are updated separately.
  334. // p->audCbLock is used to allow either the input or output thread to signal
  335. // the condition variable. This flag is necessary to prevent both threads from simultaneously
  336. // attempting to signal the condition variable (which will lock the system).
  337. //
  338. // If more than two audio device threads call the function then this function is not safe.
  339. unsigned phase = 0;
  340. void _cmAudioSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  341. {
  342. _cmAsCfg_t* cp = (_cmAsCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr);
  343. ++cp->status.updateCnt;
  344. if( cp->runFl )
  345. {
  346. // transfer incoming/outgoing samples from/to the audio device
  347. cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt);
  348. /*
  349. //fill output with noise
  350. unsigned i = 0,j =0, k = 0, phs = 0;
  351. for(; i<outPktCnt; ++i)
  352. {
  353. cmApAudioPacket_t* a = outPktArray + i;
  354. cmApSample_t* dp = (cmApSample_t*)a->audioBytesPtr;
  355. phs = a->audioFramesCnt;
  356. for(j=0; j<a->audioFramesCnt; ++j)
  357. {
  358. cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * phase + j ));
  359. for(k=0; k<a->chCnt; ++k,++dp)
  360. *dp = v;
  361. }
  362. //for(j=0; j<a->audioFramesCnt*a->chCnt; ++j,++dp)
  363. // *dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2);
  364. }
  365. phase += phs;
  366. return;
  367. */
  368. //++p->audCbLock;
  369. bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0);
  370. //printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt);
  371. // if the input/output buffer contain samples to be processed then signal the condition variable
  372. // - this will cause the audio system thread to unblock and the used defined DSP process will be called.
  373. if( testBufFl && _cmAsBufIsReady(cp) )
  374. {
  375. if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC )
  376. _cmAsError(cp->p,kMutexErrAsRC,"CmAudioSys signal cond. var. failed.");
  377. }
  378. //--p->audCbLock;
  379. }
  380. }
  381. // Called when MIDI messages arrive from external MIDI ports.
  382. void _cmAudioSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt )
  383. {
  384. unsigned i;
  385. for(i=0; i<pktCnt; ++i)
  386. {
  387. const cmMidiPacket_t* pkt = pktArray + i;
  388. _cmAsCfg_t* cp = (_cmAsCfg_t*)(pkt->cbDataPtr);
  389. if( !cp->runFl )
  390. continue;
  391. cmAudioSysH_t asH;
  392. asH.h = cp->p;
  393. unsigned selId = kMidiMsgArraySelAsId;
  394. const void* msgPtrArray[] = { &cp->ctx.asSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray };
  395. unsigned msgByteCntArray[] = { sizeof(cp->ctx.asSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) };
  396. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  397. cmAudioSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId);
  398. }
  399. }
  400. cmAsRC_t cmAudioSysAllocate( cmAudioSysH_t* hp, cmRpt_t* rpt, const cmAudioSysCfg_t* cfg )
  401. {
  402. cmAsRC_t rc;
  403. if((rc = cmAudioSysFree(hp)) != kOkAsRC )
  404. return rc;
  405. cmAs_t* p = cmMemAllocZ( cmAs_t, 1 );
  406. cmErrSetup(&p->err,rpt,"Audio System");
  407. hp->h = p;
  408. if( cfg != NULL )
  409. if((rc = cmAudioSysInitialize( *hp, cfg )) != kOkAsRC )
  410. cmAudioSysFree(hp);
  411. return rc;
  412. }
  413. cmAsRC_t cmAudioSysFree( cmAudioSysH_t* hp )
  414. {
  415. cmAsRC_t rc;
  416. if( hp == NULL || hp->h == NULL )
  417. return kOkAsRC;
  418. if((rc = cmAudioSysFinalize(*hp)) != kOkAsRC )
  419. return rc;
  420. cmAs_t* p = _cmAsHandleToPtr(*hp);
  421. cmMemFree(p);
  422. hp->h = NULL;
  423. return rc;
  424. }
  425. cmAsRC_t _cmAudioSysEnable( cmAs_t* p, bool enableFl )
  426. {
  427. cmAsRC_t rc;
  428. unsigned i;
  429. for(i=0; i<p->ssCnt; ++i)
  430. {
  431. _cmAsCfg_t* cp = p->ssArray + i;
  432. cmApBufOnPortEnable(cp->ss.args.inDevIdx,enableFl);
  433. cmApBufOnPortEnable(cp->ss.args.outDevIdx,enableFl);
  434. if( enableFl )
  435. {
  436. //cmApBufPrimeOutput( cp->ss.args.outDevIdx, 2 );
  437. // start the input device
  438. if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkAsRC )
  439. return _cmAsError(p,kAudioDevStartFailAsRC,"The audio input device start failed.");
  440. // start the output device
  441. if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkAsRC )
  442. return _cmAsError(p,kAudioDevStartFailAsRC,"The audio ouput device start failed.");
  443. }
  444. else
  445. {
  446. // stop the input device
  447. if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkAsRC )
  448. return _cmAsError(p,kAudioDevStopFailAsRC,"The audio input device stop failed.");
  449. // stop the output device
  450. if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkAsRC )
  451. return _cmAsError(p,kAudioDevStopFailAsRC,"The audio output device stop failed.");
  452. }
  453. cp->enableFl = enableFl;
  454. }
  455. return kOkAsRC;
  456. }
  457. cmAsRC_t _cmAudioSysFinalize( cmAs_t* p )
  458. {
  459. cmAsRC_t rc = kOkAsRC;
  460. unsigned i;
  461. // mark the audio system as NOT initialized
  462. p->initFl = false;
  463. // be sure all audio callbacks are disabled before continuing.
