libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmThread.c 48KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmMem.h"
  6. #include "cmMallocDebug.h"
  7. #include "cmThread.h"
  8. #include <pthread.h>
  9. #include <unistd.h> // usleep
  10. //#include <atomic_ops.h>
  11. cmThreadH_t cmThreadNullHandle = {NULL};
  12. enum
  13. {
  14. kDoExitThFl = 0x01,
  15. kDoPauseThFl = 0x02,
  16. kDoRunThFl = 0x04
  17. };
  18. typedef struct
  19. {
  20. cmErr_t err;
  21. cmThreadFunc_t funcPtr;
  22. pthread_t pthreadH;
  23. cmThStateId_t state;
  24. void* funcParam;
  25. unsigned doFlags;
  26. unsigned pauseMicroSecs;
  27. unsigned waitMicroSecs;
  28. } cmThThread_t;
  29. cmThRC_t _cmThError( cmErr_t* err, cmThRC_t rc, int sysErr, const char* fmt, ... )
  30. {
  31. va_list vl;
  32. va_start(vl,fmt);
  33. cmErrVSysMsg(err,rc,sysErr,fmt,vl);
  34. va_end(vl);
  35. return rc;
  36. }
  37. void _cmThThreadCleanUpCallback(void* t)
  38. {
  39. ((cmThThread_t*)t)->state = kExitedThId;
  40. }
  41. void* _cmThThreadCallback(void* param)
  42. {
  43. cmThThread_t* t = (cmThThread_t*)param;
  44. // set a clean up handler - this will be called when the
  45. // thread terminates unexpectedly or pthread_cleanup_pop() is called.
  46. pthread_cleanup_push(_cmThThreadCleanUpCallback,t);
  47. while( cmIsFlag(t->doFlags,kDoExitThFl) == false )
  48. {
  49. if( t->state == kPausedThId )
  50. {
  51. cmSleepUs( t->pauseMicroSecs );
  52. if( cmIsFlag(t->doFlags,kDoRunThFl) )
  53. {
  54. t->doFlags = cmClrFlag(t->doFlags,kDoRunThFl);
  55. t->state = kRunningThId;
  56. }
  57. }
  58. else
  59. {
  60. if( t->funcPtr(t->funcParam)==false )
  61. break;
  62. if( cmIsFlag(t->doFlags,kDoPauseThFl) )
  63. {
  64. t->doFlags = cmClrFlag(t->doFlags,kDoPauseThFl);
  65. t->state = kPausedThId;
  66. }
  67. }
  68. }
  69. pthread_cleanup_pop(1);
  70. pthread_exit(NULL);
  71. return t;
  72. }
  73. cmThThread_t* _cmThThreadFromHandle( cmThreadH_t h )
  74. {
  75. cmThThread_t* tp = (cmThThread_t*)h.h;
  76. assert(tp != NULL);
  77. return tp->state==kNotInitThId ? NULL : tp;
  78. }
  79. cmThRC_t _cmThWaitForState( cmThThread_t* t, unsigned stateId )
  80. {
  81. unsigned waitTimeMicroSecs = 0;
  82. while( t->state != stateId && waitTimeMicroSecs < t->waitMicroSecs )
  83. {
  84. //cmSleepUs( t->waitMicroSecs );
  85. cmSleepUs( 15000 );
  86. waitTimeMicroSecs += 15000; //t->waitMicroSecs;
  87. }
  88. return t->state==stateId ? kOkThRC : kTimeOutThRC;
  89. }
  90. cmThRC_t cmThreadCreate( cmThreadH_t* hPtr, cmThreadFunc_t funcPtr, void* funcParam, cmRpt_t* rpt )
  91. {
  92. //pthread_attr_t attr;
  93. cmThRC_t rc = kOkThRC;
  94. cmThThread_t* tp = cmMemAllocZ( cmThThread_t, 1 );
  95. int sysErr;
  96. cmErrSetup(&tp->err,rpt,"Thread");
  97. tp->funcPtr = funcPtr;
  98. tp->funcParam = funcParam;
  99. tp->state = kPausedThId;
  100. tp->doFlags = 0;
  101. tp->pauseMicroSecs = 50000;
  102. tp->waitMicroSecs = 1000000;
  103. if((sysErr = pthread_create(&tp->pthreadH,NULL,_cmThThreadCallback, (void*)tp )) != 0 )
  104. {
  105. tp->state = kNotInitThId;
  106. rc = _cmThError(&tp->err,kCreateFailThRC,sysErr,"Thread create failed.");
  107. }
  108. hPtr->h = tp;
  109. return rc;
  110. }
  111. cmThRC_t cmThreadDestroy( cmThreadH_t* hPtr )
  112. {
  113. cmThRC_t rc = kOkThRC;
  114. if( hPtr==NULL || cmThreadIsValid(*hPtr)==false )
  115. return rc;
  116. cmThThread_t* t = _cmThThreadFromHandle(*hPtr );
  117. if( t == NULL )
  118. return kInvalidHandleThRC;
  119. // tell the thread to exit
  120. t->doFlags = cmSetFlag(t->doFlags,kDoExitThFl);
  121. // wait for the thread to exit and then deallocate the thread object
  122. if((rc = _cmThWaitForState(t,kExitedThId)) == kOkThRC )
  123. {
  124. cmMemFree(t);
  125. hPtr->h = NULL;
  126. }
  127. else
  128. {
  129. rc = _cmThError(&t->err,rc,0,"Thread timed out waiting for destroy.");
  130. }
  131. return rc;
  132. }
  133. cmThRC_t cmThreadPause( cmThreadH_t h, unsigned cmdFlags )
  134. {
  135. cmThRC_t rc = kOkThRC;
  136. bool pauseFl = cmIsFlag(cmdFlags,kPauseThFl);
  137. bool waitFl = cmIsFlag(cmdFlags,kWaitThFl);
  138. cmThThread_t* t = _cmThThreadFromHandle(h);
  139. unsigned waitId;
  140. if( t == NULL )
  141. return kInvalidHandleThRC;
  142. bool isPausedFl = t->state == kPausedThId;
  143. if( isPausedFl == pauseFl )
  144. return kOkThRC;
  145. if( pauseFl )
  146. {
  147. t->doFlags = cmSetFlag(t->doFlags,kDoPauseThFl);
  148. waitId = kPausedThId;
  149. }
  150. else
  151. {
  152. t->doFlags = cmSetFlag(t->doFlags,kDoRunThFl);
  153. waitId = kRunningThId;
  154. }
  155. if( waitFl )
  156. rc = _cmThWaitForState(t,waitId);
  157. if( rc != kOkThRC )
  158. _cmThError(&t->err,rc,0,"Thread timed out waiting for '%s'.", pauseFl ? "pause" : "un-pause");
  159. return rc;
  160. }
  161. cmThStateId_t cmThreadState( cmThreadH_t h )
  162. {
  163. cmThThread_t* tp = _cmThThreadFromHandle(h);
  164. if( tp == NULL )
  165. return kNotInitThId;
  166. return tp->state;
  167. }
  168. bool cmThreadIsValid( cmThreadH_t h )
  169. { return h.h != NULL; }
  170. unsigned cmThreadPauseTimeOutMicros( cmThreadH_t h )
  171. {
  172. cmThThread_t* tp = _cmThThreadFromHandle(h);
  173. return tp->pauseMicroSecs;
  174. }
  175. void cmThreadSetPauseTimeOutMicros( cmThreadH_t h, unsigned usecs )
  176. {
  177. cmThThread_t* tp = _cmThThreadFromHandle(h);
  178. tp->pauseMicroSecs = usecs;
  179. }
  180. unsigned cmThreadWaitTimeOutMicros( cmThreadH_t h )
  181. {
  182. cmThThread_t* tp = _cmThThreadFromHandle(h);
  183. return tp->waitMicroSecs;
  184. }
  185. void cmThreadSetWaitTimeOutMicros( cmThreadH_t h, unsigned usecs )
  186. {
  187. cmThThread_t* tp = _cmThThreadFromHandle(h);
  188. tp->waitMicroSecs = usecs;
  189. }
  190. bool _cmThreadTestCb( void* p )
  191. {
  192. unsigned* ip = (unsigned*)p;
  193. ip[0]++;
  194. return true;
  195. }
  196. void cmThreadTest(cmRpt_t* rpt)
  197. {
  198. cmThreadH_t th0;
  199. unsigned val = 0;
  200. if( cmThreadCreate(&th0,_cmThreadTestCb,&val,rpt) == kOkThRC )
  201. {
  202. if( cmThreadPause(th0,0) != kOkThRC )
  203. {
  204. cmRptPrintf(rpt,"Thread start failed.\n");
  205. return;
  206. }
  207. char c = 0;
  208. cmRptPrintf(rpt,"o=print p=pause s=state q=quit\n");
  209. while( c != 'q' )
  210. {
  211. c = (char)fgetc(stdin);
  212. fflush(stdin);
  213. switch(c)
  214. {
