libcm is a C development framework with an emphasis on audio signal processing applications.
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

cmMidiAlsa.c 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmThread.h"
  10. #include "cmMidi.h"
  11. #include "cmMidiPort.h"
  12. #include <alsa/asoundlib.h>
  13. typedef struct
  14. {
  15. bool inputFl; // true if this an input port
  16. char* nameStr; // string label of this device
  17. unsigned alsa_type; // ALSA type flags from snd_seq_port_info_get_type()
  18. unsigned alsa_cap; // ALSA capability flags from snd_seq_port_info_get_capability()
  19. snd_seq_addr_t alsa_addr; // ALSA client/port address for this port
  20. cmMpParserH_t parserH; // interface to the client callback function for this port
  21. } cmMpPort_t;
  22. // MIDI devices
  23. typedef struct
  24. {
  25. char* nameStr; // string label for this device
  26. unsigned iPortCnt; // input ports on this device
  27. cmMpPort_t* iPortArray;
  28. unsigned oPortCnt; // output ports on this device
  29. cmMpPort_t* oPortArray;
  30. unsigned char clientId; // ALSA client id (all ports on this device use use this client id in their address)
  31. } cmMpDev_t;
  32. typedef struct
  33. {
  34. cmErr_t err; // error object
  35. cmLHeapH_t lH; // linked heap used for all internal memory
  36. unsigned devCnt; // MIDI devices attached to this computer
  37. cmMpDev_t* devArray;
  38. cmMpCallback_t cbFunc; // MIDI input application callback
  39. void* cbDataPtr;
  40. snd_seq_t* h; // ALSA system sequencer handle
  41. snd_seq_addr_t alsa_addr; // ALSA client/port address representing the application
  42. int alsa_queue; // ALSA device queue
  43. cmThreadH_t thH; // MIDI input listening thread
  44. int alsa_fdCnt; // MIDI input driver file descriptor array
  45. struct pollfd* alsa_fd;
  46. cmMpDev_t* prvRcvDev; // the last device and port to rcv MIDI
  47. cmMpPort_t* prvRcvPort;
  48. unsigned prvTimeMicroSecs; // time of last recognized event in microseconds
  49. unsigned eventCnt; // count of recognized events
  50. } cmMpRoot_t;
  51. cmMpRoot_t* _cmMpRoot = NULL;
  52. cmMpRC_t _cmMpErrMsgV(cmErr_t* err, cmMpRC_t rc, int alsaRc, const cmChar_t* fmt, va_list vl )
  53. {
  54. if( alsaRc < 0 )
  55. cmErrMsg(err,kSysErrMpRC,"ALSA Error:%i %s",alsaRc,snd_strerror(alsaRc));
  56. return cmErrVMsg(err,rc,fmt,vl);
  57. }
  58. cmMpRC_t _cmMpErrMsg(cmErr_t* err, cmMpRC_t rc, int alsaRc, const cmChar_t* fmt, ... )
  59. {
  60. va_list vl;
  61. va_start(vl,fmt);
  62. rc = _cmMpErrMsgV(err,rc,alsaRc,fmt,vl);
  63. va_end(vl);
  64. return rc;
  65. }
  66. unsigned _cmMpGetPortCnt( snd_seq_t* h, snd_seq_port_info_t* pip, bool inputFl )
  67. {
  68. unsigned i = 0;
  69. snd_seq_port_info_set_port(pip,-1);
  70. while( snd_seq_query_next_port(h,pip) == 0)
  71. if( cmIsFlag(snd_seq_port_info_get_capability(pip),inputFl?SND_SEQ_PORT_CAP_READ:SND_SEQ_PORT_CAP_WRITE) )
  72. ++i;
  73. return i;
  74. }
  75. cmMpDev_t* _cmMpClientIdToDev( int clientId )
  76. {
  77. cmMpRoot_t* p = _cmMpRoot;
  78. unsigned i;
  79. for(i=0; i<p->devCnt; ++i)
  80. if( p->devArray[i].clientId == clientId )
  81. return p->devArray + i;
  82. return NULL;
  83. }
  84. cmMpPort_t* _cmMpInPortIdToPort( cmMpDev_t* dev, int portId )
  85. {
  86. unsigned i;
  87. for(i=0; i<dev->iPortCnt; ++i)