  464. if((rc = _cmAudioSysEnable(p,false)) != kOkAsRC )
  465. return _cmAsError(p,rc,"Audio system finalize failed because device halting failed.");
  466. for(i=0; i<p->ssCnt; ++i)
  467. {
  468. _cmAsCfg_t* cp = p->ssArray + i;
  469. if( cmThreadIsValid( cp->threadH ))
  470. {
  471. // inform the thread that it should exit
  472. cp->enableFl = false;
  473. cp->runFl = false;
  474. cp->statusFl = false;
  475. // WARNING: be sure that the audio thread cannot simultaneously signal the
  476. // cond variable from _cmAsAudioUpdate() otherwise the system may crash
  477. while( cp->audCbLock != 0 )
  478. { cmSleepUs(100000); }
  479. // signal the cond var to cause the thread to run
  480. if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC )
  481. _cmAsError(p,kMutexErrAsRC,"Finalize signal cond. var. failed.");
  482. // wait to take control of the mutex - this will occur when the thread function exits
  483. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC )
  484. _cmAsError(p,kMutexErrAsRC,"Finalize lock failed.");
  485. // unlock the mutex because it is no longer needed and must be unlocked to be destroyed
  486. if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC )
  487. _cmAsError(p,kMutexErrAsRC,"Finalize unlock failed.");
  488. // destroy the thread
  489. if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC )
  490. _cmAsError(p,kThreadErrAsRC,"Thread destroy failed.");
  491. }
  492. // destroy the mutex
  493. if( cmThreadMutexIsValid(cp->engMutexH) )
  494. if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC )
  495. _cmAsError(p,kMutexErrAsRC,"Mutex destroy failed.");
  496. // remove the MIDI callback
  497. if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmAudioSysMidiCallback, cp) )
  498. if( cmMpRemoveCallback( -1, -1, _cmAudioSysMidiCallback, cp ) != kOkMpRC )
  499. _cmAsError(p,kMidiSysFailAsRC,"MIDI callback removal failed.");
  500. // destroy the host-to-dsp msg queue
  501. if( cmTsMp1cIsValid(cp->htdQueueH ) )
  502. if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC )
  503. _cmAsError(p,kTsQueueErrAsRC,"Host-to-DSP msg queue destroy failed.");
  504. // destroy the dsp-to-host msg queue
  505. if( cmTsMp1cIsValid(p->dthQueH) )
  506. if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC )
  507. _cmAsError(p,kTsQueueErrAsRC,"DSP-to-Host msg queue destroy failed.");
  508. cmMemPtrFree(&cp->ctx.iChArray);
  509. cmMemPtrFree(&cp->ctx.oChArray);
  510. cp->ctx.iChCnt = 0;
  511. cp->ctx.oChCnt = 0;
  512. cmMemPtrFree(&cp->iMeterArray);
  513. cmMemPtrFree(&cp->oMeterArray);
  514. cp->status.iMeterCnt = 0;
  515. cp->status.oMeterCnt = 0;
  516. }
  517. cmMemPtrFree(&p->ssArray);
  518. p->ssCnt = 0;
  519. return rc;
  520. }
  521. // A given device may be used as an input device exactly once and an output device exactly once.