  215. case 'o':
  216. cmRptPrintf(rpt,"val: 0x%x\n",val);
  217. break;
  218. case 's':
  219. cmRptPrintf(rpt,"state=%i\n",cmThreadState(th0));
  220. break;
  221. case 'p':
  222. {
  223. cmRC_t rc;
  224. if( cmThreadState(th0) == kPausedThId )
  225. rc = cmThreadPause(th0,kWaitThFl);
  226. else
  227. rc = cmThreadPause(th0,kPauseThFl|kWaitThFl);
  228. if( rc == kOkThRC )
  229. cmRptPrintf(rpt,"new state:%i\n", cmThreadState(th0));
  230. else
  231. cmRptPrintf(rpt,"cmThreadPause() failed.");
  232. }
  233. break;
  234. case 'q':
  235. break;
  236. //default:
  237. //cmRptPrintf(rpt,"Unknown:%c\n",c);
  238. }
  239. }
  240. if( cmThreadDestroy(&th0) != kOkThRC )
  241. cmRptPrintf(rpt,"Thread destroy failed.\n");
  242. }
  243. }
  244. //-----------------------------------------------------------------------------
  245. //-----------------------------------------------------------------------------
  246. //-----------------------------------------------------------------------------
  247. typedef struct
  248. {
  249. cmErr_t err;
  250. pthread_mutex_t mutex;
  251. pthread_cond_t cvar;
  252. } cmThreadMutex_t;
  253. cmThreadMutexH_t kThreadMutexNULL = {NULL};
  254. cmThreadMutex_t* _cmThreadMutexFromHandle( cmThreadMutexH_t h )
  255. {
  256. cmThreadMutex_t* p = (cmThreadMutex_t*)h.h;
  257. assert(p != NULL);
  258. return p;
  259. }
  260. cmThRC_t cmThreadMutexCreate( cmThreadMutexH_t* hPtr, cmRpt_t* rpt )
  261. {
  262. int sysErr;
  263. cmThreadMutex_t* p = cmMemAllocZ( cmThreadMutex_t, 1 );
  264. cmErrSetup(&p->err,rpt,"Thread Mutex");
  265. if((sysErr = pthread_mutex_init(&p->mutex,NULL)) != 0 )
  266. return _cmThError(&p->err,kCreateFailThRC,sysErr,"Thread mutex create failed.");
  267. if((sysErr = pthread_cond_init(&p->cvar,NULL)) != 0 )
  268. return _cmThError(&p->err,kCreateFailThRC,sysErr,"Thread Condition var. create failed.");
  269. hPtr->h = p;
  270. return kOkThRC;
  271. }
  272. cmThRC_t cmThreadMutexDestroy( cmThreadMutexH_t* hPtr )
  273. {
  274. int sysErr;
  275. cmThreadMutex_t* p = _cmThreadMutexFromHandle(*hPtr);
  276. if( p == NULL )
  277. return kInvalidHandleThRC;
  278. if((sysErr = pthread_cond_destroy(&p->cvar)) != 0)
  279. return _cmThError(&p->err,kDestroyFailThRC,sysErr,"Thread condition var. destroy failed.");
  280. if((sysErr = pthread_mutex_destroy(&p->mutex)) != 0)
  281. return _cmThError(&p->err,kDestroyFailThRC,sysErr,"Thread mutex destroy failed.");
  282. cmMemFree(p);
  283. hPtr->h = NULL;
  284. return kOkThRC;
  285. }
  286. cmThRC_t cmThreadMutexTryLock( cmThreadMutexH_t h, bool* lockFlPtr )
  287. {
  288. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  289. if( p == NULL )
  290. return kInvalidHandleThRC;
  291. int sysErr = pthread_mutex_trylock(&p->mutex);
  292. switch(sysErr)
  293. {
  294. case EBUSY:
  295. *lockFlPtr = false;
  296. break;
  297. case 0:
  298. *lockFlPtr = true;
  299. break;
  300. default:
  301. return _cmThError(&p->err,kLockFailThRC,sysErr,"Thread mutex try-lock failed.");;
  302. }
  303. return kOkThRC;
  304. }
  305. cmThRC_t cmThreadMutexLock( cmThreadMutexH_t h )
  306. {
  307. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  308. if( p == NULL )
  309. return kInvalidHandleThRC;
  310. int sysErr = pthread_mutex_lock(&p->mutex);
  311. if( sysErr == 0 )
  312. return kOkThRC;
  313. return _cmThError(&p->err,kLockFailThRC,sysErr,"Thread mutex lock failed.");
  314. }
  315. cmThRC_t cmThreadMutexUnlock( cmThreadMutexH_t h )
  316. {
  317. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  318. if( p == NULL )
  319. return kInvalidHandleThRC;
  320. int sysErr = pthread_mutex_unlock(&p->mutex);
  321. if( sysErr == 0 )
  322. return kOkThRC;
  323. return _cmThError(&p->err,kUnlockFailThRC,sysErr,"Thread mutex unlock failed.");
  324. }
  325. bool cmThreadMutexIsValid( cmThreadMutexH_t h )
  326. { return h.h != NULL; }
  327. cmThRC_t cmThreadMutexWaitOnCondVar( cmThreadMutexH_t h, bool lockFl )
  328. {
  329. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  330. if( p == NULL )
  331. return kInvalidHandleThRC;
  332. int sysErr;
  333. if( lockFl )
  334. if( (sysErr=pthread_mutex_lock(&p->mutex)) != 0 )
  335. _cmThError(&p->err,kLockFailThRC,sysErr,"Thread lock failed on cond. var. wait.");
  336. if((sysErr = pthread_cond_wait(&p->cvar,&p->mutex)) != 0 )
  337. _cmThError(&p->err,kCVarWaitFailThRC,sysErr,"Thread cond. var. wait failed.");
  338. return kOkThRC;
  339. }
  340. cmThRC_t cmThreadMutexSignalCondVar( cmThreadMutexH_t h )
  341. {
  342. int sysErr;
  343. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  344. if( p == NULL )
  345. return kInvalidHandleThRC;
  346. if((sysErr = pthread_cond_signal(&p->cvar)) != 0 )
  347. return _cmThError(&p->err,kCVarSignalFailThRC,sysErr,"Thread cond. var. signal failed.");
  348. return kOkThRC;
  349. }
  350. //-----------------------------------------------------------------------------
  351. //-----------------------------------------------------------------------------
  352. //-----------------------------------------------------------------------------
  353. cmTsQueueH_t cmTsQueueNullHandle = { NULL };
  354. enum { cmTsQueueBufCnt = 2 };
  355. typedef struct
  356. {
  357. unsigned allocCnt; // count of bytes allocated for the buffer
  358. unsigned fullCnt; // count of bytes used in the buffer
  359. char* basePtr; // base of buffer memory
  360. unsigned* msgPtr; // pointer to first msg
  361. unsigned msgCnt;
  362. } cmTsQueueBuf;
  363. typedef struct
  364. {
  365. cmThreadMutexH_t mutexH;
  366. cmTsQueueBuf bufArray[cmTsQueueBufCnt];
  367. unsigned inBufIdx;
  368. unsigned outBufIdx;
  369. char* memPtr;
  370. cmTsQueueCb_t cbFunc;
  371. void* userCbPtr;
  372. } cmTsQueue_t;
  373. cmTsQueue_t* _cmTsQueueFromHandle( cmTsQueueH_t h )
  374. {
  375. cmTsQueue_t* p = h.h;
  376. assert(p != NULL);
  377. return p;
  378. }
  379. cmThRC_t _cmTsQueueDestroy( cmTsQueue_t* p )
  380. {
  381. cmThRC_t rc;
  382. if( p == NULL )
  383. return kInvalidHandleThRC;
  384. if( p->mutexH.h != NULL )
  385. if((rc = cmThreadMutexDestroy(&p->mutexH)) != kOkThRC )
  386. return rc;
  387. if( p->memPtr != NULL )
  388. cmMemPtrFree(&p->memPtr);
  389. cmMemPtrFree(&p);
  390. return kOkThRC;
  391. }
  392. cmThRC_t cmTsQueueCreate( cmTsQueueH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* userCbPtr, cmRpt_t* rpt )
  393. {