  88. if( dev->iPortArray[i].alsa_addr.port == portId )
  89. return dev->iPortArray + i;
  90. return NULL;
  91. }
  92. void _cmMpSplit14Bits( unsigned v, cmMidiByte_t* d0, cmMidiByte_t* d1 )
  93. {
  94. *d0 = (v & 0x3f80) >> 7;
  95. *d1 = v & 0x7f;
  96. }
  97. cmMpRC_t cmMpPoll()
  98. {
  99. cmMpRC_t rc = kOkMpRC;
  100. cmMpRoot_t* p = _cmMpRoot;
  101. int timeOutMs = 50;
  102. snd_seq_event_t *ev;
  103. if (poll(p->alsa_fd, p->alsa_fdCnt, timeOutMs) > 0)
  104. {
  105. int rc = 1;
  106. do
  107. {
  108. rc = snd_seq_event_input(p->h,&ev);
  109. // if no input
  110. if( rc == -EAGAIN )
  111. break;
  112. // if input buffer overrun
  113. if( rc == -ENOSPC )
  114. break;
  115. // get the device this event arrived from
  116. if( p->prvRcvDev==NULL || p->prvRcvDev->clientId != ev->source.client )
  117. p->prvRcvDev = _cmMpClientIdToDev(ev->source.client);
  118. // get the port this event arrived from
  119. if( p->prvRcvDev != NULL && (p->prvRcvPort==NULL || p->prvRcvPort->alsa_addr.port != ev->source.port) )
  120. p->prvRcvPort = _cmMpInPortIdToPort(p->prvRcvDev,ev->source.port);
  121. if( p->prvRcvDev == NULL || p->prvRcvPort == NULL )
  122. continue;
  123. //printf("%i %x\n",ev->type,ev->type);
  124. //printf("dev:%i port:%i ch:%i %i\n",ev->source.client,ev->source.port,ev->data.note.channel,ev->data.note.note);
  125. unsigned microSecs1 = (ev->time.time.tv_sec * 1000000) + (ev->time.time.tv_nsec/1000);
  126. unsigned deltaMicroSecs = p->prvTimeMicroSecs==0 ? 0 : microSecs1 - p->prvTimeMicroSecs;
  127. cmMidiByte_t d0 = 0xff;
  128. cmMidiByte_t d1 = 0xff;
  129. cmMidiByte_t status = 0;
  130. switch(ev->type)
  131. {
  132. //
  133. // MIDI Channel Messages
  134. //
  135. case SND_SEQ_EVENT_NOTEON:
  136. status = kNoteOnMdId;
  137. d0 = ev->data.note.note;
  138. d1 = ev->data.note.velocity;
  139. //printf("%s (%i : %i) (%i)\n", snd_seq_ev_is_abstime(ev)?"abs":"rel",ev->time.time.tv_sec,ev->time.time.tv_nsec, deltaMicroSecs/1000);
  140. break;
  141. case SND_SEQ_EVENT_NOTEOFF:
  142. status = kNoteOffMdId;
  143. d0 = ev->data.note.note;
  144. d1 = ev->data.note.velocity;
  145. break;
  146. case SND_SEQ_EVENT_KEYPRESS:
  147. status = kPolyPresMdId;
  148. d0 = ev->data.note.note;
  149. d1 = ev->data.note.velocity;
  150. break;
  151. case SND_SEQ_EVENT_PGMCHANGE:
  152. status = kPgmMdId;
  153. d0 = ev->data.control.param;
  154. d1 = 0xff;
  155. break;
  156. case SND_SEQ_EVENT_CHANPRESS:
  157. status = kChPresMdId;
  158. d0 = ev->data.control.param;
  159. d1 = 0xff;
  160. break;
  161. case SND_SEQ_EVENT_CONTROLLER:
  162. status = kCtlMdId;
  163. d0 = ev->data.control.param;
  164. d1 = ev->data.control.value;
  165. break;
  166. case SND_SEQ_EVENT_PITCHBEND:
  167. _cmMpSplit14Bits(ev->data.control.value + 8192, &d0, &d1 );
  168. status = kPbendMdId;
  169. break;
  170. //
  171. // MIDI System Common Messages
  172. //
  173. case SND_SEQ_EVENT_QFRAME:
  174. status = kSysComMtcMdId;
  175. d0 = ev->data.control.value;
  176. break;
  177. case SND_SEQ_EVENT_SONGPOS:
  178. _cmMpSplit14Bits(ev->data.control.value, &d0, &d1 );
  179. status = kSysComSppMdId;
  180. break;
  181. case SND_SEQ_EVENT_SONGSEL:
  182. status = kSysComSelMdId;
  183. d0 = ev->data.control.value;
  184. break;
  185. case SND_SEQ_EVENT_TUNE_REQUEST:
  186. status = kSysComTuneMdId;
  187. break;
  188. //