  522. // When the input to a given device is used by one sub-system and the output is used by another
  523. // then both sub-systems must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle.
  524. cmAsRC_t _cmAsSysValidate( cmErr_t* err, const cmAudioSysCfg_t* cfg )
  525. {
  526. unsigned i,j,k;
  527. for(i=0; i<2; ++i)
  528. {
  529. // examine input devices - then output devices
  530. bool inputFl = i==0;
  531. bool outputFl = !inputFl;
  532. for(j=0; j<cfg->ssCnt; ++j)
  533. {
  534. cmAudioSysArgs_t* s0 = &cfg->ssArray[j].args;
  535. unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx;
  536. for(k=0; k<cfg->ssCnt && devIdx != cmInvalidIdx; ++k)
  537. if( k != j )
  538. {
  539. cmAudioSysArgs_t* s1 = &cfg->ssArray[k].args;
  540. // if the device was used as input or output multple times then signal an error
  541. if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) )
  542. return cmErrMsg(err,kInvalidArgAsRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output");
  543. // if this device is being used by another subsystem ...
  544. if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) )
  545. {
  546. // ... then some of its buffer spec's must match
  547. if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle )
  548. return cmErrMsg(err,kInvalidArgAsRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx);
  549. }
  550. }
  551. }
  552. }
  553. return kOkAsRC;
  554. }
  555. cmAsRC_t cmAudioSysInitialize( cmAudioSysH_t h, const cmAudioSysCfg_t* cfg )
  556. {
  557. cmAsRC_t rc;
  558. unsigned i;
  559. cmAs_t* p = _cmAsHandleToPtr(h);
  560. // validate the device setup
  561. if((rc =_cmAsSysValidate(&p->err, cfg )) != kOkAsRC )
  562. return rc;
  563. // always finalize before iniitalize
  564. if((rc = cmAudioSysFinalize(h)) != kOkAsRC )
  565. return rc;
  566. // create the audio file devices
  567. /*
  568. for(i=0; i<cfg->afpCnt; ++i)
  569. {
  570. const cmAudioSysFilePort_t* afp = cfg->afpArray + i;
  571. cmApFileDeviceCreate( afp->devLabel, afp->inAudioFn, afp->outAudioFn, afp->oBits, afp->oChCnt );
  572. }
  573. */
  574. p->ssArray = cmMemAllocZ( _cmAsCfg_t, cfg->ssCnt );
  575. p->ssCnt = cfg->ssCnt;
  576. for(i=0; i<p->ssCnt; ++i)
  577. {
  578. _cmAsCfg_t* cp = p->ssArray + i;
  579. const cmAudioSysSubSys_t* ss = cfg->ssArray + i;
  580. cp->p = p;
  581. cp->ss = *ss; // copy the cfg into the internal audio system state
  582. cp->runFl = false;
  583. cp->enableFl = false;
  584. cp->statusFl = false;
  585. cp->ctx.reserved = p;
  586. cp->ctx.asSubIdx = i;
  587. cp->ctx.ss = &cp->ss;
  588. cp->ctx.begSmpIdx = 0;
  589. cp->ctx.dspToHostFunc = _cmAsDspToHostMsgCallback;
  590. // validate the input device index
  591. if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() )
  592. {
  593. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"The audio input device index %i is invalid.",ss->args.inDevIdx);
  594. goto errLabel;
  595. }
  596. // validate the output device index
  597. if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() )
  598. {
  599. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"The audio output device index %i is invalid.",ss->args.outDevIdx);
  600. goto errLabel;
  601. }
  602. // setup the input device
  603. if( ss->args.inDevIdx != cmInvalidIdx )
  604. if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmAudioSysAudioUpdate, cp )) != kOkAsRC )
  605. {
  606. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"Audio input device setup failed.");
  607. goto errLabel;
  608. }
  609. // setup the output device
  610. if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx )
  611. if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmAudioSysAudioUpdate, cp )) != kOkAsRC )
  612. {
  613. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"Audio output device setup failed.");
  614. goto errLabel;
  615. }
  616. // setup the input device buffer
  617. if( ss->args.inDevIdx != cmInvalidIdx )
  618. if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle )) != kOkAsRC )
  619. {
