libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmAudioAggDev.c 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. #include "cmGlobal.h"
  2. #include "cmRpt.h"
  3. #include "cmErr.h"
  4. #include "cmCtx.h"
  5. #include "cmMem.h"
  6. #include "cmMallocDebug.h"
  7. #include "cmAudioPort.h"
  8. #include "cmAudioAggDev.h"
  9. #include "cmThread.h" // cmThUIntIncr()
  10. #include "cmApBuf.h" // only needed for cmApBufTest().
  11. enum
  12. {
  13. kBufArrayCnt = 2
  14. };
  15. struct cmApAgg_str;
  16. typedef struct
  17. {
  18. unsigned physDevIdx;
  19. struct cmApAgg_str* ap;
  20. unsigned iChIdx;
  21. unsigned iChCnt;
  22. unsigned oChIdx;
  23. unsigned oChCnt;
  24. } cmApAggDev_t;
  25. typedef struct cmApAgg_str
  26. {
  27. cmChar_t* label; // agg. device label
  28. unsigned aggDevIdx; // agg. device index
  29. unsigned sysDevIdx; // system device index
  30. unsigned devCnt; // count of phys devices
  31. cmApAggDev_t* devArray; // devArray[ devCnt ] - physical device array
  32. unsigned iChCnt; // sum of phys device input channels
  33. unsigned oChCnt; // sum of phys device output channels
  34. double srate; // agg. dev sample rate
  35. unsigned framesPerCycle; // agg. dev frames per cycle
  36. unsigned flags; // kAgInFl | kAgOutFl
  37. cmApCallbackPtr_t cbFunc; // client supplied callback func
  38. void* cbArg; // client supplied callback func arg.
  39. bool startedFl; // true if the agg. device is started
  40. struct cmApAgg_str* link; // _cmAg.list link
  41. } cmApAgg_t;
  42. typedef struct
  43. {
  44. cmErr_t err;
  45. cmApAgg_t* list;
  46. } cmApAggMain_t;
  47. cmApAggMain_t _cmAg;
  48. void _cmApAggCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  49. {
  50. unsigned i;
  51. cmApAudioPacket_t pkt;
  52. for(i=0; i<inPktCnt; ++i)
  53. {
  54. cmApAggDev_t* dp = (cmApAggDev_t*)inPktArray[i].userCbPtr;
  55. pkt = inPktArray[i];
  56. pkt.devIdx = dp->ap->sysDevIdx;
  57. pkt.begChIdx = dp->iChIdx;
  58. pkt.userCbPtr = dp->ap->cbArg;
  59. dp->ap->cbFunc( &pkt, 1, NULL, 0 );
  60. }
  61. for(i=0; i<outPktCnt; ++i)
  62. {
  63. cmApAggDev_t* dp = (cmApAggDev_t*)outPktArray[i].userCbPtr;
  64. pkt = outPktArray[i];
  65. pkt.devIdx = dp->ap->sysDevIdx;
  66. pkt.begChIdx = dp->oChIdx;
  67. pkt.userCbPtr = dp->ap->cbArg;
  68. dp->ap->cbFunc( NULL, 0, &pkt, 1 );
  69. }
  70. }
  71. void _cmApAgDeleteAggDev( cmApAgg_t* ap )
  72. {
  73. cmApAgg_t* cp = _cmAg.list;
  74. cmApAgg_t* pp = NULL;
  75. while( cp != NULL )
  76. {
  77. if( cp == ap )
  78. {
  79. if( pp == NULL )
  80. _cmAg.list = cp->link;
  81. else
  82. pp->link = cp->link;
  83. cmMemFree(ap->label);
  84. cmMemFree(ap->devArray);
  85. cmMemFree(ap);
  86. return;
  87. }
  88. pp = cp;
  89. cp = cp->link;
  90. }
  91. }
  92. cmAgRC_t cmApAggAllocate( cmRpt_t* rpt )
  93. {
  94. cmAgRC_t rc = kOkAgRC;
  95. cmErrSetup(&_cmAg.err,rpt,"cmAudioAggDev");
  96. _cmAg.list = NULL;
  97. return rc;
  98. }
  99. cmAgRC_t cmApAggFree()
  100. {
  101. cmAgRC_t rc = kOkAgRC;
  102. while( _cmAg.list != NULL )
  103. _cmApAgDeleteAggDev(_cmAg.list );
  104. return rc;
  105. }
  106. cmAgRC_t cmApAggInitialize( cmRpt_t* rpt, unsigned baseApDevIdx )
  107. {
  108. cmApAgg_t* ap = _cmAg.list;
  109. unsigned i;
  110. assert( baseApDevIdx == cmApDeviceCount() );
  111. for(i=0; ap!=NULL; ap=ap->link,++i)
  112. {
  113. ap->sysDevIdx = cmApDeviceCount() + i;
  114. ap->iChCnt = 0;
  115. ap->oChCnt = 0;
  116. unsigned i;
  117. for(i=0; i<ap->devCnt; ++i)
  118. {
  119. ap->devArray[i].iChIdx = ap->iChCnt;