  394. cmTsQueue_t* p = cmMemAllocZ( cmTsQueue_t, 1 );
  395. unsigned i;
  396. if( cmThreadMutexCreate(&p->mutexH,rpt) != kOkThRC )
  397. goto errLabel;
  398. p->memPtr = cmMemAllocZ( char, bufByteCnt*cmTsQueueBufCnt );
  399. p->outBufIdx = 0;
  400. p->inBufIdx = 1;
  401. p->cbFunc = cbFunc;
  402. p->userCbPtr = userCbPtr;
  403. for(i=0; i<cmTsQueueBufCnt; ++i)
  404. {
  405. p->bufArray[i].allocCnt = bufByteCnt;
  406. p->bufArray[i].fullCnt = 0;
  407. p->bufArray[i].basePtr = p->memPtr + (i*bufByteCnt);
  408. p->bufArray[i].msgPtr = NULL;
  409. p->bufArray[i].msgCnt = 0;
  410. }
  411. hPtr->h = p;
  412. return kOkThRC;
  413. errLabel:
  414. _cmTsQueueDestroy(p);
  415. return kCreateFailThRC;
  416. }
  417. cmThRC_t cmTsQueueDestroy( cmTsQueueH_t* hPtr )
  418. {
  419. cmThRC_t rc = kOkThRC;
  420. if( (hPtr != NULL) && cmTsQueueIsValid(*hPtr))
  421. if((rc = _cmTsQueueDestroy(_cmTsQueueFromHandle(*hPtr))) == kOkThRC )
  422. hPtr->h = NULL;
  423. return rc;
  424. }
  425. cmThRC_t cmTsQueueSetCallback( cmTsQueueH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  426. {
  427. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  428. p->cbFunc = cbFunc;
  429. p->userCbPtr = cbArg;
  430. return kOkThRC;
  431. }
  432. unsigned cmTsQueueAllocByteCount( cmTsQueueH_t h )
  433. {
  434. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  435. unsigned n = 0;
  436. if( cmThreadMutexLock(p->mutexH) == kOkThRC )
  437. {
  438. n = p->bufArray[ p->inBufIdx ].allocCnt;
  439. cmThreadMutexUnlock(p->mutexH);
  440. }
  441. return n;
  442. }
  443. unsigned cmTsQueueAvailByteCount( cmTsQueueH_t h )
  444. {
  445. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  446. unsigned n = 0;
  447. if(cmThreadMutexLock(p->mutexH) == kOkThRC )
  448. {
  449. n = p->bufArray[ p->inBufIdx ].allocCnt - p->bufArray[ p->inBufIdx].fullCnt;
  450. cmThreadMutexUnlock(p->mutexH);
  451. }
  452. return n;
  453. }
  454. cmThRC_t _cmTsQueueEnqueueMsg( cmTsQueueH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  455. {
  456. cmThRC_t rc;
  457. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  458. if( p == NULL )
  459. return kInvalidHandleThRC;
  460. // lock the mutex
  461. if((rc = cmThreadMutexLock(p->mutexH)) == kOkThRC )
  462. {
  463. cmTsQueueBuf* b = p->bufArray + p->inBufIdx; // ptr to buf recd
  464. const char* ep = b->basePtr + b->allocCnt; // end of buf data space
  465. unsigned *mp = (unsigned*)(b->basePtr + b->fullCnt); // ptr to size of new msg space
  466. char* dp = (char*)(mp+1); // ptr to data area of new msg space
  467. unsigned ttlByteCnt = 0; // track size of msg data
  468. unsigned i = 0;
  469. // get the total size of the msg
  470. for(i=0; i<arrayCnt; ++i)
  471. ttlByteCnt += msgByteCntArray[i];
  472. // if the msg is too big for the queue buf
  473. if( dp + ttlByteCnt > ep )
  474. rc = kBufFullThRC;
  475. else
  476. {
  477. // for each segment of the incoming msg
  478. for(i=0; i<arrayCnt; ++i)
  479. {
  480. // get the size of the segment
  481. unsigned n = msgByteCntArray[i];
  482. // copy in the segment
  483. memcpy(dp,msgPtrArray[i],n);
  484. dp += n; //
  485. }
  486. assert(dp <= ep );
  487. // write the size ofthe msg into the buffer
  488. *mp = ttlByteCnt;
  489. // update the pointer to the first msg
  490. if( b->msgPtr == NULL )
  491. b->msgPtr = mp;
  492. // track the count of msgs in this buffer
  493. ++b->msgCnt;
  494. // update fullCnt last since dequeue uses fullCnt to
  495. // notice that a msg may be waiting
  496. b->fullCnt += sizeof(unsigned) + ttlByteCnt;
  497. }
  498. cmThreadMutexUnlock(p->mutexH);
  499. }
  500. return rc;
  501. }
  502. cmThRC_t cmTsQueueEnqueueSegMsg( cmTsQueueH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  503. { return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,arrayCnt); }
  504. cmThRC_t cmTsQueueEnqueueMsg( cmTsQueueH_t h, const void* dataPtr, unsigned byteCnt )
  505. {
  506. const void* msgPtrArray[] = { dataPtr };
  507. unsigned msgByteCntArray[] = { byteCnt };
  508. return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,1);
  509. }
  510. cmThRC_t cmTsQueueEnqueueIdMsg( cmTsQueueH_t h, unsigned id, const void* dataPtr, unsigned byteCnt )
  511. {
  512. const void* msgPtrArray[] = { &id, dataPtr };
  513. unsigned msgByteCntArray[] = { sizeof(id), byteCnt };
  514. return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,2);
  515. }
  516. cmThRC_t _cmTsQueueDequeueMsg( cmTsQueue_t* p, void* retBuf, unsigned refBufByteCnt )
  517. {
  518. cmTsQueueBuf* b = p->bufArray + p->outBufIdx;
  519. // if the output buffer is empty - there is nothing to do
  520. if( b->fullCnt == 0 )
  521. return kBufEmptyThRC;
  522. assert( b->msgPtr != NULL );
  523. // get the output msg size and data
  524. unsigned msgByteCnt = *b->msgPtr;
  525. char* msgDataPtr = (char*)(b->msgPtr + 1);
  526. // transmit the msg via a callback
  527. if( retBuf == NULL && p->cbFunc != NULL )
  528. p->cbFunc(p->userCbPtr,msgByteCnt,msgDataPtr);
  529. else
  530. {
  531. // retBuf may be NULL if the func is being used by cmTsQueueDequeueByteCount()
  532. if( retBuf == NULL || msgByteCnt > refBufByteCnt )
  533. return kBufTooSmallThRC;
  534. // copy the msg to a buffer
  535. if( retBuf != NULL )
  536. memcpy(retBuf,msgDataPtr,msgByteCnt);
  537. }
  538. // update the buffer
  539. b->fullCnt -= sizeof(unsigned) + msgByteCnt;
  540. b->msgPtr = (unsigned*)(msgDataPtr + msgByteCnt);
  541. --(b->msgCnt);
  542. if( b->fullCnt == 0 )
  543. {
  544. assert(b->msgCnt == 0);
  545. b->msgPtr = NULL;
  546. }
  547. return kOkThRC;
  548. }
  549. cmThRC_t cmTsQueueDequeueMsg( cmTsQueueH_t h, void* retBuf, unsigned refBufByteCnt )
  550. {
  551. cmThRC_t rc;
  552. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  553. if( p == NULL )
  554. return kInvalidHandleThRC;
  555. // dequeue the next msg from the current output buffer
  556. if((rc =_cmTsQueueDequeueMsg( p, retBuf, refBufByteCnt )) != kBufEmptyThRC )
  557. return rc;
  558. // the current output buffer was empty
  559. cmTsQueueBuf* b = p->bufArray + p->inBufIdx;
  560. // if the input buffer has msg's ...
  561. if( b->fullCnt > 0 )
  562. {
  563. bool lockFl = false;
  564. // ...attempt to lock the mutex ...
  565. if( (cmThreadMutexTryLock(p->mutexH,&lockFl) == kOkThRC) && lockFl )
  566. {
  567. // ... swap the input and the output buffers ...