  620. rc = _cmAsError(p,kAudioBufSetupErrAsRC,"Audio buffer input setup failed.");
  621. goto errLabel;
  622. }
  623. cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl );
  624. cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl );
  625. // setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmAsDspExecCallback()
  626. if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 )
  627. cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt );
  628. // setup the output device buffer
  629. if( ss->args.outDevIdx != ss->args.inDevIdx )
  630. if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle )) != kOkAsRC )
  631. return _cmAsError(p,kAudioBufSetupErrAsRC,"Audio buffer ouput device setup failed.");
  632. // setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmAsDspExecCallback()
  633. if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 )
  634. cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt );
  635. // determine the sync source
  636. cp->syncInputFl = ss->args.syncInputFl;
  637. // if sync'ing to an unavailable device then sync to the available device
  638. if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 )
  639. cp->syncInputFl = false;
  640. if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 )
  641. cp->syncInputFl = true;
  642. // setup the status record
  643. cp->status.asSubIdx = cp->ctx.asSubIdx;
  644. cp->status.iDevIdx = ss->args.inDevIdx;
  645. cp->status.oDevIdx = ss->args.outDevIdx;
  646. cp->status.iMeterCnt = cp->ctx.iChCnt;
  647. cp->status.oMeterCnt = cp->ctx.oChCnt;
  648. cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt );
  649. cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt );
  650. cp->netH = cfg->netH;
  651. // create the audio System thread
  652. if((rc = cmThreadCreate( &cp->threadH, _cmAsThreadCallback, cp, ss->args.rpt )) != kOkThRC )
  653. {
  654. rc = _cmAsError(p,kThreadErrAsRC,"Thread create failed.");
  655. goto errLabel;
  656. }
  657. // create the audio System mutex
  658. if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC )
  659. {
  660. rc = _cmAsError(p,kMutexErrAsRC,"Thread mutex create failed.");
  661. goto errLabel;
  662. }
  663. // create the host-to-dsp thread safe msg queue
  664. if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC )
  665. {
  666. rc = _cmAsError(p,kTsQueueErrAsRC,"Host-to-DSP msg queue create failed.");
  667. goto errLabel;
  668. }
  669. // create the dsp-to-host thread safe msg queue
  670. if( cmTsMp1cIsValid( p->dthQueH ) == false )
  671. {
  672. if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, cfg->clientCbFunc, cfg->clientCbData, ss->args.rpt )) != kOkThRC )
  673. {
  674. rc = _cmAsError(p,kTsQueueErrAsRC,"DSP-to-Host msg queue create failed.");
  675. goto errLabel;
  676. }
  677. }
  678. //cp->dthQueueH = p->dthQueH;
  679. // install an external MIDI port callback handler for incoming MIDI messages
  680. if( cmMpIsInitialized() )
  681. if( cmMpInstallCallback( -1, -1, _cmAudioSysMidiCallback, cp ) != kOkMpRC )
  682. {
  683. rc = _cmAsError(p,kMidiSysFailAsRC,"MIDI system callback installation failed.");
  684. goto errLabel;
  685. }
  686. // setup the sub-system status notification
  687. cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 );
  688. cp->statusUpdateSmpIdx = 0;
  689. cp->runFl = true;
  690. // start the audio System thread
  691. if( cmThreadPause( cp->threadH, 0 ) != kOkThRC )
  692. {
  693. rc = _cmAsError(p,kThreadErrAsRC,"Thread start failed.");
  694. goto errLabel;
  695. }
  696. }
  697. _cmAsHostInitNotify(p);
  698. p->initFl = true;
  699. errLabel:
  700. if( rc != kOkAsRC )
  701. _cmAudioSysFinalize(p);
  702. return rc;
  703. }
  704. cmAsRC_t cmAudioSysFinalize(cmAudioSysH_t h )
  705. {
  706. cmAsRC_t rc = kOkAsRC;
  707. if( cmAudioSysHandleIsValid(h) == false )
  708. return rc;
  709. cmAs_t* p = _cmAsHandleToPtr(h);
  710. rc = _cmAudioSysFinalize(p);
  711. h.h = NULL;
  712. return rc;
  713. }
  714. bool cmAudioSysIsInitialized( cmAudioSysH_t h )
  715. {
  716. cmAs_t* p = _cmAsHandleToPtr(h);
  717. return p->initFl;