  120. ap->devArray[i].oChIdx = ap->oChCnt;
  121. ap->devArray[i].iChCnt = cmApDeviceChannelCount(ap->devArray[i].physDevIdx,true);
  122. ap->devArray[i].oChCnt = cmApDeviceChannelCount(ap->devArray[i].physDevIdx,false);
  123. ap->iChCnt += ap->devArray[i].iChCnt;
  124. ap->oChCnt += ap->devArray[i].oChCnt;
  125. }
  126. }
  127. return kOkAgRC;
  128. }
  129. cmAgRC_t cmApAggFinalize()
  130. { return kOkAgRC; }
  131. cmAgRC_t cmApAggCreateDevice(
  132. const cmChar_t* label,
  133. unsigned devCnt,
  134. const unsigned physDevIdxArray[],
  135. unsigned flags )
  136. {
  137. cmAgRC_t rc = kOkAgRC;
  138. unsigned i;
  139. if( devCnt < 2 )
  140. return cmErrMsg(&_cmAg.err,kMustAggTwoAgRC,"Cannot aggregate less than two devices.");
  141. /*
  142. for(i=0; i<devCnt; ++i)
  143. {
  144. unsigned physDevIdx = physDevIdxArray[i];
  145. if( cmApAggIsDeviceAggregated(physDevIdx) )
  146. return cmErrMsg(&_cmAg.err,kDevAlreadyAggAgRC,"The physical device associated with index '%i' ('%s') has already been assigned to another aggregated device.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  147. if( cmApDeviceIsStarted(physDevIdx) )
  148. return cmErrMsg(&_cmAg.err,kCantUseStartedDevAgRC,"The physical device associated with index '%i' ('%s') cannot be aggregated while it is running.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  149. }
  150. */
  151. cmApAgg_t* ap = cmMemAllocZ(cmApAgg_t,1);
  152. ap->label = cmMemAllocStr(label==NULL?"Aggregated Device":label);
  153. ap->devArray = cmMemAllocZ(cmApAggDev_t,devCnt);
  154. ap->aggDevIdx = cmApAggDeviceCount();
  155. ap->sysDevIdx = cmInvalidIdx;
  156. ap->devCnt = devCnt;
  157. ap->iChCnt = 0;
  158. ap->oChCnt = 0;
  159. for(i=0; i<devCnt; ++i)
  160. {
  161. ap->devArray[i].ap = ap;
  162. ap->devArray[i].physDevIdx = physDevIdxArray[i];
  163. }
  164. ap->link = _cmAg.list;
  165. _cmAg.list = ap;
  166. return rc;
  167. }
  168. cmApAgg_t* _cmApAggDevIdxToPtr( unsigned aggDevIdx )
  169. {
  170. cmApAgg_t* ap = _cmAg.list;
  171. unsigned i = 0;
  172. for(; ap!=NULL; ap=ap->link,++i)
  173. if( ap->aggDevIdx == aggDevIdx )
  174. return ap;
  175. return NULL;
  176. }
  177. cmAgRC_t _cmApAggGetAgg( unsigned aggDevIdx, cmApAgg_t** retPtrPtr )
  178. {
  179. if((*retPtrPtr = _cmApAggDevIdxToPtr(aggDevIdx)) == NULL )
  180. return cmErrMsg(&_cmAg.err,kInvalidDevIdxAgRC,"The aggregate system device index '%i' is invalid.");
  181. return kOkAgRC;
  182. }
  183. bool cmApAggIsDeviceAggregated( unsigned physDevIdx )
  184. {
  185. cmApAgg_t* ap = _cmAg.list;
  186. for(; ap!=NULL; ap=ap->link)
  187. {
  188. unsigned i;
  189. for(i=0; i<ap->devCnt; ++i)
  190. if( ap->devArray[i].physDevIdx == physDevIdx )
  191. return true;
  192. }
  193. return false;
  194. }
  195. cmAgRC_t cmApAggDeviceCount()
  196. {
  197. unsigned devCnt=0;
  198. cmApAgg_t* ap = _cmAg.list;
  199. for(; ap!=NULL; ap=ap->link)
  200. ++devCnt;
  201. return devCnt;
  202. }
  203. const char* cmApAggDeviceLabel( unsigned aggDevIdx )
  204. {
  205. cmApAgg_t* ap;
  206. cmAgRC_t rc;
  207. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  208. return ap->label;
  209. return NULL;
  210. }
  211. unsigned cmApAggDeviceChannelCount( unsigned aggDevIdx, bool inputFl )
  212. {
  213. cmApAgg_t* ap;
  214. cmAgRC_t rc;
  215. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  216. return inputFl ? ap->iChCnt : ap->oChCnt;
  217. return 0;
  218. }
  219. double cmApAggDeviceSampleRate( unsigned aggDevIdx )
  220. {
  221. cmApAgg_t* ap;
  222. cmAgRC_t rc;