  568. unsigned tmp = p->inBufIdx;
  569. p->inBufIdx = p->outBufIdx;
  570. p->outBufIdx = tmp;
  571. // .. unlock the mutex
  572. cmThreadMutexUnlock(p->mutexH);
  573. // ... and dequeue the first msg from the new output buffer
  574. rc = _cmTsQueueDequeueMsg( p, retBuf, refBufByteCnt );
  575. }
  576. }
  577. return rc;
  578. }
  579. bool cmTsQueueMsgWaiting( cmTsQueueH_t h )
  580. {
  581. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  582. if( p == NULL )
  583. return false;
  584. if( p->bufArray[p->outBufIdx].fullCnt )
  585. return true;
  586. return p->bufArray[p->inBufIdx].fullCnt > 0;
  587. }
  588. unsigned cmTsQueueDequeueMsgByteCount( cmTsQueueH_t h )
  589. {
  590. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  591. if( p == NULL )
  592. return 0;
  593. // if output msgs are available then the msgPtr points to the size of the msg
  594. if( p->bufArray[p->outBufIdx].fullCnt )
  595. return *(p->bufArray[p->outBufIdx].msgPtr);
  596. // no msgs are waiting in the output buffer
  597. // force the buffers to swap - returns kBufEmptyThRC if there are
  598. // still no msgs waiting after the swap (the input buf was also empty)
  599. if( cmTsQueueDequeueMsg(h,NULL,0) == kBufTooSmallThRC )
  600. {
  601. // the buffers swapped so there must be msg waiting
  602. assert( p->bufArray[p->outBufIdx].fullCnt );
  603. return *(p->bufArray[p->outBufIdx].msgPtr);
  604. }
  605. return 0;
  606. }
  607. bool cmTsQueueIsValid( cmTsQueueH_t h )
  608. { return h.h != NULL; }
  609. //--------------------------------------------------------------------------------------------------
  610. //--------------------------------------------------------------------------------------------------
  611. //--------------------------------------------------------------------------------------------------
  612. #ifdef NOT_DEF
  613. enum { kThBufCnt=2 };
  614. typedef struct
  615. {
  616. char* buf;
  617. volatile unsigned ii;
  618. volatile unsigned oi;
  619. } cmThBuf_t;
  620. typedef struct
  621. {
  622. cmErr_t err;
  623. cmThBuf_t a[kThBufCnt];
  624. volatile unsigned ibi;
  625. unsigned bn;
  626. cmTsQueueCb_t cbFunc;
  627. void* cbArg;
  628. } cmTs1p1c_t;
  629. cmTs1p1c_t* _cmTs1p1cHandleToPtr( cmTs1p1cH_t h )
  630. {
  631. cmTs1p1c_t* p = (cmTs1p1c_t*)h.h;
  632. assert( p != NULL );
  633. return p;
  634. }
  635. cmThRC_t _cmTs1p1cDestroy( cmTs1p1c_t* p )
  636. {
  637. unsigned i;
  638. for(i=0; i<kThBufCnt; ++i)
  639. cmMemFree(p->a[i].buf);
  640. cmMemFree(p);
  641. return kOkThRC;
  642. }
  643. cmThRC_t cmTs1p1cCreate( cmTs1p1cH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  644. {
  645. cmThRC_t rc;
  646. if((rc = cmTs1p1cDestroy(hPtr)) != kOkThRC )
  647. return rc;
  648. unsigned i;
  649. cmTs1p1c_t* p = cmMemAllocZ(cmTs1p1c_t,1);
  650. cmErrSetup(&p->err,rpt,"TS 1p1c Queue");
  651. for(i=0; i<kThBufCnt; ++i)
  652. {
  653. p->a[i].buf = cmMemAllocZ(char,bufByteCnt);
  654. p->a[i].ii = 0;
  655. p->a[i].oi = bufByteCnt;
  656. }
  657. p->ibi = 0;
  658. p->bn = bufByteCnt;
  659. p->cbFunc = cbFunc;
  660. p->cbArg = cbArg;
  661. hPtr->h = p;
  662. return rc;
  663. }
  664. cmThRC_t cmTs1p1cDestroy( cmTs1p1cH_t* hp )
  665. {
  666. cmThRC_t rc = kOkThRC;
  667. if( hp == NULL || cmTs1p1cIsValid(*hp)==false )
  668. return kOkThRC;
  669. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(*hp);
  670. if(( rc = _cmTs1p1cDestroy(p)) != kOkThRC )
  671. return rc;
  672. hp->h = NULL;
  673. return rc;
  674. }
  675. cmThRC_t cmTs1p1cEnqueueSegMsg( cmTs1p1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  676. {
  677. cmThRC_t rc = kOkThRC;
  678. unsigned mn = 0;
  679. unsigned i;
  680. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  681. cmThBuf_t* ib = p->a + p->ibi;
  682. // get the total count of bytes for this msg
  683. for(i=0; i<arrayCnt; ++i)
  684. mn += msgByteCntArray[i];
  685. unsigned dn = mn + sizeof(unsigned);
  686. // if the message is too big for even an empty buffer
  687. if( dn > p->bn )
  688. return cmErrMsg(&p->err,kBufFullThRC,"A msg containing %i bytes will never be able to fit in a queue with an empty size of %i bytes.",dn,p->bn);
  689. // if the msg won't fit in the current input buffer then try swapping buffers.
  690. if( ib->ii + dn > p->bn )
  691. {
  692. // get the current output buffer
  693. cmThBuf_t* ob = p->a + (p->ibi==0 ? 1 : 0);
  694. // Empty buffers will be set such that: oi==bn and ii==0.
  695. //
  696. // Note that setting ii to 0 in an output buffer is the last operation
  697. // performed on an empty output buffer. ii==0 is therefore the
  698. // signal that an output buffer can be reused for input.
  699. // if the output buffer is not empty - then an overflow occurred
  700. if( ob->ii != 0 )
  701. return cmErrMsg(&p->err,kBufFullThRC,"The msq queue cannot accept a %i byte msg into %i bytes.",dn, p->bn - ib->ii);
  702. // setup the initial output location of the new output buffer
  703. ib->oi = 0;
  704. // swap buffers
  705. p->ibi = (p->ibi + 1) % kThBufCnt;
  706. // get the new input buffer
  707. ib = ob;
  708. }
  709. // get a pointer to the base of the write location
  710. char* dp = ib->buf + ib->ii;
  711. // write the length of the message
  712. *(unsigned*)dp = mn;
  713. dp += sizeof(unsigned);
  714. // write the body of the message
  715. for(i=0; i<arrayCnt; ++i)
  716. {
  717. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  718. dp += msgByteCntArray[i];
  719. }
  720. // this MUST be executed last - we'll use 'dp' in the calculation
  721. // (even though ib->ii += dn would be more straight forward way
  722. // to accomplish the same thing) to prevent the optimizer from
  723. // moving the assignment prior to the for loop.