  189. // MIDI System Real-time Messages
  190. //
  191. case SND_SEQ_EVENT_CLOCK: status = kSysRtClockMdId; break;
  192. case SND_SEQ_EVENT_START: status = kSysRtStartMdId; break;
  193. case SND_SEQ_EVENT_CONTINUE: status = kSysRtContMdId; break;
  194. case SND_SEQ_EVENT_STOP: status = kSysRtStopMdId; break;
  195. case SND_SEQ_EVENT_SENSING: status = kSysRtSenseMdId; break;
  196. case SND_SEQ_EVENT_RESET: status = kSysRtResetMdId; break;
  197. }
  198. if( status != 0 )
  199. {
  200. cmMidiByte_t ch = ev->data.note.channel;
  201. cmMpParserMidiTriple(p->prvRcvPort->parserH, deltaMicroSecs, status | ch, d0, d1 );
  202. p->prvTimeMicroSecs = microSecs1;
  203. p->eventCnt += 1;
  204. }
  205. }while( snd_seq_event_input_pending(p->h,0));
  206. cmMpParserTransmit(p->prvRcvPort->parserH);
  207. }
  208. return rc;
  209. }
  210. bool _cmMpThreadFunc(void* param)
  211. {
  212. cmMpPoll();
  213. return true;
  214. }
  215. cmMpRC_t _cmMpAllocStruct( cmMpRoot_t* p, const cmChar_t* appNameStr, cmMpCallback_t cbFunc, void* cbDataPtr, unsigned parserBufByteCnt, cmRpt_t* rpt )
  216. {
  217. cmMpRC_t rc = kOkMpRC;
  218. snd_seq_client_info_t* cip = NULL;
  219. snd_seq_port_info_t* pip = NULL;
  220. snd_seq_port_subscribe_t *subs = NULL;
  221. unsigned i,j,k,arc;
  222. // alloc the subscription recd on the stack
  223. snd_seq_port_subscribe_alloca(&subs);
  224. // alloc the client recd
  225. if((arc = snd_seq_client_info_malloc(&cip)) < 0 )
  226. {
  227. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA seq client info allocation failed.");
  228. goto errLabel;
  229. }
  230. // alloc the port recd
  231. if((arc = snd_seq_port_info_malloc(&pip)) < 0 )
  232. {
  233. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA seq port info allocation failed.");
  234. goto errLabel;
  235. }
  236. if((p->alsa_queue = snd_seq_alloc_queue(p->h)) < 0 )
  237. {
  238. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,p->alsa_queue,"ALSA queue allocation failed.");
  239. goto errLabel;
  240. }
  241. // Set arbitrary tempo (mm=100) and resolution (240) (FROM RtMidi.cpp)
  242. /*
  243. snd_seq_queue_tempo_t *qtempo;
  244. snd_seq_queue_tempo_alloca(&qtempo);
  245. snd_seq_queue_tempo_set_tempo(qtempo, 600000);
  246. snd_seq_queue_tempo_set_ppq(qtempo, 240);
  247. snd_seq_set_queue_tempo(p->h, p->alsa_queue, qtempo);
  248. snd_seq_drain_output(p->h);
  249. */
  250. // setup the client port
  251. snd_seq_set_client_name(p->h,appNameStr);
  252. snd_seq_port_info_set_client(pip, p->alsa_addr.client = snd_seq_client_id(p->h) );
  253. snd_seq_port_info_set_name(pip,cmStringNullGuard(appNameStr));
  254. snd_seq_port_info_set_capability(pip,SND_SEQ_PORT_CAP_READ | SND_SEQ_PORT_CAP_WRITE | SND_SEQ_PORT_CAP_DUPLEX | SND_SEQ_PORT_CAP_SUBS_READ | SND_SEQ_PORT_CAP_SUBS_WRITE );
  255. snd_seq_port_info_set_type(pip, SND_SEQ_PORT_TYPE_SOFTWARE | SND_SEQ_PORT_TYPE_APPLICATION | SND_SEQ_PORT_TYPE_MIDI_GENERIC );
  256. snd_seq_port_info_set_midi_channels(pip, 16);
  257. // cfg for real-time time stamping
  258. snd_seq_port_info_set_timestamping(pip, 1);
  259. snd_seq_port_info_set_timestamp_real(pip, 1);
  260. snd_seq_port_info_set_timestamp_queue(pip, p->alsa_queue);
  261. // create the client port
  262. if((p->alsa_addr.port = snd_seq_create_port(p->h,pip)) < 0 )
  263. {