  223. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  224. return ap->srate;
  225. return 0;
  226. }
  227. unsigned cmApAggDeviceFramesPerCycle( unsigned aggDevIdx, bool inputFl )
  228. {
  229. cmApAgg_t* ap;
  230. cmAgRC_t rc;
  231. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  232. return ap->framesPerCycle;
  233. return 0;
  234. }
  235. cmAgRC_t cmApAggDeviceSetup(
  236. unsigned aggDevIdx,
  237. double srate,
  238. unsigned framesPerCycle,
  239. cmApCallbackPtr_t callbackPtr,
  240. void* userCbPtr )
  241. {
  242. cmApAgg_t* ap;
  243. cmAgRC_t rc;
  244. unsigned i;
  245. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  246. return rc;
  247. if((rc = cmApAggDeviceStop(aggDevIdx)) != kOkAgRC )
  248. return rc;
  249. for(i=0; i<ap->devCnt; ++i)
  250. {
  251. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  252. cmApAggDev_t* devPtr = ap->devArray + i;
  253. if( cmApDeviceSetup( physDevIdx, srate, framesPerCycle, _cmApAggCb, devPtr ) != kOkApRC )
  254. rc = cmErrMsg(&_cmAg.err,kPhysDevSetupFailAgRC,"The physical device (index:%i '%s') setup failed for sample rate:%f frames-per-cycle:%i.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)),srate,framesPerCycle);
  255. }
  256. if( rc == kOkAgRC )
  257. {
  258. ap->cbFunc = callbackPtr;
  259. ap->cbArg = userCbPtr;
  260. }
  261. return rc;
  262. }
  263. cmAgRC_t cmApAggDeviceStart( unsigned aggDevIdx )
  264. {
  265. cmAgRC_t rc = kOkAgRC;
  266. cmApAgg_t* ap;
  267. unsigned i;
  268. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  269. return rc;
  270. for(i=0; i<ap->devCnt; ++i)
  271. {
  272. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  273. if( cmApDeviceStart( physDevIdx ) != kOkApRC )
  274. return cmErrMsg(&_cmAg.err,kPhysDevStartFailAgRC,"The physical device (index:%i '%s') start failed.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  275. }
  276. ap->startedFl = true;
  277. return rc;
  278. }
  279. cmAgRC_t cmApAggDeviceStop( unsigned aggDevIdx )
  280. {
  281. cmAgRC_t rc = kOkAgRC;
  282. cmApAgg_t* ap;
  283. unsigned i;
  284. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  285. return rc;
  286. for(i=0; i<ap->devCnt; ++i)
  287. {
  288. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  289. if( cmApDeviceStop( physDevIdx ) != kOkApRC )
  290. return cmErrMsg(&_cmAg.err,kPhysDevStartFailAgRC,"The physical device (index:%i '%s') start failed.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  291. }
  292. ap->startedFl = false;
  293. return rc;
  294. }
  295. bool cmApAggDeviceIsStarted( unsigned aggDevIdx )
  296. {
  297. cmApAgg_t* ap;
  298. if(_cmApAggGetAgg(aggDevIdx, &ap ) != kOkAgRC )
  299. return false;
  300. return ap->startedFl;
  301. }
  302. typedef struct
  303. {
  304. unsigned bufCnt; // 2=double buffering 3=triple buffering
  305. unsigned chIdx; // first test channel
  306. unsigned chCnt; // count of channels to test
  307. unsigned framesPerCycle; // DSP frames per cycle
  308. unsigned bufFrmCnt; // count of DSP frames used by the audio buffer (bufCnt * framesPerCycle)
  309. unsigned bufSmpCnt; // count of samples used by the audio buffer (chCnt * bufFrmCnt)
  310. unsigned inDevIdx; // input device index
  311. unsigned outDevIdx; // output device index
  312. double srate; // audio sample rate
  313. unsigned meterMs; // audio meter buffer length
  314. // param's and state for cmApSynthSine()
  315. bool synthFl;
  316. unsigned phase; // sine synth phase
  317. double frqHz; // sine synth frequency in Hz
  318. // buffer and state for cmApCopyIn/Out()