  724. ib->ii += dp - (ib->buf + ib->ii);
  725. return rc;
  726. }
  727. cmThRC_t cmTs1p1cEnqueueMsg( cmTsQueueH_t h, const void* dataPtr, unsigned byteCnt )
  728. { return cmTs1p1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  729. unsigned cmTs1p1cAllocByteCount( cmTs1p1cH_t h )
  730. {
  731. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  732. return p->bn;
  733. }
  734. unsigned cmTs1p1cAvailByteCount( cmTs1p1cH_t h )
  735. {
  736. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  737. return p->bn - p->a[ p->ibi ].ii;
  738. }
  739. cmThRC_t cmTs1p1cDequeueMsg( cmTs1p1cH_t h, void* dataPtr, unsigned byteCnt )
  740. {
  741. cmThRC_t rc = kOkThRC;
  742. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  743. cmThBuf_t* ob = p->a + (p->ibi == 0 ? 1 : 0);
  744. // empty buffers always are set to: oi==bn && ii==0
  745. if( ob->oi >= ob->ii )
  746. return kBufEmptyThRC;
  747. // get the size of the msg
  748. unsigned mn = *(unsigned*)(ob->buf + ob->oi);
  749. // increment the current output location to the msg body
  750. ob->oi += sizeof(unsigned);
  751. // copy or send the msg
  752. if( dataPtr != NULL )
  753. {
  754. if( byteCnt < mn )
  755. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,mn);
  756. memcpy(dataPtr, ob->buf + ob->oi, mn);
  757. }
  758. else
  759. {
  760. p->cbFunc(p->cbArg, mn, ob->buf + ob->oi );
  761. }
  762. ob->oi += mn;
  763. // if we are reading correctly ob->oi should land
  764. // exactly on ob->ii when the buffer is empty
  765. assert( ob->oi <= ob->ii );
  766. // if the buffer is empty
  767. if( ob->oi == ob->ii )
  768. {
  769. ob->oi = p->bn; // mark the buffer as empty
  770. ob->ii = 0; //
  771. }
  772. return rc;
  773. }
  774. unsigned cmTs1p1cDequeueMsgByteCount( cmTsQueueH_t h )
  775. {
  776. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  777. cmThBuf_t* ob = p->a + (p->ibi == 0 ? 1 : 0);
  778. // empty buffers always are set to: oi==bn && ii==0
  779. if( ob->oi >= ob->ii )
  780. return 0;
  781. // get the size of the msg
  782. return *(unsigned*)(ob->buf + ob->oi);
  783. }
  784. bool cmTs1p1cMsgWaiting( cmTsQueueH_t h )
  785. { return cmTs1p1cDequeueMsgByteCount(h) > 0; }
  786. bool cmTs1p1cIsValid( cmTs1p1cH_t h )
  787. { return h.h != NULL; }
  788. #endif
  789. //--------------------------------------------------------------------------------------------------
  790. //--------------------------------------------------------------------------------------------------
  791. //--------------------------------------------------------------------------------------------------
  792. typedef struct
  793. {
  794. volatile unsigned ii;
  795. cmErr_t err;
  796. char* buf;
  797. unsigned bn;
  798. cmTsQueueCb_t cbFunc;
  799. void* cbArg;
  800. volatile unsigned oi;
  801. } cmTs1p1c_t;
  802. cmTs1p1c_t* _cmTs1p1cHandleToPtr( cmTs1p1cH_t h )
  803. {
  804. cmTs1p1c_t* p = (cmTs1p1c_t*)h.h;
  805. assert( p != NULL );
  806. return p;
  807. }
  808. cmThRC_t cmTs1p1cCreate( cmTs1p1cH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  809. {
  810. cmThRC_t rc;
  811. if((rc = cmTs1p1cDestroy(hPtr)) != kOkThRC )
  812. return rc;
  813. cmTs1p1c_t* p = cmMemAllocZ(cmTs1p1c_t,1);
  814. cmErrSetup(&p->err,rpt,"1p1c Queue");
  815. p->buf = cmMemAllocZ(char,bufByteCnt+sizeof(unsigned));
  816. p->ii = 0;
  817. p->oi = 0;
  818. p->bn = bufByteCnt;
  819. p->cbFunc = cbFunc;
  820. p->cbArg = cbArg;
  821. hPtr->h = p;
  822. return rc;
  823. }
  824. cmThRC_t cmTs1p1cDestroy( cmTs1p1cH_t* hp )
  825. {
  826. cmThRC_t rc = kOkThRC;
  827. if( hp == NULL || cmTs1p1cIsValid(*hp)==false )
  828. return kOkThRC;
  829. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(*hp);
  830. cmMemFree(p->buf);
  831. cmMemFree(p);
  832. hp->h = NULL;
  833. return rc;
  834. }
  835. cmThRC_t cmTs1p1cEnqueueSegMsg( cmTs1p1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  836. {
  837. cmThRC_t rc = kOkThRC;
  838. unsigned mn = 0;
  839. unsigned i;
  840. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  841. // get the total count of bytes for this msg
  842. for(i=0; i<arrayCnt; ++i)
  843. mn += msgByteCntArray[i];
  844. int dn = mn + sizeof(unsigned);
  845. int oi = p->oi;
  846. int bi = p->ii; // 'bi' is the idx of the leftmost cell which can be written
  847. int en = p->bn; // 'en' is the idx of the cell just to the right of the rightmost cell that can be written
  848. // note: If 'oi' marks the rightmost location then 'en' must be set
  849. // one cell to the left of 'oi', because 'ii' can never be allowed to
  850. // advance onto 'oi' - because 'oi'=='ii' marks an empty (NOT a full)
  851. // queue.
  852. //
  853. // If 'bn' marks the rightmost location then 'ii' can advance onto 'bn'
  854. // beause the true queue length is bn+1.
  855. // if we need to wrap
  856. if( en-bi < dn && oi<=bi )
  857. {
  858. bi = 0;
  859. en = oi - 1; // note if oi==0 then en is negative - see note above re: oi==ii
  860. assert( p->ii>=0 && p->ii <= p->bn );
  861. *(unsigned*)(p->buf + p->ii) = cmInvalidIdx; // mark the wrap location
  862. }
  863. // if oi is between ii and bn
  864. if( oi > bi )
  865. en = oi - 1; // never allow ii to advance onto oi - see note above
  866. // if the msg won't fit
  867. if( en - bi < dn )
  868. return cmErrMsg(&p->err,kBufFullThRC,"%i consecutive bytes is not available in the queue.",dn);
  869. // set the msg byte count - the msg byte cnt precedes the msg body
  870. char* dp = p->buf + bi;
  871. *(unsigned*)dp = dn - sizeof(unsigned);
  872. dp += sizeof(unsigned);
  873. // copy the msg into the buffer
  874. for(i=0,dn=0; i<arrayCnt; ++i)
  875. {
  876. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  877. dp += msgByteCntArray[i];
  878. dn += msgByteCntArray[i];
  879. }
  880. // incrementing p->ii must occur last - the unnecessary accumulation
  881. // of dn in the above loop is intended to prevent this line from
  882. // begin moved before the copy loop.
  883. p->ii = bi + dn + sizeof(unsigned);
  884. assert( p->ii >= 0 && p->ii <= p->bn);
  885. return rc;
  886. }
  887. cmThRC_t cmTs1p1cEnqueueMsg( cmTs1p1cH_t h, const void* dataPtr, unsigned byteCnt )
  888. { return cmTs1p1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  889. unsigned cmTs1p1cAllocByteCount( cmTs1p1cH_t h )
  890. {
  891. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  892. return p->bn;
  893. }
  894. unsigned cmTs1p1cAvailByteCount( cmTs1p1cH_t h )
  895. {
  896. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  897. unsigned oi = p->oi;
  898. unsigned ii = p->ii;
  899. return oi < ii ? p->bn - ii + oi : oi - ii;
  900. }
  901. unsigned _cmTs1p1cDequeueMsgByteCount( cmTs1p1c_t* p )
  902. {
  903. // if the buffer is empty
  904. if( p->ii == p->oi )
  905. return 0;
  906. // get the length of the next msg
  907. unsigned mn = *(unsigned*)(p->buf + p->oi);
  908. // if the msg length is cmInvalidIdx ...
  909. if( mn == cmInvalidIdx )
  910. {
  911. p->oi = 0; // ... wrap to buf begin and try again
  912. return _cmTs1p1cDequeueMsgByteCount(p);
  913. }
  914. return mn;
  915. }
  916. cmThRC_t cmTs1p1cDequeueMsg( cmTs1p1cH_t h, void* dataPtr, unsigned byteCnt )
  917. {
  918. cmThRC_t rc = kOkThRC;
  919. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  920. unsigned mn;
  921. if((mn = _cmTs1p1cDequeueMsgByteCount(p)) == 0 )
  922. return kBufEmptyThRC;
  923. void* mp = p->buf + p->oi + sizeof(unsigned);
  924. if( dataPtr != NULL )
  925. {
  926. if( byteCnt < mn )
  927. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,mn);
  928. memcpy(dataPtr,mp,mn);
  929. }
  930. else
  931. {
  932. p->cbFunc(p->cbArg,mn,mp);
  933. }
  934. p->oi += mn + sizeof(unsigned);
  935. return rc;
  936. }
  937. unsigned cmTs1p1cDequeueMsgByteCount( cmTs1p1cH_t h )
  938. {
  939. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  940. return _cmTs1p1cDequeueMsgByteCount(p);
  941. }
  942. bool cmTs1p1cMsgWaiting( cmTs1p1cH_t h )
  943. { return cmTs1p1cDequeueMsgByteCount(h) > 0; }
  944. bool cmTs1p1cIsValid( cmTs1p1cH_t h )
  945. { return h.h != NULL; }
  946. //============================================================================================================================
  947. bool cmThIntCAS( int* addr, int old, int new )
  948. { return __sync_bool_compare_and_swap(addr,old,new); }
  949. bool cmThUIntCAS( unsigned* addr, unsigned old, unsigned new )
  950. { return __sync_bool_compare_and_swap(addr,old,new); }
  951. bool cmThFloatCAS( float* addr, float old, float new )
  952. { return __sync_bool_compare_and_swap((unsigned*)addr, *(unsigned*)(&old),*(unsigned*)(&new)); }
  953. bool cmThPtrCAS( void* addr, void* old, void* neww )
  954. {
  955. #ifdef OS_64
  956. return __sync_bool_compare_and_swap((long long*)addr, (long long)old, (long long)neww);
  957. #else
  958. return __sync_bool_compare_and_swap((int*)addr,(int)old,(int)neww);
  959. #endif
  960. }
  961. void cmThIntIncr( int* addr, int incr )
  962. {
  963. // ... could also use __sync_add_and_fetch() ...