  264. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,p->alsa_addr.port,"ALSA client port creation failed.");
  265. goto errLabel;
  266. }
  267. p->devCnt = 0;
  268. // determine the count of devices
  269. snd_seq_client_info_set_client(cip, -1);
  270. while( snd_seq_query_next_client(p->h,cip) == 0)
  271. p->devCnt += 1;
  272. // allocate the device array
  273. p->devArray = cmLhAllocZ(p->lH,cmMpDev_t,p->devCnt);
  274. // fill in each device record
  275. snd_seq_client_info_set_client(cip, -1);
  276. for(i=0; snd_seq_query_next_client(p->h,cip)==0; ++i)
  277. {
  278. assert(i<p->devCnt);
  279. int client = snd_seq_client_info_get_client(cip);
  280. const char* name = snd_seq_client_info_get_name(cip);
  281. // initalize the device record
  282. p->devArray[i].nameStr = cmLhAllocStr(p->lH,cmStringNullGuard(name));
  283. p->devArray[i].iPortCnt = 0;
  284. p->devArray[i].oPortCnt = 0;
  285. p->devArray[i].iPortArray = NULL;
  286. p->devArray[i].oPortArray = NULL;
  287. p->devArray[i].clientId = client;
  288. snd_seq_port_info_set_client(pip,client);
  289. snd_seq_port_info_set_port(pip,-1);
  290. // determine the count of in/out ports on this device
  291. while( snd_seq_query_next_port(p->h,pip) == 0 )
  292. {
  293. unsigned caps = snd_seq_port_info_get_capability(pip);
  294. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_READ) )
  295. p->devArray[i].iPortCnt += 1;
  296. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_WRITE) )
  297. p->devArray[i].oPortCnt += 1;
  298. }
  299. // allocate the device port arrays
  300. if( p->devArray[i].iPortCnt > 0 )
  301. p->devArray[i].iPortArray = cmLhAllocZ(p->lH,cmMpPort_t,p->devArray[i].iPortCnt);
  302. if( p->devArray[i].oPortCnt > 0 )
  303. p->devArray[i].oPortArray = cmLhAllocZ(p->lH,cmMpPort_t,p->devArray[i].oPortCnt);
  304. snd_seq_port_info_set_client(pip,client); // set the ports client id
  305. snd_seq_port_info_set_port(pip,-1);
  306. // fill in the port information
  307. for(j=0,k=0; snd_seq_query_next_port(p->h,pip) == 0; )
  308. {
  309. const char* port = snd_seq_port_info_get_name(pip);
  310. unsigned type = snd_seq_port_info_get_type(pip);
  311. unsigned caps = snd_seq_port_info_get_capability(pip);
  312. snd_seq_addr_t addr = *snd_seq_port_info_get_addr(pip);
  313. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_READ) )
  314. {
  315. assert(j<p->devArray[i].iPortCnt);
  316. p->devArray[i].iPortArray[j].inputFl = true;
  317. p->devArray[i].iPortArray[j].nameStr = cmLhAllocStr(p->lH,cmStringNullGuard(port));
  318. p->devArray[i].iPortArray[j].alsa_type = type;
  319. p->devArray[i].iPortArray[j].alsa_cap = caps;
  320. p->devArray[i].iPortArray[j].alsa_addr = addr;
  321. p->devArray[i].iPortArray[j].parserH = cmMpParserCreate(i, j, cbFunc, cbDataPtr, parserBufByteCnt, rpt );
  322. // port->app
  323. snd_seq_port_subscribe_set_sender(subs, &addr);
  324. snd_seq_port_subscribe_set_dest(subs, &p->alsa_addr);
  325. snd_seq_port_subscribe_set_queue(subs, 1);
  326. snd_seq_port_subscribe_set_time_update(subs, 1);
  327. snd_seq_port_subscribe_set_time_real(subs, 1);
  328. if((arc = snd_seq_subscribe_port(p->h, subs)) < 0)
  329. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"Input port to app. subscription failed on port '%s'.",cmStringNullGuard(port));
  330. ++j;
  331. }
  332. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_WRITE) )