  319. cmApSample_t* buf; // buf[bufSmpCnt] - circular interleaved audio buffer
  320. unsigned bufInIdx; // next input buffer index
  321. unsigned bufOutIdx; // next output buffer index
  322. unsigned bufFullCnt; // count of full samples
  323. unsigned cbCnt; // count the callback
  324. unsigned underunCnt; //
  325. unsigned overunCnt;
  326. double* iMeter; // iMeter[ chCnt ]
  327. FILE* ifp;
  328. FILE* ofp;
  329. } cmApAggPortTestRecd;
  330. // The application can request any block of channels from the device. The packets are provided with the starting
  331. // device channel and channel count. This function converts device channels and channel counts to buffer
  332. // channel indexes and counts.
  333. //
  334. // Example:
  335. // input output
  336. // i,n i n
  337. // App: 0,4 0 1 2 3 -> 2 2
  338. // Pkt 2,8 2 3 4 5 6 7 8 -> 0 2
  339. //
  340. // The return value is the count of application requested channels located in this packet.
  341. //
  342. // input: *appChIdxPtr and appChCnt describe a block of device channels requested by the application.
  343. // *pktChIdxPtr and pktChCnt describe a block of device channels provided to the application
  344. //
  345. // output:*appChIdxPtr and <return value> describe a block of app buffer channels which will send/recv samples.
  346. // *pktChIdxPtr and <return value> describe a block of pkt buffer channels which will send/recv samples
  347. //
  348. unsigned _cmApAggDeviceToBuffer( unsigned* appChIdxPtr, unsigned appChCnt, unsigned* pktChIdxPtr, unsigned pktChCnt )
  349. {
  350. unsigned abi = *appChIdxPtr;
  351. unsigned aei = abi+appChCnt-1;
  352. unsigned pbi = *pktChIdxPtr;
  353. unsigned pei = pbi+pktChCnt-1;
  354. // if the ch's rqstd by the app do not overlap with this packet - return false.
  355. if( aei < pbi || abi > pei )
  356. return 0;
  357. // if the ch's rqstd by the app overlap with the beginning of the pkt channel block
  358. if( abi < pbi )
  359. {
  360. appChCnt -= pbi - abi;
  361. *appChIdxPtr = pbi - abi;
  362. *pktChIdxPtr = 0;
  363. }
  364. else
  365. {
  366. // the rqstd ch's begin inside the pkt channel block
  367. pktChCnt -= abi - pbi;
  368. *pktChIdxPtr = abi - pbi;
  369. *appChIdxPtr = 0;
  370. }
  371. // if the pkt channels extend beyond the rqstd ch block
  372. if( aei < pei )
  373. pktChCnt -= pei - aei;
  374. else
  375. appChCnt -= aei - pei; // the rqstd ch's extend beyond or coincide with the pkt block
  376. // the returned channel count must always be the same for both the rqstd and pkt
  377. return cmMin(appChCnt,pktChCnt);
  378. }
  379. // synthesize a sine signal into an interleaved audio buffer
  380. unsigned _cmApAggSynthSine( cmApAggPortTestRecd* r, float* p, unsigned chIdx, unsigned chCnt, unsigned frmCnt, unsigned phs, double hz )
  381. {
  382. long ph = 0;
  383. unsigned i;
  384. unsigned bufIdx = r->chIdx;
  385. unsigned bufChCnt;
  386. if( (bufChCnt = _cmApAggDeviceToBuffer( &bufIdx, r->chCnt, &chIdx, chCnt )) == 0)
  387. return phs;
  388. //if( r->cbCnt < 50 )
  389. // printf("ch:%i cnt:%i ch:%i cnt:%i bi:%i bcn:%i\n",r->chIdx,r->chCnt,chIdx,chCnt,bufIdx,bufChCnt);
  390. for(i=bufIdx; i<bufIdx+bufChCnt; ++i)
  391. {
  392. unsigned j;
  393. float* op = p + i;
  394. ph = phs;
  395. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  396. {
  397. *op = (float)(0.9 * sin( 2.0 * M_PI * hz * ph / r->srate ));
  398. }
  399. }
  400. return ph;
  401. }
  402. // Copy the audio samples in the interleaved audio buffer sp[srcChCnt*srcFrameCnt]
  403. // to the internal record buffer.