  718. }
  719. cmAsRC_t _cmAudioSysVerifyInit( cmAs_t* p )
  720. {
  721. if( p->initFl == false )
  722. {
  723. // if the last msg generated was also a not init msg then don't
  724. // generate another message - just return the error
  725. if( cmErrLastRC(&p->err) != kNotInitAsRC )
  726. cmErrMsg(&p->err,kNotInitAsRC,"The audio system is not initialized.");
  727. return kNotInitAsRC;
  728. }
  729. return kOkAsRC;
  730. }
  731. bool cmAudioSysIsEnabled( cmAudioSysH_t h )
  732. {
  733. if( cmAudioSysIsInitialized(h) == false )
  734. return false;
  735. cmAs_t* p = _cmAsHandleToPtr(h);
  736. unsigned i;
  737. for(i=0; i<p->ssCnt; ++i)
  738. if( p->ssArray[i].enableFl )
  739. return true;
  740. return false;
  741. }
  742. cmAsRC_t cmAudioSysEnable( cmAudioSysH_t h, bool enableFl )
  743. {
  744. cmAs_t* p = _cmAsHandleToPtr(h);
  745. return _cmAudioSysEnable(p,enableFl);
  746. }
  747. cmAsRC_t cmAudioSysDeliverSegMsg( cmAudioSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId )
  748. {
  749. cmAs_t* p = _cmAsHandleToPtr(h);
  750. cmAsRC_t rc;
  751. // the system must be initialized to use this function
  752. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  753. return rc;
  754. if( msgSegCnt == 0 )
  755. return kOkAsRC;
  756. // BUG BUG BUG - there is no reason that both the asSubIdx and the selId must
  757. // be in the first segment but it would be nice.
  758. assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) );
  759. // The audio sub-system index is always the first field of the msg
  760. // and the msg selector id is always the second field
  761. unsigned* array = (unsigned*)msgDataPtrArray[0];
  762. unsigned asSubIdx = array[0];
  763. unsigned selId = array[1];
  764. if( selId == kUiMstrSelAsId )
  765. return _cmAsHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt );
  766. if( selId == kNetSyncSelAsId )
  767. {
  768. assert( msgSegCnt==1);
  769. assert( asSubIdx < p->ssCnt );
  770. p->ssArray[asSubIdx].ctx.srcNetNodeId = srcNetNodeId;
  771. p->ssArray[asSubIdx].ss.cbFunc(&p->ssArray[asSubIdx].ctx,msgByteCntArray[0],msgDataPtrArray[0]);
  772. return kOkAsRC;
  773. }
  774. return _cmAsEnqueueMsg(p,p->ssArray[asSubIdx].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP");
  775. }
  776. cmAsRC_t cmAudioSysDeliverMsg( cmAudioSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  777. {
  778. const void* msgDataPtrArray[] = { msgPtr };
  779. unsigned msgByteCntArray[] = { msgByteCnt };
  780. return cmAudioSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId);
  781. }
  782. cmAsRC_t cmAudioSysDeliverIdMsg( cmAudioSysH_t h, unsigned asSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  783. {
  784. cmAsRC_t rc;
  785. cmAs_t* p = _cmAsHandleToPtr(h);
  786. // the system must be initialized to use this function
  787. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  788. return rc;
  789. const void* msgDataPtrArray[] = { &asSubIdx, &id, msgPtr };
  790. unsigned msgByteCntArray[] = { sizeof(asSubIdx), sizeof(id), msgByteCnt };
  791. return cmAudioSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId);
  792. }
  793. unsigned cmAudioSysIsMsgWaiting( cmAudioSysH_t h )
  794. {
  795. cmAsRC_t rc;
  796. cmAs_t* p = _cmAsHandleToPtr(h);
  797. // the system must be initialized to use this function
  798. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  799. return 0;
  800. unsigned n = 0;
  801. unsigned retByteCnt;
  802. for(n=0; n < p->ssCnt; ++n )
  803. {
  804. //if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->ssArray[p->waitAsSubIdx].dthQueueH)) > 0 )
  805. if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 )
  806. return retByteCnt;
  807. p->waitAsSubIdx = (p->waitAsSubIdx + 1) % p->ssCnt;
  808. }
  809. return 0;
  810. }
  811. cmAsRC_t cmAudioSysReceiveMsg( cmAudioSysH_t h, void* msgDataPtr, unsigned msgByteCnt )
  812. {
  813. cmAsRC_t rc;
  814. cmAs_t* p = _cmAsHandleToPtr(h);
  815. // the system must be initialized to use this function
  816. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  817. return rc;