  333. {
  334. assert(k<p->devArray[i].oPortCnt);
  335. p->devArray[i].oPortArray[k].inputFl = false;
  336. p->devArray[i].oPortArray[k].nameStr = cmLhAllocStr(p->lH,cmStringNullGuard(port));
  337. p->devArray[i].oPortArray[k].alsa_type = type;
  338. p->devArray[i].oPortArray[k].alsa_cap = caps;
  339. p->devArray[i].oPortArray[k].alsa_addr = addr;
  340. // app->port connection
  341. snd_seq_port_subscribe_set_sender(subs, &p->alsa_addr);
  342. snd_seq_port_subscribe_set_dest( subs, &addr);
  343. if((arc = snd_seq_subscribe_port(p->h, subs)) < 0 )
  344. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"App to output port subscription failed on port '%s'.",cmStringNullGuard(port));
  345. ++k;
  346. }
  347. }
  348. }
  349. errLabel:
  350. if( pip != NULL)
  351. snd_seq_port_info_free(pip);
  352. if( cip != NULL )
  353. snd_seq_client_info_free(cip);
  354. return rc;
  355. }
  356. cmMpRC_t cmMpInitialize( cmCtx_t* ctx, cmMpCallback_t cbFunc, void* cbArg, unsigned parserBufByteCnt, const char* appNameStr )
  357. {
  358. cmMpRC_t rc = kOkMpRC;
  359. int arc = 0;
  360. cmMpRoot_t* p = NULL;
  361. if((rc = cmMpFinalize()) != kOkMpRC )
  362. return rc;
  363. // allocate the global root object
  364. _cmMpRoot = p = cmMemAllocZ(cmMpRoot_t,1);
  365. p->h = NULL;
  366. p->alsa_queue = -1;
  367. cmErrSetup(&p->err,&ctx->rpt,"MIDI Port");
  368. // setup the local linked heap manager
  369. if(cmLHeapIsValid(p->lH = cmLHeapCreate(2048,ctx)) == false )
  370. {
  371. rc = _cmMpErrMsg(&p->err,kLHeapErrMpRC,0,"Linked heap initialization failed.");
  372. goto errLabel;
  373. }
  374. // create the listening thread
  375. if( cmThreadCreate( &p->thH, _cmMpThreadFunc, NULL, &ctx->rpt) != kOkThRC )
  376. {
  377. rc = _cmMpErrMsg(&p->err,kThreadErrMpRC,0,"Thread initialization failed.");
  378. goto errLabel;
  379. }
  380. // initialize the ALSA sequencer
  381. if((arc = snd_seq_open(&p->h, "default", SND_SEQ_OPEN_DUPLEX, SND_SEQ_NONBLOCK )) < 0 )
  382. {
  383. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA Sequencer open failed.");
  384. goto errLabel;
  385. }
  386. // setup the device and port structures
  387. if((rc = _cmMpAllocStruct(p,appNameStr,cbFunc,cbArg,parserBufByteCnt,&ctx->rpt)) != kOkMpRC )
  388. goto errLabel;
  389. // allocate the file descriptors used for polling
  390. p->alsa_fdCnt = snd_seq_poll_descriptors_count(p->h, POLLIN);
  391. p->alsa_fd = cmMemAllocZ(struct pollfd,p->alsa_fdCnt);
  392. snd_seq_poll_descriptors(p->h, p->alsa_fd, p->alsa_fdCnt, POLLIN);
  393. p->cbFunc = cbFunc;
  394. p->cbDataPtr = cbArg;
  395. // start the sequencer queue
  396. if((arc = snd_seq_start_queue(p->h, p->alsa_queue, NULL)) < 0 )
  397. {
  398. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA queue start failed.");
  399. goto errLabel;
  400. }
  401. // send any pending commands to the driver
  402. snd_seq_drain_output(p->h);
  403. if( cmThreadPause(p->thH,0) != kOkThRC )
  404. rc = _cmMpErrMsg(&p->err,kThreadErrMpRC,0,"Thread start failed.");
  405. errLabel:
  406. if( rc != kOkMpRC )
  407. cmMpFinalize();
  408. return rc;
  409. }
  410. cmMpRC_t cmMpFinalize()
  411. {
  412. cmMpRC_t rc = kOkMpRC;
  413. cmMpRoot_t* p = _cmMpRoot;
  414. if( _cmMpRoot != NULL )
  415. {
  416. int arc;
  417. // stop the thread first
  418. if( cmThreadDestroy(&p->thH) != kOkThRC )