  404. void _cmApAggCopyIn( cmApAggPortTestRecd* r, const cmApSample_t* sp, unsigned srcChIdx, unsigned srcChCnt, unsigned srcFrameCnt )
  405. {
  406. unsigned i,j;
  407. unsigned chCnt = cmMin(r->chCnt,srcChCnt);
  408. // write the incoming sample to an output file for debugging
  409. if( r->ifp != NULL )
  410. if( fwrite(sp,sizeof(cmApSample_t),srcChCnt*srcFrameCnt,r->ifp) != srcChCnt*srcFrameCnt )
  411. printf("file write fail.\n");
  412. // zero the input meter array
  413. for(i=0; i<r->chCnt; ++i)
  414. r->iMeter[i] = 0;
  415. for(i=0; i<srcFrameCnt; ++i)
  416. {
  417. // copy samples from the src to the buffer - both src and buffer are interleaved
  418. for(j=0; j<chCnt; ++j)
  419. {
  420. r->buf[ r->bufInIdx + j ] = sp[ (i*srcChCnt) + srcChIdx + j ];
  421. // record the max value in the input meter array
  422. if( r->buf[ r->bufInIdx + j ] > r->iMeter[j] )
  423. r->iMeter[j] = r->buf[ r->bufInIdx + j ];
  424. }
  425. // zero channels that are not used in the buffer
  426. for(; j<r->chCnt; ++j)
  427. r->buf[ r->bufInIdx + j ] = 0;
  428. // advance to the next frame
  429. r->bufInIdx = (r->bufInIdx+r->chCnt) % r->bufFrmCnt;
  430. }
  431. //r->bufFullCnt = (r->bufFullCnt + srcFrameCnt) % r->bufFrmCnt;
  432. cmThUIntIncr(&r->bufFullCnt,srcFrameCnt);
  433. if( r->bufFullCnt > r->bufFrmCnt )
  434. {
  435. //printf("Input buffer overrun.\n");
  436. ++r->overunCnt;
  437. r->bufFullCnt = 0;
  438. }
  439. }
  440. // Copy audio samples out of the internal record buffer into dp[dstChCnt*dstFrameCnt].
  441. void _cmApAggCopyOut( cmApAggPortTestRecd* r, cmApSample_t* dp, unsigned dstChIdx, unsigned dstChCnt, unsigned dstFrameCnt )
  442. {
  443. // if there are not enough samples available to fill the destination
  444. // buffer then zero the dst buf.
  445. if( r->bufFullCnt < dstFrameCnt )
  446. {
  447. //printf("Empty Output Buffer %i < %i\n",r->bufFullCnt,dstFrameCnt);
  448. memset( dp, 0, dstFrameCnt*dstChCnt*sizeof(cmApSample_t) );
  449. ++r->underunCnt;
  450. }
  451. else
  452. {
  453. unsigned i,j;
  454. unsigned chCnt = cmMin(dstChCnt,r->chCnt);
  455. for(i=0; i<dstFrameCnt; ++i)
  456. {
  457. // copy the stored buffer samples to the dst buffer
  458. for(j=0; j<chCnt; ++j)
  459. dp[ (i*dstChCnt) + dstChIdx + j ] = r->buf[ r->bufOutIdx + j ];
  460. // zero unset channels in the dst buffer
  461. for(; j<dstChCnt; ++j)
  462. dp[ (i*dstChCnt) + dstChIdx + j ] = 0;
  463. r->bufOutIdx = (r->bufOutIdx + r->chCnt) % r->bufFrmCnt;
  464. }
  465. cmThUIntDecr(&r->bufFullCnt,dstFrameCnt);
  466. }
  467. if( r->ofp != NULL )
  468. fwrite(dp,sizeof(cmApSample_t),dstChCnt*dstFrameCnt,r->ofp);
  469. }
  470. // Audio port callback function called from the audio device thread.