  964. __sync_fetch_and_add(addr,incr);
  965. }
  966. void cmThUIntIncr( unsigned* addr, unsigned incr )
  967. {
  968. __sync_fetch_and_add(addr,incr);
  969. }
  970. void cmThFloatIncr(float* addr, float incr )
  971. {
  972. float old,new;
  973. do
  974. {
  975. old = *addr;
  976. new = old + incr;
  977. }while( cmThFloatCAS(addr,old,new)==0 );
  978. }
  979. void cmThIntDecr( int* addr, int decr )
  980. {
  981. __sync_fetch_and_sub(addr,decr);
  982. }
  983. void cmThUIntDecr( unsigned* addr, unsigned decr )
  984. {
  985. __sync_fetch_and_sub(addr,decr);
  986. }
  987. void cmThFloatDecr(float* addr, float decr )
  988. {
  989. float old,new;
  990. do
  991. {
  992. old = *addr;
  993. new = old - decr;
  994. }while( cmThFloatCAS(addr,old,new)==0 );
  995. }
  996. //============================================================================================================================
  997. //
  998. //
  999. typedef pthread_t cmThreadId_t;
  1000. typedef struct
  1001. {
  1002. cmThreadId_t id; // id of this thread as returned by pthread_self()
  1003. char* buf; // buf[bn]
  1004. int ii; // input index
  1005. int oi; // output index (oi==ii == empty buffer)
  1006. } cmTsBuf_t;
  1007. // msg header - which is actually written AFTER the msg it is associated with
  1008. typedef struct cmTsHdr_str
  1009. {
  1010. int mn; // length of the msg
  1011. int ai; // buffer index
  1012. struct cmTsHdr_str* link; // pointer to next msg
  1013. } cmTsHdr_t;
  1014. typedef struct
  1015. {
  1016. cmErr_t err;
  1017. int bn; // bytes per thread buffer
  1018. cmTsBuf_t* a; // a[an] buffer array
  1019. unsigned an; // length of a[] - one buffer per thread
  1020. cmTsQueueCb_t cbFunc;
  1021. void* cbArg;
  1022. cmTsHdr_t* ilp; // prev msg hdr record
  1023. cmTsHdr_t* olp; // prev msg hdr record (wait for olp->link to be set to go to next record)
  1024. } cmTsMp1c_t;
  1025. cmTsMp1cH_t cmTsMp1cNullHandle = cmSTATIC_NULL_HANDLE;
  1026. void _cmTsMp1cPrint( cmTsMp1c_t* p )
  1027. {
  1028. unsigned i;
  1029. for(i=0; i<p->an; ++i)
  1030. printf("%2i ii:%3i oi:%3i\n",i,p->a[i].ii,p->a[i].oi);
  1031. }
  1032. cmTsMp1c_t* _cmTsMp1cHandleToPtr( cmTsMp1cH_t h )
  1033. {
  1034. cmTsMp1c_t* p = (cmTsMp1c_t*)h.h;
  1035. assert(p != NULL);
  1036. return p;
  1037. }
  1038. unsigned _cmTsMp1cBufIndex( cmTsMp1c_t* p, cmThreadId_t id )
  1039. {
  1040. unsigned i;
  1041. for(i=0; i<p->an; ++i)
  1042. if( p->a[i].id == id )
  1043. return i;
  1044. p->an = i+1;
  1045. p->a = cmMemResizePZ(cmTsBuf_t,p->a,p->an);
  1046. p->a[i].buf = cmMemAllocZ(char,p->bn);
  1047. p->a[i].id = id;
  1048. return i;
  1049. }
  1050. cmThRC_t cmTsMp1cDestroy( cmTsMp1cH_t* hp )
  1051. {
  1052. if( hp == NULL || cmTsMp1cIsValid(*hp) == false )
  1053. return kOkThRC;
  1054. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(*hp);
  1055. unsigned i;
  1056. for(i=0; i<p->an; ++i)
  1057. cmMemFree(p->a[i].buf);
  1058. cmMemPtrFree(&p->a);
  1059. cmMemFree(p);
  1060. hp->h = NULL;
  1061. return kOkThRC;
  1062. }
  1063. cmThRC_t cmTsMp1cCreate( cmTsMp1cH_t* hp, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  1064. {
  1065. cmThRC_t rc;
  1066. if((rc = cmTsMp1cDestroy(hp)) != kOkThRC )
  1067. return rc;
  1068. cmTsMp1c_t* p = cmMemAllocZ(cmTsMp1c_t,1);
  1069. cmErrSetup(&p->err,rpt,"TsMp1c Queue");
  1070. p->a = NULL;
  1071. p->an = 0;
  1072. p->bn = bufByteCnt;
  1073. p->cbFunc = cbFunc;
  1074. p->cbArg = cbArg;
  1075. p->ilp = NULL;
  1076. p->olp = NULL;
  1077. hp->h = p;
  1078. return rc;
  1079. }
  1080. void cmTsMp1cSetCbFunc( cmTsMp1cH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  1081. {
  1082. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1083. p->cbFunc = cbFunc;
  1084. p->cbArg = cbArg;
  1085. }
  1086. cmTsQueueCb_t cmTsMp1cCbFunc( cmTsMp1cH_t h )
  1087. {
  1088. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1089. return p->cbFunc;
  1090. }
  1091. void* cmTsMp1cCbArg( cmTsMp1cH_t h )
  1092. {
  1093. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1094. return p->cbArg;
  1095. }
  1096. //#define CAS(addr,old,new) __sync_bool_compare_and_swap(addr,old,new)
  1097. //#define CAS(addr,old,neww) cmThPtrCAS(addr,old,neww)
  1098. cmThRC_t cmTsMp1cEnqueueSegMsg( cmTsMp1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  1099. {
  1100. cmThRC_t rc = kOkThRC;
  1101. unsigned mn = 0;
  1102. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1103. unsigned ai = _cmTsMp1cBufIndex( p, pthread_self() );
  1104. cmTsBuf_t* b = p->a + ai;
  1105. int i,bi,ei;
  1106. cmTsHdr_t hdr;
  1107. // Use a stored oi for the duration of this function.
  1108. // b->oi may be changed by the dequeue thread but storing it here
  1109. // at least prevents it from changing during the course of the this function.
  1110. // Note: b->oi is only used to check for buffer full. Even if it changes
  1111. // it would only mean that more bytes were available than calculated based
  1112. // on the stored value. A low estimate of the actual bytes available is
  1113. // never unsafe.
  1114. volatile int oi = b->oi;
  1115. // get the total count of bytes for this msg
  1116. for(i=0; i<arrayCnt; ++i)
  1117. mn += msgByteCntArray[i];
  1118. // dn = count of msg bytes + count of header bytes
  1119. int dn = mn + sizeof(hdr);
  1120. // if oi is ahead of ii in the queue then we must write
  1121. // in the area between ii and oi
  1122. if( oi > b->ii )
  1123. {
  1124. ei = oi-1; // (never allow ii to equal oi (that's the empty condition))
  1125. bi = b->ii;
  1126. }
  1127. else // otherwise oi is same or before ii in the queue and we have the option to wrap
  1128. {
  1129. // if the new msg will not fit at the end of the queue ....