  419. {
  420. rc = _cmMpErrMsg(&p->err,kThreadErrMpRC,0,"Thread destroy failed.");
  421. goto errLabel;
  422. }
  423. // stop the queue
  424. if((arc = snd_seq_stop_queue(p->h,p->alsa_queue, NULL)) < 0 )
  425. {
  426. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA queue stop failed.");
  427. goto errLabel;
  428. }
  429. // release the alsa queue
  430. if( p->alsa_queue != -1 )
  431. {
  432. if((arc = snd_seq_free_queue(p->h,p->alsa_queue)) < 0 )
  433. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA queue release failed.");
  434. else
  435. p->alsa_queue = -1;
  436. }
  437. // release the alsa system handle
  438. if( p->h != NULL )
  439. {
  440. if( (arc = snd_seq_close(p->h)) < 0 )
  441. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA sequencer close failed.");
  442. else
  443. p->h = NULL;
  444. }
  445. // release each parser
  446. unsigned i,j;
  447. for(i=0; i<p->devCnt; ++i)
  448. for(j=0; j<p->devArray[i].iPortCnt; ++j)
  449. cmMpParserDestroy(&p->devArray[i].iPortArray[j].parserH);
  450. cmLHeapDestroy(&p->lH);
  451. cmMemFree(p->alsa_fd);
  452. cmMemPtrFree(&_cmMpRoot);
  453. }
  454. errLabel:
  455. return rc;
  456. }
  457. bool cmMpIsInitialized()
  458. { return _cmMpRoot!=NULL; }
  459. unsigned cmMpDeviceCount()
  460. { return _cmMpRoot==NULL ? 0 : _cmMpRoot->devCnt; }
  461. const char* cmMpDeviceName( unsigned devIdx )
  462. {
  463. if( _cmMpRoot==NULL || devIdx>=_cmMpRoot->devCnt)
  464. return NULL;
  465. return _cmMpRoot->devArray[devIdx].nameStr;
  466. }
  467. unsigned cmMpDevicePortCount( unsigned devIdx, unsigned flags )
  468. {
  469. if( _cmMpRoot==NULL || devIdx>=_cmMpRoot->devCnt)
  470. return 0;
  471. if( cmIsFlag(flags,kInMpFl) )
  472. return _cmMpRoot->devArray[devIdx].iPortCnt;
  473. return _cmMpRoot->devArray[devIdx].oPortCnt;
  474. }
  475. const char* cmMpDevicePortName( unsigned devIdx, unsigned flags, unsigned portIdx )
  476. {
  477. if( _cmMpRoot==NULL || devIdx>=_cmMpRoot->devCnt)
  478. return 0;
  479. if( cmIsFlag(flags,kInMpFl) )
  480. {
  481. if( portIdx >= _cmMpRoot->devArray[devIdx].iPortCnt )
  482. return 0;
  483. return _cmMpRoot->devArray[devIdx].iPortArray[portIdx].nameStr;
  484. }
  485. if( portIdx >= _cmMpRoot->devArray[devIdx].oPortCnt )
  486. return 0;
  487. return _cmMpRoot->devArray[devIdx].oPortArray[portIdx].nameStr;
  488. }
  489. cmMpRC_t cmMpDeviceSend( unsigned devIdx, unsigned portIdx, cmMidiByte_t status, cmMidiByte_t d0, cmMidiByte_t d1 )
  490. {
  491. cmMpRC_t rc = kOkMpRC;
  492. snd_seq_event_t ev;
  493. int arc;
  494. cmMpRoot_t* p = _cmMpRoot;
  495. assert( p!=NULL && devIdx < p->devCnt && portIdx < p->devArray[devIdx].oPortCnt );
  496. cmMpPort_t* port = p->devArray[devIdx].oPortArray + portIdx;
  497. snd_seq_ev_clear(&ev);
  498. snd_seq_ev_set_source(&ev, p->alsa_addr.port);
  499. //snd_seq_ev_set_subs(&ev);
  500. snd_seq_ev_set_dest(&ev, port->alsa_addr.client, port->alsa_addr.port);
  501. snd_seq_ev_set_direct(&ev);
  502. snd_seq_ev_set_fixed(&ev);
  503. switch( status & 0xf0 )
  504. {
  505. case kNoteOffMdId:
  506. ev.type = SND_SEQ_EVENT_NOTEOFF;
  507. ev.data.note.note = d0;
  508. ev.data.note.velocity = d1;
  509. break;
  510. case kNoteOnMdId:
  511. ev.type = SND_SEQ_EVENT_NOTEON;
  512. ev.data.note.note = d0;
  513. ev.data.note.velocity = d1;