  471. void _cmApAggPortCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  472. {
  473. unsigned i;
  474. // for each incoming audio packet
  475. for(i=0; i<inPktCnt; ++i)
  476. {
  477. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)inPktArray[i].userCbPtr;
  478. if( r->synthFl==false && inPktArray[i].devIdx == r->inDevIdx )
  479. {
  480. // copy the incoming audio into an internal buffer where it can be picked up by _cpApCopyOut().
  481. _cmApAggCopyIn( r, (cmApSample_t*)inPktArray[i].audioBytesPtr, inPktArray[i].begChIdx, inPktArray[i].chCnt, inPktArray[i].audioFramesCnt );
  482. }
  483. ++r->cbCnt;
  484. //printf("i %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  485. }
  486. unsigned hold_phase = 0;
  487. // for each outgoing audio packet
  488. for(i=0; i<outPktCnt; ++i)
  489. {
  490. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)outPktArray[i].userCbPtr;
  491. if( outPktArray[i].devIdx == r->outDevIdx )
  492. {
  493. // zero the output buffer
  494. memset(outPktArray[i].audioBytesPtr,0,outPktArray[i].chCnt * outPktArray[i].audioFramesCnt * sizeof(cmApSample_t) );
  495. // if the synth is enabled
  496. if( r->synthFl )
  497. {
  498. unsigned tmp_phase = _cmApAggSynthSine( r, outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt, r->phase, r->frqHz );
  499. // the phase will only change on packets that are actually used
  500. if( tmp_phase != r->phase )
  501. hold_phase = tmp_phase;
  502. }
  503. else
  504. {
  505. // copy the any audio in the internal record buffer to the playback device
  506. _cmApAggCopyOut( r, (cmApSample_t*)outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt );
  507. }
  508. }
  509. r->phase = hold_phase;
  510. //printf("o %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  511. // count callbacks
  512. ++r->cbCnt;
  513. }
  514. }
  515. // print the usage message for cmAudioPortTest.c
  516. void _cmApAggPrintUsage( cmRpt_t* rpt )
  517. {
  518. char msg[] =
  519. "cmApAggPortTest() command switches\n"
  520. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -t -p -h \n"
  521. "\n"
  522. "-r <srate> = sample rate\n"
  523. "-a <chidx> = first channel\n"
  524. "-c <chcnt> = audio channels\n"
  525. "-b <bufcnt> = count of buffers\n"
  526. "-f <frmcnt> = count of samples per buffer\n"
  527. "-i <idevidx> = input device index\n"
  528. "-o <odevidx> = output device index\n"
  529. "-p = print report but do not start audio devices\n"
  530. "-h = print this usage message\n";
  531. cmRptPrintf(rpt,msg);
  532. }
  533. // Get a command line option.
  534. int _cmApAggGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  535. {
  536. int i = 0;
  537. for(; i<argc; ++i)
  538. if( strcmp(label,argv[i]) == 0 )
  539. {
  540. if(boolFl)
  541. return 1;
  542. if( i == (argc-1) )
  543. return defaultVal;
  544. return atoi(argv[i+1]);
  545. }
  546. return defaultVal;
  547. }
  548. void _cmApBufShowMeter( cmRpt_t* rpt, unsigned devIdx )
  549. {
  550. unsigned faultCnt = 0;
  551. unsigned meterCnt = cmApBufChannelCount(devIdx,kInApFl);
  552. double meterArray[ meterCnt ];
  553. unsigned n = cmApBufGetStatus(devIdx, kInApFl, meterArray, meterCnt, &faultCnt );
  554. unsigned i;
  555. cmRptPrintf(rpt,"In: actual:%i fault: %i : ",n,faultCnt);
  556. for(i=0; i<meterCnt; ++i)
  557. cmRptPrintf(rpt,"%i:%f ",i,meterArray[i]);
  558. cmRptPrintf(rpt,"\n");
  559. }
  560. unsigned _cmAggGlobalInDevIdx = 0;