  1130. if( b->ii + dn > p->bn )
  1131. {
  1132. bi = 0; // ... then wrap to the beginning
  1133. ei = oi-1; // (never allow ii to equal oi (that's the empty condition))
  1134. }
  1135. else
  1136. {
  1137. ei = p->bn; // otherwise write at the current location
  1138. bi = b->ii;
  1139. }
  1140. }
  1141. if( bi + dn > ei )
  1142. return cmErrMsg(&p->err,kBufFullThRC,"%i consecutive bytes is not available in the queue.",dn);
  1143. char* dp = b->buf + bi;
  1144. // write the msg
  1145. for(i=0; i<arrayCnt; ++i)
  1146. {
  1147. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  1148. dp += msgByteCntArray[i];
  1149. }
  1150. // setup the msg header
  1151. hdr.ai = ai;
  1152. hdr.mn = mn;
  1153. hdr.link = NULL;
  1154. // write the msg header (following the msg body in memory)
  1155. cmTsHdr_t* hp = (cmTsHdr_t*)dp;
  1156. memcpy(hp,&hdr,sizeof(hdr));
  1157. // increment the buffers input index
  1158. b->ii = bi + dn;
  1159. // update the link list head to point to this msg hdr
  1160. cmTsHdr_t* old_hp, *new_hp;
  1161. do
  1162. {
  1163. old_hp = p->ilp;
  1164. new_hp = hp;
  1165. }while(!cmThPtrCAS(&p->ilp,old_hp,new_hp));
  1166. // link the prev recd to this recd
  1167. if( old_hp != NULL )
  1168. old_hp->link = hp;
  1169. // if this is the first record written by this queue then prime the output list
  1170. do
  1171. {
  1172. old_hp = p->olp;
  1173. new_hp = hp;
  1174. if( old_hp != NULL )
  1175. break;
  1176. }while(!cmThPtrCAS(&p->olp,old_hp,new_hp));
  1177. return rc;
  1178. }
  1179. cmThRC_t cmTsMp1cEnqueueMsg( cmTsMp1cH_t h, const void* dataPtr, unsigned byteCnt )
  1180. { return cmTsMp1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  1181. unsigned cmTsMp1cAllocByteCount( cmTsMp1cH_t h )
  1182. {
  1183. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1184. return p->bn;
  1185. }
  1186. unsigned cmTsMp1cAvailByteCount( cmTsMp1cH_t h )
  1187. {
  1188. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1189. unsigned ai = _cmTsMp1cBufIndex(p,pthread_self());
  1190. const cmTsBuf_t* b = p->a + ai;
  1191. if( b->oi > b->ii )
  1192. return b->oi - b->ii - 1;
  1193. return (p->bn - b->ii) + b->oi - 1;
  1194. }
  1195. unsigned _cmTsMp1cNextMsgByteCnt( cmTsMp1c_t* p )
  1196. {
  1197. if( p->olp == NULL )
  1198. return 0;
  1199. // if the current msg has not yet been read
  1200. if( p->olp->mn != 0 )
  1201. return p->olp->mn;
  1202. // if the current msg has been read but a new next msg has been linked
  1203. if( p->olp->mn == 0 && p->olp->link != NULL )
  1204. {
  1205. // advance the buffer output msg past the prev msg header
  1206. char* hp = (char*)(p->olp + 1);
  1207. p->a[p->olp->ai].oi = hp - p->a[p->olp->ai].buf;
  1208. // advance msg pointer to point to the new msg header
  1209. p->olp = p->olp->link;
  1210. // return the size of the new msg
  1211. return p->olp->mn;
  1212. }
  1213. return 0;
  1214. }
  1215. cmThRC_t cmTsMp1cDequeueMsg( cmTsMp1cH_t h, void* dataPtr, unsigned byteCnt )
  1216. {
  1217. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1218. // if there are no messages waiting
  1219. if( _cmTsMp1cNextMsgByteCnt(p) == 0 )
  1220. return kBufEmptyThRC;
  1221. char* hp = (char*)p->olp;
  1222. char* dp = hp - p->olp->mn; // the msg body is before the msg hdr
  1223. if( dataPtr == NULL )
  1224. {
  1225. p->cbFunc(p->cbArg,p->olp->mn,dp);
  1226. }
  1227. else
  1228. {
  1229. if( p->olp->mn > byteCnt )
  1230. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,p->olp->mn);
  1231. memcpy(dataPtr,dp,p->olp->mn);
  1232. }
  1233. // advance the buffers output index past the msg body
  1234. p->a[p->olp->ai].oi = hp - p->a[p->olp->ai].buf;
  1235. // mark the msg as read
  1236. p->olp->mn = 0;
  1237. return kOkThRC;
  1238. }
  1239. bool cmTsMp1cMsgWaiting( cmTsMp1cH_t h )
  1240. {
  1241. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1242. return _cmTsMp1cNextMsgByteCnt(p) != 0;
  1243. }
  1244. unsigned cmTsMp1cDequeueMsgByteCount( cmTsMp1cH_t h )
  1245. {
  1246. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1247. return _cmTsMp1cNextMsgByteCnt(p);
  1248. }
  1249. bool cmTsMp1cIsValid( cmTsMp1cH_t h )
  1250. { return h.h != NULL; }
  1251. //============================================================================================================================/
  1252. //
  1253. // cmTsQueueTest()
  1254. //
  1255. // param recd for use by _cmTsQueueCb0() and
  1256. // the msg record passed between the sender
  1257. // threads and the receiver thread
  1258. typedef struct
  1259. {
  1260. unsigned id;
  1261. cmTsQueueH_t qH;
  1262. int val;
  1263. } _cmTsQCbParam_t;
  1264. // Generate a random number and put it in a TS queue
  1265. bool _cmTsQueueCb0(void* param)
  1266. {
  1267. _cmTsQCbParam_t* p = (_cmTsQCbParam_t*)param;
  1268. p->val = rand(); // generate a random number
  1269. // send the msg
  1270. if( cmTsQueueEnqueueMsg( p->qH, p, sizeof(_cmTsQCbParam_t)) == kOkThRC )
  1271. printf("in:%i %i\n",p->id,p->val);
  1272. else
  1273. printf("in error %i\n",p->id);
  1274. cmSleepUs(100*1000);
  1275. return true;
  1276. }
  1277. // Monitor a TS queue for incoming messages from _cmTsQueueCb1()
  1278. bool _cmTsQueueCb1(void* param)
  1279. {
  1280. // the thread param is a ptr to the TS queue to monitor.
  1281. cmTsQueueH_t* qp = (cmTsQueueH_t*)param;
  1282. cmThRC_t rc;
  1283. _cmTsQCbParam_t msg;
  1284. // dequeue any waiting messages
  1285. if((rc = cmTsQueueDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1286. printf("out:%i %i\n",msg.id,msg.val);
  1287. else
  1288. {
  1289. if( rc != kBufEmptyThRC )
  1290. printf("out error:%i\n", rc);
  1291. }
  1292. return true;
  1293. }
  1294. // Test the TS queue by starting sender threads (threads 0 & 1)
  1295. // and a receiver thread (thread 2) and sending messages
  1296. // from the sender to the receiver.
  1297. void cmTsQueueTest( cmRpt_t* rpt )
  1298. {
  1299. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1300. cmTsQueueH_t q=cmTsQueueNullHandle;
  1301. _cmTsQCbParam_t param0, param1;
  1302. // create a TS Queue
  1303. if( cmTsQueueCreate(&q,100,NULL,NULL,rpt) != kOkThRC )
  1304. goto errLabel;
  1305. // create thread 0
  1306. param0.id = 0;
  1307. param0.qH = q;
  1308. if( cmThreadCreate(&th0,_cmTsQueueCb0,&param0,rpt) != kOkThRC )
  1309. goto errLabel;
  1310. // create thread 1
  1311. param1.id = 1;
  1312. param1.qH = q;
  1313. if( cmThreadCreate(&th1,_cmTsQueueCb0,&param1,rpt) != kOkThRC )
  1314. goto errLabel;
  1315. // create thread 2
  1316. if( cmThreadCreate(&th2,_cmTsQueueCb1,&q,rpt) != kOkThRC )
  1317. goto errLabel;
  1318. // start thread 0
  1319. if( cmThreadPause(th0,0) != kOkThRC )
  1320. goto errLabel;
  1321. // start thread 1
  1322. if( cmThreadPause(th1,0) != kOkThRC )
  1323. goto errLabel;
  1324. // start thread 2
  1325. if( cmThreadPause(th2,0) != kOkThRC )
  1326. goto errLabel;
  1327. printf("any key to quit.");
  1328. getchar();
  1329. errLabel:
  1330. if( cmThreadIsValid(th0) )
  1331. if( cmThreadDestroy(&th0) != kOkThRC )
  1332. printf("Error destroying thread 0\n");
  1333. if( cmThreadIsValid(th1) )
  1334. if( cmThreadDestroy(&th1) != kOkThRC )
  1335. printf("Error destroying thread 1\n");
  1336. if( cmThreadIsValid(th2) )
  1337. if( cmThreadDestroy(&th2) != kOkThRC )
  1338. printf("Error destroying thread 1\n");
  1339. if( cmTsQueueIsValid(q) )
  1340. if( cmTsQueueDestroy(&q) != kOkThRC )
  1341. printf("Error destroying queue\n");
  1342. }
  1343. //============================================================================================================================/
  1344. //
  1345. // cmTs1p1cTest()
  1346. //
  1347. // param recd for use by _cmTsQueueCb0() and
  1348. // the msg record passed between the sender
  1349. // threads and the receiver thread
  1350. typedef struct
  1351. {
  1352. unsigned id;
  1353. cmTs1p1cH_t qH;
  1354. int val;
  1355. } _cmTs1p1cCbParam_t;
  1356. cmTs1p1cH_t cmTs1p1cNullHandle = cmSTATIC_NULL_HANDLE;
  1357. // Generate a random number and put it in a TS queue
  1358. bool _cmTs1p1cCb0(void* param)
  1359. {
  1360. _cmTs1p1cCbParam_t* p = (_cmTs1p1cCbParam_t*)param;
  1361. p->val = rand(); // generate a random number
  1362. // send the msg
  1363. if( cmTs1p1cEnqueueMsg( p->qH, p, sizeof(_cmTs1p1cCbParam_t)) == kOkThRC )
  1364. printf("in:%i %i\n",p->id,p->val);
  1365. else
  1366. printf("in error %i\n",p->id);
  1367. ++p->id;
  1368. cmSleepUs(100*1000);
  1369. return true;
  1370. }
  1371. // Monitor a TS queue for incoming messages from _cmTs1p1cCb1()
  1372. bool _cmTs1p1cCb1(void* param)
  1373. {
  1374. // the thread param is a ptr to the TS queue to monitor.