  818. //switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitAsSubIdx].dthQueueH,msgDataPtr,msgByteCnt) )
  819. switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) )
  820. {
  821. case kOkThRC:
  822. p->waitAsSubIdx = (p->waitAsSubIdx + 1) % p->ssCnt;
  823. return kOkAsRC;
  824. case kBufTooSmallThRC:
  825. return kBufTooSmallAsRC;
  826. case kBufEmptyThRC:
  827. return kNoMsgWaitingAsRC;
  828. }
  829. return _cmAsError(p,kTsQueueErrAsRC,"A deque operation failed on the DSP-to-Host message queue.");
  830. }
  831. void cmAudioSysStatus( cmAudioSysH_t h, unsigned asSubIdx, cmAudioSysStatus_t* statusPtr )
  832. {
  833. cmAs_t* p = _cmAsHandleToPtr(h);
  834. // the system must be initialized to use this function
  835. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  836. return;
  837. if( asSubIdx < p->ssCnt )
  838. *statusPtr = p->ssArray[asSubIdx].status;
  839. }
  840. void cmAudioSysStatusNotifyEnable( cmAudioSysH_t h, unsigned asSubIdx, bool enableFl )
  841. {
  842. cmAs_t* p = _cmAsHandleToPtr(h);
  843. // the system must be initialized to use this function
  844. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  845. return;
  846. unsigned i = asSubIdx == cmInvalidIdx ? 0 : asSubIdx;
  847. unsigned n = asSubIdx == cmInvalidIdx ? p->ssCnt : asSubIdx+1;
  848. for(; i<n; ++i)
  849. p->ssArray[i].statusFl = enableFl;
  850. }
  851. bool cmAudioSysHandleIsValid( cmAudioSysH_t h )
  852. { return h.h != NULL; }
  853. cmAudioSysCtx_t* cmAudioSysContext( cmAudioSysH_t h, unsigned asSubIdx )
  854. {
  855. cmAs_t* p = _cmAsHandleToPtr(h);
  856. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  857. return NULL;
  858. return &p->ssArray[asSubIdx].ctx;
  859. }
  860. unsigned cmAudioSysSubSystemCount( cmAudioSysH_t h )
  861. {
  862. cmAs_t* p = _cmAsHandleToPtr(h);
  863. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  864. return 0;
  865. return p->ssCnt;
  866. }
  867. //===========================================================================================================================
  868. //
  869. // cmAsTest()
  870. //
  871. /// [cmAudioSysTest]
  872. typedef struct
  873. {
  874. double hz; // current synth frq
  875. long phs; // current synth phase
  876. double srate; // audio sample rate
  877. unsigned cbCnt; // DSP cycle count
  878. bool synthFl; // true=synth false=pass through
  879. } _cmAsTestCbRecd;
  880. typedef struct
  881. {
  882. unsigned asSubIdx; // asSubIdx must always be the first field in the msg
  883. unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host
  884. double hz;
  885. unsigned uint;
  886. } _cmAsTestMsg;
  887. long _cmAsSynthSine( _cmAsTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt )
  888. {
  889. long ph = 0;
  890. unsigned i;
  891. for(i=0; i<chCnt; ++i)
  892. {
  893. unsigned j;
  894. cmApSample_t* op = p + i;
  895. ph = r->phs;
  896. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  897. *op = (cmApSample_t)(0.9 * sin( 2.0 * M_PI * r->hz * ph / r->srate ));
  898. }
  899. return ph;
  900. }
  901. unsigned _cmAsTestChIdx = 0;
  902. cmRC_t _cmAsTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr )
  903. {
  904. cmRC_t rc = cmOkRC;
  905. cmAudioSysCtx_t* ctx = (cmAudioSysCtx_t*)cbPtr;
  906. cmAudioSysSubSys_t* ss = ctx->ss;
  907. _cmAsTestCbRecd* r = (_cmAsTestCbRecd*)ss->cbDataPtr;
  908. // update the calback counter
  909. ++r->cbCnt;
  910. // if this is an audio update request
  911. if( msgByteCnt == 0 )
  912. {
  913. unsigned i;
  914. if( r->synthFl )
  915. {
  916. long phs = 0;
  917. if(0)
  918. {
  919. for(i=0; i<ctx->oChCnt; ++i)
  920. if( ctx->oChArray[i] != NULL )
  921. phs = _cmAsSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle );
  922. }
  923. else
  924. {
  925. if( _cmAsTestChIdx < ctx->oChCnt )
  926. phs = _cmAsSynthSine(r, ctx->oChArray[_cmAsTestChIdx], 1, ss->args.dspFramesPerCycle );
  927. }
  928. r->phs = phs;
  929. }
  930. else
  931. {
  932. // BUG BUG BUG - this assumes that the input and output channels are the same.