  561. unsigned _cmAggGlobalOutDevIdx = 0;
  562. void _cmApAggPortCb2( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  563. {
  564. cmApBufInputToOutput( _cmAggGlobalInDevIdx, _cmAggGlobalOutDevIdx );
  565. cmApBufUpdate( inPktArray, inPktCnt, outPktArray, outPktCnt );
  566. }
  567. void recdPrint();
  568. // Audio Port testing function
  569. int cmApAggTest( bool runFl, cmCtx_t* ctx, int argc, const char* argv[] )
  570. {
  571. cmApAggPortTestRecd r;
  572. unsigned i;
  573. cmRpt_t* rpt = &ctx->rpt;
  574. if( _cmApAggGetOpt(argc,argv,"-h",0,true) )
  575. _cmApAggPrintUsage(rpt);
  576. runFl = _cmApAggGetOpt(argc,argv,"-p",!runFl,true)?false:true;
  577. r.chIdx = _cmApAggGetOpt(argc,argv,"-a",0,false);
  578. r.chCnt = _cmApAggGetOpt(argc,argv,"-c",2,false);
  579. r.bufCnt = _cmApAggGetOpt(argc,argv,"-b",3,false);
  580. r.framesPerCycle = _cmApAggGetOpt(argc,argv,"-f",512,false);
  581. r.bufFrmCnt = (r.bufCnt*r.framesPerCycle);
  582. r.bufSmpCnt = (r.chCnt * r.bufFrmCnt);
  583. r.synthFl = false;
  584. r.meterMs = 50;
  585. cmApSample_t buf[r.bufSmpCnt];
  586. double imeter[r.chCnt];
  587. r.iMeter = imeter;
  588. r.inDevIdx = _cmAggGlobalInDevIdx = _cmApAggGetOpt(argc,argv,"-i",0,false);
  589. r.outDevIdx = _cmAggGlobalOutDevIdx = _cmApAggGetOpt(argc,argv,"-o",2,false);
  590. r.phase = 0;
  591. r.frqHz = 2000;
  592. r.srate = 44100;
  593. r.bufInIdx = 0;
  594. r.bufOutIdx = 0;
  595. r.bufFullCnt = 0;
  596. r.buf = buf;
  597. r.cbCnt = 0;
  598. r.underunCnt = 0;
  599. r.overunCnt = 0;
  600. r.ifp = NULL;
  601. r.ofp = NULL;
  602. if(0)
  603. {
  604. if((r.ifp = fopen("/home/kevin/temp/itemp0.bin","wb")) == NULL )
  605. cmRptPrintf(rpt,"File open failed.\n");
  606. if((r.ofp = fopen("/home/kevin/temp/otemp0.bin","wb")) == NULL )
  607. cmRptPrintf(rpt,"File open failed.\n");
  608. }
  609. cmRptPrintf(rpt,"%s in:%i out:%i chidx:%i chs:%i bufs=%i frm=%i rate=%f\n",runFl?"exec":"rpt",r.inDevIdx,r.outDevIdx,r.chIdx,r.chCnt,r.bufCnt,r.framesPerCycle,r.srate);
  610. // allocate the aggregate device system
  611. if( cmApAggAllocate(rpt) != kOkAgRC )
  612. {
  613. cmRptPrintf(rpt,"The aggregate device system allocation failed.\n");
  614. return 1;
  615. }
  616. unsigned physDevIdxArray[] = { 0, 1 };
  617. unsigned physDevCnt = sizeof(physDevIdxArray)/sizeof(physDevIdxArray[0]);
  618. if( cmApAggCreateDevice("aggdev",physDevCnt,physDevIdxArray,kInAggFl | kOutAggFl) != kOkAgRC )
  619. {
  620. cmRptPrintf(rpt,"The aggregate device creation failed.n");
  621. goto doneLabel;
  622. }
  623. // initialize the audio device interface
  624. if( cmApInitialize(rpt) != kOkApRC )
  625. {
  626. cmRptPrintf(rpt,"Initialize failed.\n");
  627. goto doneLabel;
  628. }
  629. // report the current audio device configuration
  630. for(i=0; i<cmApDeviceCount(); ++i)
  631. {
  632. cmRptPrintf(rpt,"%i [in: chs=%i frames=%i] [out: chs=%i frames=%i] srate:%f %s\n",i,cmApDeviceChannelCount(i,true),cmApDeviceFramesPerCycle(i,true),cmApDeviceChannelCount(i,false),cmApDeviceFramesPerCycle(i,false),cmApDeviceSampleRate(i),cmApDeviceLabel(i));
  633. }
  634. // report the current audio devices using the audio port interface function
  635. cmApReport(rpt);
  636. if( runFl )
  637. {
  638. // initialize the audio bufer
  639. cmApBufInitialize( cmApDeviceCount(), r.meterMs );
  640. // setup the buffer for the output device