  514. break;
  515. case kPolyPresMdId:
  516. ev.type = SND_SEQ_EVENT_KEYPRESS ;
  517. ev.data.note.note = d0;
  518. ev.data.note.velocity = d1;
  519. break;
  520. case kCtlMdId:
  521. ev.type = SND_SEQ_EVENT_CONTROLLER;
  522. ev.data.control.param = d0;
  523. ev.data.control.value = d1;
  524. break;
  525. case kPgmMdId:
  526. ev.type = SND_SEQ_EVENT_PGMCHANGE;
  527. ev.data.control.param = d0;
  528. ev.data.control.value = d1;
  529. break;
  530. case kChPresMdId:
  531. ev.type = SND_SEQ_EVENT_CHANPRESS;
  532. ev.data.control.param = d0;
  533. ev.data.control.value = d1;
  534. break;
  535. case kPbendMdId:
  536. {
  537. int val = d0;
  538. val <<= 7;
  539. val += d1;
  540. val -= 8192;
  541. ev.type = SND_SEQ_EVENT_PITCHBEND;
  542. ev.data.control.param = 0;
  543. ev.data.control.value = val;
  544. }
  545. break;
  546. default:
  547. rc = _cmMpErrMsg(&p->err,kInvalidArgMpRC,0,"Cannot send an invalid MIDI status byte:0x%x.",status & 0xf0);
  548. goto errLabel;
  549. }
  550. ev.data.note.channel = status & 0x0f;
  551. if((arc = snd_seq_event_output(p->h, &ev)) < 0 )
  552. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"MIDI event output failed.");
  553. if((arc = snd_seq_drain_output(p->h)) < 0 )
  554. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"MIDI event output drain failed.");
  555. errLabel:
  556. return rc;
  557. }
  558. cmMpRC_t cmMpDeviceSendData( unsigned devIdx, unsigned portIdx, const cmMidiByte_t* dataPtr, unsigned byteCnt )
  559. {
  560. cmMpRoot_t* p = _cmMpRoot;
  561. return cmErrMsg(&p->err,kNotImplMpRC,"cmMpDeviceSendData() has not yet been implemented for ALSA.");
  562. }
  563. cmMpRC_t cmMpInstallCallback( unsigned devIdx, unsigned portIdx, cmMpCallback_t cbFunc, void* cbDataPtr )
  564. {
  565. cmMpRC_t rc = kOkMpRC;
  566. unsigned di;
  567. unsigned dn = cmMpDeviceCount();
  568. cmMpRoot_t* p = _cmMpRoot;
  569. for(di=0; di<dn; ++di)
  570. if( di==devIdx || devIdx == -1 )
  571. {
  572. unsigned pi;
  573. unsigned pn = cmMpDevicePortCount(di,kInMpFl);
  574. for(pi=0; pi<pn; ++pi)
  575. if( pi==portIdx || portIdx == -1 )
  576. if( cmMpParserInstallCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) != kOkMpRC )
  577. goto errLabel;
  578. }
  579. errLabel:
  580. return rc;
  581. }
  582. cmMpRC_t cmMpRemoveCallback( unsigned devIdx, unsigned portIdx, cmMpCallback_t cbFunc, void* cbDataPtr )
  583. {
  584. cmMpRC_t rc = kOkMpRC;
  585. unsigned di;
  586. unsigned dn = cmMpDeviceCount();
  587. unsigned remCnt = 0;
  588. cmMpRoot_t* p = _cmMpRoot;
  589. for(di=0; di<dn; ++di)
  590. if( di==devIdx || devIdx == -1 )
  591. {
  592. unsigned pi;
  593. unsigned pn = cmMpDevicePortCount(di,kInMpFl);
  594. for(pi=0; pi<pn; ++pi)
  595. if( pi==portIdx || portIdx == -1 )
  596. if( cmMpParserHasCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) )
  597. {
  598. if( cmMpParserRemoveCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) != kOkMpRC )
  599. goto errLabel;
  600. else
  601. ++remCnt;
  602. }
  603. }
  604. if( remCnt == 0 && dn > 0 )
  605. rc = _cmMpErrMsg(&p->err,kCbNotFoundMpRC,0,"The callback was not found on any of the specified devices or ports.");
  606. errLabel:
  607. return rc;
  608. }
  609. bool cmMpUsesCallback( unsigned devIdx, unsigned portIdx, cmMpCallback_t cbFunc, void* cbDataPtr )
  610. {