  933. unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt);
  934. for(i=0; i<chCnt; ++i)
  935. memcpy(ctx->oChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle);
  936. }
  937. }
  938. else // ... otherwise it is a msg for the DSP process from the host
  939. {
  940. _cmAsTestMsg* msg = (_cmAsTestMsg*)msgDataPtr;
  941. msg->asSubIdx = ctx->asSubIdx;
  942. switch(msg->id)
  943. {
  944. case 0:
  945. r->hz = msg->hz;
  946. break;
  947. case 1:
  948. msg->uint = r->cbCnt;
  949. msgByteCnt = sizeof(_cmAsTestMsg);
  950. rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1);
  951. break;
  952. }
  953. }
  954. return rc;
  955. }
  956. // print the usage message for cmAudioPortTest.c
  957. void _cmAsPrintUsage( cmRpt_t* rpt )
  958. {
  959. char msg[] =
  960. "cmAudioSysTest() command switches:\n"
  961. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -m <msgqsize> -d <dspsize> -t -p -h \n"
  962. "\n"
  963. "-r <srate> = sample rate (48000)\n"
  964. "-c <chcnt> = audio channels (2)\n"
  965. "-b <bufcnt> = count of buffers (3)\n"
  966. "-f <frmcnt> = count of samples per buffer (512)\n"
  967. "-i <idevidx> = input device index (0)\n"
  968. "-o <odevidx> = output device index (2)\n"
  969. "-m <msgqsize> = message queue byte count (1024)\n"
  970. "-d <dspsize> = samples per DSP frame (64)\n"
  971. "-s = true: sync to input port false: sync to output port\n"
  972. "-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n"
  973. "-p = report but don't start audio devices\n"
  974. "-h = print this usage message\n";
  975. cmRptPrintf(rpt,"%s",msg);
  976. }
  977. // Get a command line option.
  978. int _cmAsGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  979. {
  980. int i = 0;
  981. for(; i<argc; ++i)
  982. if( strcmp(label,argv[i]) == 0 )
  983. {
  984. if(boolFl)
  985. return 1;
  986. if( i == (argc-1) )
  987. return defaultVal;
  988. return atoi(argv[i+1]);
  989. }
  990. return defaultVal;
  991. }
  992. bool _cmAsGetBoolOpt( int argc, const char* argv[], const char* label, bool defaultVal )
  993. { return _cmAsGetOpt(argc,argv,label,defaultVal?1:0,true)!=0; }
  994. int _cmAsGetIntOpt( int argc, const char* argv[], const char* label, int defaultVal )
  995. { return _cmAsGetOpt(argc,argv,label,defaultVal,false); }
  996. void cmAudioSysTest( cmRpt_t* rpt, int argc, const char* argv[] )
  997. {
  998. cmAudioSysCfg_t cfg;
  999. cmAudioSysSubSys_t ss;
  1000. cmAudioSysH_t h = cmAudioSysNullHandle;
  1001. cmAudioSysStatus_t status;
  1002. _cmAsTestCbRecd cbRecd = {1000.0,0,48000.0,0};
  1003. cfg.ssArray = &ss;
  1004. cfg.ssCnt = 1;
  1005. //cfg.afpArray= NULL;
  1006. //cfg.afpCnt = 0;
  1007. cfg.meterMs = 50;
  1008. if(_cmAsGetBoolOpt(argc,argv,"-h",false))
  1009. _cmAsPrintUsage(rpt);
  1010. cbRecd.srate = _cmAsGetIntOpt(argc,argv,"-r",48000);
  1011. cbRecd.synthFl = _cmAsGetBoolOpt(argc,argv,"-t",false)==false;
  1012. ss.args.rpt = rpt;
  1013. ss.args.inDevIdx = _cmAsGetIntOpt( argc,argv,"-i",0);
  1014. ss.args.outDevIdx = _cmAsGetIntOpt( argc,argv,"-o",2);
  1015. ss.args.syncInputFl = _cmAsGetBoolOpt(argc,argv,"-s",true);
  1016. ss.args.msgQueueByteCnt = _cmAsGetIntOpt( argc,argv,"-m",8192);
  1017. ss.args.devFramesPerCycle = _cmAsGetIntOpt( argc,argv,"-f",512);