  1375. cmTs1p1cH_t* qp = (cmTs1p1cH_t*)param;
  1376. cmThRC_t rc;
  1377. _cmTs1p1cCbParam_t msg;
  1378. // dequeue any waiting messages
  1379. if((rc = cmTs1p1cDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1380. printf("out:%i %i\n",msg.id,msg.val);
  1381. else
  1382. {
  1383. if( rc != kBufEmptyThRC )
  1384. printf("out error:%i\n", rc);
  1385. }
  1386. return true;
  1387. }
  1388. // Test the TS queue by starting sender threads (threads 0 & 1)
  1389. // and a receiver thread (thread 2) and sending messages
  1390. // from the sender to the receiver.
  1391. void cmTs1p1cTest( cmRpt_t* rpt )
  1392. {
  1393. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1394. cmTs1p1cH_t q=cmTs1p1cNullHandle;
  1395. _cmTs1p1cCbParam_t param1;
  1396. // create a TS Queue
  1397. if( cmTs1p1cCreate(&q,28*2,NULL,NULL,rpt) != kOkThRC )
  1398. goto errLabel;
  1399. // create thread 1
  1400. param1.id = 0;
  1401. param1.qH = q;
  1402. if( cmThreadCreate(&th1,_cmTs1p1cCb0,&param1,rpt) != kOkThRC )
  1403. goto errLabel;
  1404. // create thread 2
  1405. if( cmThreadCreate(&th2,_cmTs1p1cCb1,&q,rpt) != kOkThRC )
  1406. goto errLabel;
  1407. // start thread 1
  1408. if( cmThreadPause(th1,0) != kOkThRC )
  1409. goto errLabel;
  1410. // start thread 2
  1411. if( cmThreadPause(th2,0) != kOkThRC )
  1412. goto errLabel;
  1413. printf("any key to quit.");
  1414. getchar();
  1415. errLabel:
  1416. if( cmThreadIsValid(th0) )
  1417. if( cmThreadDestroy(&th0) != kOkThRC )
  1418. printf("Error destroying thread 0\n");
  1419. if( cmThreadIsValid(th1) )
  1420. if( cmThreadDestroy(&th1) != kOkThRC )
  1421. printf("Error destroying thread 1\n");
  1422. if( cmThreadIsValid(th2) )
  1423. if( cmThreadDestroy(&th2) != kOkThRC )
  1424. printf("Error destroying thread 1\n");
  1425. if( cmTs1p1cIsValid(q) )
  1426. if( cmTs1p1cDestroy(&q) != kOkThRC )
  1427. printf("Error destroying queue\n");
  1428. }
  1429. //============================================================================================================================/
  1430. //
  1431. // cmTsMp1cTest()
  1432. //
  1433. // param recd for use by _cmTsQueueCb0() and
  1434. // the msg record passed between the sender
  1435. // threads and the receiver thread
  1436. typedef struct
  1437. {
  1438. unsigned id;
  1439. cmTsMp1cH_t qH;
  1440. int val;
  1441. } _cmTsMp1cCbParam_t;
  1442. unsigned _cmTsMp1cVal = 0;
  1443. // Incr the global value _cmTsMp1cVal and put it in a TS queue
  1444. bool _cmTsMp1cCb0(void* param)
  1445. {
  1446. _cmTsMp1cCbParam_t* p = (_cmTsMp1cCbParam_t*)param;
  1447. p->val = __sync_fetch_and_add(&_cmTsMp1cVal,1);
  1448. // send the msg
  1449. if( cmTsMp1cEnqueueMsg( p->qH, p, sizeof(_cmTsMp1cCbParam_t)) == kOkThRC )
  1450. printf("in:%i %i\n",p->id,p->val);
  1451. else
  1452. printf("in error %i\n",p->id);
  1453. cmSleepUs(100*1000);
  1454. return true;
  1455. }
  1456. // Monitor a TS queue for incoming messages from _cmTsMp1cCb1()
  1457. bool _cmTsMp1cCb1(void* param)
  1458. {
  1459. // the thread param is a ptr to the TS queue to monitor.
  1460. cmTsMp1cH_t* qp = (cmTsMp1cH_t*)param;
  1461. cmThRC_t rc;
  1462. _cmTsMp1cCbParam_t msg;
  1463. // dequeue any waiting messages
  1464. if((rc = cmTsMp1cDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1465. printf("out - cons id:%i val:%i\n",msg.id,msg.val);
  1466. else
  1467. {
  1468. if( rc != kBufEmptyThRC )
  1469. printf("out error:%i\n", rc);
  1470. }
  1471. return true;
  1472. }
  1473. // Test the TS queue by starting sender threads (threads 0 & 1)
  1474. // and a receiver thread (thread 2) and sending messages
  1475. // from the sender to the receiver.
  1476. void cmTsMp1cTest( cmRpt_t* rpt )
  1477. {
  1478. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1479. cmTsMp1cH_t q=cmTsMp1cNullHandle;
  1480. _cmTsMp1cCbParam_t param0, param1;
  1481. // create a TS Queue
  1482. if( cmTsMp1cCreate(&q,1000,NULL,NULL,rpt) != kOkThRC )
  1483. goto errLabel;
  1484. // create thread 0 - producer 0
  1485. param0.id = 0;
  1486. param0.qH = q;
  1487. if( cmThreadCreate(&th0,_cmTsMp1cCb0,&param0,rpt) != kOkThRC )
  1488. goto errLabel;
  1489. // create thread 1 - producer 1
  1490. param1.id = 1;
  1491. param1.qH = q;
  1492. if( cmThreadCreate(&th1,_cmTsMp1cCb0,&param1,rpt) != kOkThRC )
  1493. goto errLabel;
  1494. // create thread 2 - consumer 0
  1495. if( cmThreadCreate(&th2,_cmTsMp1cCb1,&q,rpt) != kOkThRC )
  1496. goto errLabel;
  1497. // start thread 0
  1498. if( cmThreadPause(th0,0) != kOkThRC )
  1499. goto errLabel;
  1500. // start thread 1
  1501. if( cmThreadPause(th1,0) != kOkThRC )
  1502. goto errLabel;
  1503. // start thread 2
  1504. if( cmThreadPause(th2,0) != kOkThRC )
  1505. goto errLabel;
  1506. printf("any key to quit.");
  1507. getchar();
  1508. errLabel:
  1509. if( cmThreadIsValid(th0) )
  1510. if( cmThreadDestroy(&th0) != kOkThRC )
  1511. printf("Error destroying thread 0\n");
  1512. if( cmThreadIsValid(th1) )
  1513. if( cmThreadDestroy(&th1) != kOkThRC )
  1514. printf("Error destroying thread 1\n");
  1515. if( cmThreadIsValid(th2) )
  1516. if( cmThreadDestroy(&th2) != kOkThRC )
  1517. printf("Error destroying thread 1\n");
  1518. if( cmTsMp1cIsValid(q) )
  1519. if( cmTsMp1cDestroy(&q) != kOkThRC )
  1520. printf("Error destroying queue\n");
  1521. }
  1522. void cmSleepUs( unsigned microseconds )
  1523. { usleep(microseconds); }
  1524. void cmSleepMs( unsigned milliseconds )
  1525. { cmSleepUs(milliseconds*1000); }