  641. cmApBufSetup( r.outDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.outDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.outDevIdx,false), r.framesPerCycle );
  642. // setup the buffer for the input device
  643. if( r.inDevIdx != r.outDevIdx )
  644. cmApBufSetup( r.inDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.inDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.inDevIdx,false), r.framesPerCycle );
  645. // setup an input device
  646. if( cmApDeviceSetup(r.inDevIdx,r.srate,r.framesPerCycle,_cmApAggPortCb2,&r) != kOkApRC )
  647. {
  648. cmRptPrintf(rpt,"In device setup failed.\n");
  649. goto errLabel;
  650. }
  651. // setup an output device
  652. if( r.inDevIdx != r.outDevIdx )
  653. {
  654. if(cmApDeviceSetup(r.outDevIdx,r.srate,r.framesPerCycle,_cmApAggPortCb2,&r) != kOkApRC )
  655. {
  656. cmRptPrintf(rpt,"Out device setup failed.\n");
  657. goto errLabel;
  658. }
  659. }
  660. // start the input device
  661. if( cmApDeviceStart(r.inDevIdx) != kOkApRC )
  662. {
  663. cmRptPrintf(rpt,"In device start failed.\n");
  664. goto errLabel;
  665. }
  666. if( r.inDevIdx != r.outDevIdx )
  667. {
  668. // start the output device
  669. if( cmApDeviceStart(r.outDevIdx) != kOkApRC )
  670. {
  671. cmRptPrintf(rpt,"Out Device start failed.\n");
  672. goto errLabel;
  673. }
  674. }
  675. cmApBufEnableChannel(r.inDevIdx, -1, kInApFl | kEnableApFl );
  676. cmApBufEnableChannel(r.outDevIdx, -1, kOutApFl | kEnableApFl );
  677. cmApBufEnableMeter(r.inDevIdx, -1, kInApFl | kEnableApFl );
  678. cmRptPrintf(rpt,"q=quit O/o output tone, I/i input tone P/p pass\n");
  679. char c;
  680. while((c=getchar()) != 'q')
  681. {
  682. //cmApDeviceRtReport(rpt,r.outDevIdx);
  683. switch(c)
  684. {
  685. case 'i':
  686. case 'I':
  687. cmApBufEnableTone(r.inDevIdx,-1,kInApFl | (c=='I'?kEnableApFl:0));
  688. break;
  689. case 'o':
  690. case 'O':
  691. cmApBufEnableTone(r.outDevIdx,-1,kOutApFl | (c=='O'?kEnableApFl:0));
  692. break;
  693. case 'p':
  694. case 'P':
  695. cmApBufEnablePass(r.outDevIdx,-1,kOutApFl | (c=='P'?kEnableApFl:0));
  696. break;
  697. case 's':
  698. cmApBufReport(rpt);
  699. break;
  700. case 'm':
  701. _cmApBufShowMeter(rpt,_cmAggGlobalInDevIdx);
  702. /*
  703. cmRptPrintf(rpt,"iMeter: ");
  704. for(i=0; i<r.chCnt; ++i)
  705. cmRptPrintf(rpt,"%f ",r.iMeter[i]);
  706. cmRptPrintf(rpt,"\n");
  707. */
  708. break;
  709. case 'r':
  710. recdPrint();
  711. break;
  712. default:
  713. cmRptPrintf(rpt,"cb:%i\n",r.cbCnt);
  714. }
  715. }
  716. errLabel:
  717. // stop the input device
  718. if( cmApDeviceIsStarted(r.inDevIdx) )
  719. if( cmApDeviceStop(r.inDevIdx) != kOkApRC )
  720. cmRptPrintf(rpt,"In device stop failed.\n");
  721. // stop the output device
  722. if( cmApDeviceIsStarted(r.outDevIdx) )
  723. if( cmApDeviceStop(r.outDevIdx) != kOkApRC )
  724. cmRptPrintf(rpt,"Out device stop failed.\n");
  725. }
  726. doneLabel:
  727. // report the count of audio buffer callbacks
  728. cmRptPrintf(rpt,"cb:%i under:%i over:%i\n", r.cbCnt, r.underunCnt, r.overunCnt );
  729. // release any resources held by the audio port interface
  730. if( cmApFinalize() != kOkApRC )
  731. cmRptPrintf(rpt,"Finalize failed.\n");
  732. if( cmApAggFree() != kOkAgRC )
  733. cmRptPrintf(rpt,"Agg device system free failed.");
  734. if(r.ifp != NULL)
  735. fclose(r.ifp);
  736. if(r.ofp != NULL)
  737. fclose(r.ofp);
  738. cmApBufFinalize();
  739. return 0;
  740. }