  1018. ss.args.dspFramesPerCycle = _cmAsGetIntOpt( argc,argv,"-d",64);;
  1019. ss.args.audioBufCnt = _cmAsGetIntOpt( argc,argv,"-b",3);
  1020. ss.args.srate = cbRecd.srate;
  1021. ss.cbFunc = _cmAsTestCb; // set the DSP entry function
  1022. ss.cbDataPtr = &cbRecd; // set the DSP function argument record
  1023. cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl,
  1024. ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate);
  1025. if( cmApNrtAllocate(rpt) != kOkApRC )
  1026. goto errLabel;
  1027. if( cmApFileAllocate(rpt) != kOkApRC )
  1028. goto errLabel;
  1029. // initialize the audio device system
  1030. if( cmApInitialize(rpt) != kOkApRC )
  1031. goto errLabel;
  1032. cmApReport(rpt);
  1033. // initialize the audio buffer
  1034. if( cmApBufInitialize( cmApDeviceCount(), cfg.meterMs ) != kOkApRC )
  1035. goto errLabel;
  1036. // initialize the audio system
  1037. if( cmAudioSysAllocate(&h,rpt,&cfg) != kOkAsRC )
  1038. goto errLabel;
  1039. // start the audio system
  1040. cmAudioSysEnable(h,true);
  1041. char c = 0;
  1042. printf("q=quit a-g=note n=ch r=rqst s=status\n");
  1043. // simulate a host event loop
  1044. while(c != 'q')
  1045. {
  1046. _cmAsTestMsg msg = {0,0,0,0};
  1047. bool fl = true;
  1048. // wait here for a key press
  1049. c =(char)fgetc(stdin);
  1050. fflush(stdin);
  1051. switch(c)
  1052. {
  1053. case 'c': msg.hz = cmMidiToHz(60); break;
  1054. case 'd': msg.hz = cmMidiToHz(62); break;
  1055. case 'e': msg.hz = cmMidiToHz(64); break;
  1056. case 'f': msg.hz = cmMidiToHz(65); break;
  1057. case 'g': msg.hz = cmMidiToHz(67); break;
  1058. case 'a': msg.hz = cmMidiToHz(69); break;
  1059. case 'b': msg.hz = cmMidiToHz(71); break;
  1060. case 'r': msg.id = 1; break; // request DSP process to send a callback count
  1061. case 'n': ++_cmAsTestChIdx; printf("ch:%i\n",_cmAsTestChIdx); break;
  1062. case 's':
  1063. // report the audio system status
  1064. cmAudioSysStatus(h,0,&status);
  1065. printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt);
  1066. //printf("%f \n",status.oMeterArray[0]);
  1067. fl = false;
  1068. break;
  1069. default:
  1070. fl=false;
  1071. }
  1072. if( fl )
  1073. {
  1074. // transmit a command to the DSP process
  1075. cmAudioSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId);
  1076. }
  1077. // check if messages are waiting to be delivered from the DSP process
  1078. unsigned msgByteCnt;
  1079. if((msgByteCnt = cmAudioSysIsMsgWaiting(h)) > 0 )
  1080. {
  1081. char buf[ msgByteCnt ];
  1082. // rcv a msg from the DSP process
  1083. if( cmAudioSysReceiveMsg(h,buf,msgByteCnt) == kOkAsRC )
  1084. {
  1085. _cmAsTestMsg* msg = (_cmAsTestMsg*)buf;
  1086. switch(msg->id)
  1087. {
  1088. case 1:
  1089. printf("RCV: Callback count:%i\n",msg->uint);
  1090. break;
  1091. }
  1092. }
  1093. }
  1094. // report the audio buffer status
  1095. //cmApBufReport(ss.args.rpt);
  1096. }
  1097. // stop the audio system
  1098. cmAudioSysEnable(h,false);
  1099. goto exitLabel;
  1100. errLabel:
  1101. printf("AUDIO SYSTEM TEST ERROR\n");
  1102. exitLabel:
  1103. cmAudioSysFree(&h);
  1104. cmApFinalize();
  1105. cmApFileFree();
  1106. cmApNrtFree();
  1107. cmApBufFinalize();
  1108. }
  1109. /// [cmAudioSysTest]