  611. unsigned di;
  612. unsigned dn = cmMpDeviceCount();
  613. cmMpRoot_t* p = _cmMpRoot;
  614. for(di=0; di<dn; ++di)
  615. if( di==devIdx || devIdx == -1 )
  616. {
  617. unsigned pi;
  618. unsigned pn = cmMpDevicePortCount(di,kInMpFl);
  619. for(pi=0; pi<pn; ++pi)
  620. if( pi==portIdx || portIdx == -1 )
  621. if( cmMpParserHasCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) )
  622. return true;
  623. }
  624. return false;
  625. }
  626. void _cmMpReportPort( cmRpt_t* rpt, const cmMpPort_t* port )
  627. {
  628. cmRptPrintf(rpt," client:%i port:%i %s caps:(",port->alsa_addr.client,port->alsa_addr.port,port->nameStr);
  629. if( port->alsa_cap & SND_SEQ_PORT_CAP_READ ) cmRptPrintf(rpt,"Read " );
  630. if( port->alsa_cap & SND_SEQ_PORT_CAP_WRITE ) cmRptPrintf(rpt,"Writ " );
  631. if( port->alsa_cap & SND_SEQ_PORT_CAP_SYNC_READ ) cmRptPrintf(rpt,"Syrd " );
  632. if( port->alsa_cap & SND_SEQ_PORT_CAP_SYNC_WRITE ) cmRptPrintf(rpt,"Sywr " );
  633. if( port->alsa_cap & SND_SEQ_PORT_CAP_DUPLEX ) cmRptPrintf(rpt,"Dupl " );
  634. if( port->alsa_cap & SND_SEQ_PORT_CAP_SUBS_READ ) cmRptPrintf(rpt,"Subr " );
  635. if( port->alsa_cap & SND_SEQ_PORT_CAP_SUBS_WRITE ) cmRptPrintf(rpt,"Subw " );
  636. if( port->alsa_cap & SND_SEQ_PORT_CAP_NO_EXPORT ) cmRptPrintf(rpt,"Nexp " );
  637. cmRptPrintf(rpt,") type:(");
  638. if( port->alsa_type & SND_SEQ_PORT_TYPE_SPECIFIC ) cmRptPrintf(rpt,"Spec ");
  639. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GENERIC) cmRptPrintf(rpt,"Gnrc ");
  640. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GM ) cmRptPrintf(rpt,"GM ");
  641. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GS ) cmRptPrintf(rpt,"GS ");
  642. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_XG ) cmRptPrintf(rpt,"XG ");
  643. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_MT32 ) cmRptPrintf(rpt,"MT32 ");
  644. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GM2 ) cmRptPrintf(rpt,"GM2 ");
  645. if( port->alsa_type & SND_SEQ_PORT_TYPE_SYNTH ) cmRptPrintf(rpt,"Syn ");
  646. if( port->alsa_type & SND_SEQ_PORT_TYPE_DIRECT_SAMPLE) cmRptPrintf(rpt,"Dsmp ");
  647. if( port->alsa_type & SND_SEQ_PORT_TYPE_SAMPLE ) cmRptPrintf(rpt,"Samp ");
  648. if( port->alsa_type & SND_SEQ_PORT_TYPE_HARDWARE ) cmRptPrintf(rpt,"Hwar ");
  649. if( port->alsa_type & SND_SEQ_PORT_TYPE_SOFTWARE ) cmRptPrintf(rpt,"Soft ");
  650. if( port->alsa_type & SND_SEQ_PORT_TYPE_SYNTHESIZER ) cmRptPrintf(rpt,"Sizr ");
  651. if( port->alsa_type & SND_SEQ_PORT_TYPE_PORT ) cmRptPrintf(rpt,"Port ");
  652. if( port->alsa_type & SND_SEQ_PORT_TYPE_APPLICATION ) cmRptPrintf(rpt,"Appl ");
  653. cmRptPrintf(rpt,")\n");
  654. }
  655. void cmMpReport( cmRpt_t* rpt )
  656. {
  657. cmMpRoot_t* p = _cmMpRoot;
  658. unsigned i,j;
  659. cmRptPrintf(rpt,"Buffer size bytes in:%i out:%i\n",snd_seq_get_input_buffer_size(p->h),snd_seq_get_output_buffer_size(p->h));
  660. for(i=0; i<p->devCnt; ++i)
  661. {
  662. const cmMpDev_t* d = p->devArray + i;
  663. cmRptPrintf(rpt,"%i : Device: %s \n",i,cmStringNullGuard(d->nameStr));
  664. if(d->iPortCnt > 0 )
  665. cmRptPrintf(rpt," Input:\n");
  666. for(j=0; j<d->iPortCnt; ++j)
  667. _cmMpReportPort(rpt,d->iPortArray+j);
  668. if(d->oPortCnt > 0 )
  669. cmRptPrintf(rpt," Output:\n");
  670. for(j=0; j<d->oPortCnt; ++j)
  671. _cmMpReportPort(rpt,d->oPortArray+j);
  672. }
  673. }