libcm is a C development framework with an emphasis on audio signal processing applications.
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

cmAudioAggDev.c 27KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976
  1. #include "cmGlobal.h"
  2. #include "cmRpt.h"
  3. #include "cmErr.h"
  4. #include "cmCtx.h"
  5. #include "cmMem.h"
  6. #include "cmMallocDebug.h"
  7. #include "cmTime.h"
  8. #include "cmAudioPort.h"
  9. #include "cmAudioPortFile.h"
  10. #include "cmAudioNrtDev.h"
  11. #include "cmAudioAggDev.h"
  12. #include "cmThread.h" // cmThUIntIncr()
  13. #include "cmApBuf.h" // only needed for cmApBufTest().
  14. enum
  15. {
  16. kBufArrayCnt = 2
  17. };
  18. struct cmApAgg_str;
  19. typedef struct
  20. {
  21. unsigned physDevIdx;
  22. struct cmApAgg_str* ap;
  23. unsigned iChIdx;
  24. unsigned iChCnt;
  25. unsigned oChIdx;
  26. unsigned oChCnt;
  27. } cmApAggDev_t;
  28. typedef struct cmApAgg_str
  29. {
  30. cmChar_t* label; // agg. device label
  31. unsigned aggDevIdx; // agg. device index
  32. unsigned sysDevIdx; // system device index
  33. unsigned devCnt; // count of phys devices
  34. cmApAggDev_t* devArray; // devArray[ devCnt ] - physical device array
  35. unsigned iChCnt; // sum of phys device input channels
  36. unsigned oChCnt; // sum of phys device output channels
  37. double srate; // agg. dev sample rate
  38. unsigned framesPerCycle; // agg. dev frames per cycle
  39. unsigned flags; // kAgInFl | kAgOutFl
  40. cmApCallbackPtr_t cbFunc; // client supplied callback func
  41. void* cbArg; // client supplied callback func arg.
  42. bool startedFl; // true if the agg. device is started
  43. struct cmApAgg_str* link; // _cmAg.list link
  44. } cmApAgg_t;
  45. typedef struct
  46. {
  47. cmErr_t err;
  48. cmApAgg_t* list;
  49. } cmApAggMain_t;
  50. cmApAggMain_t _cmAg;
  51. void _cmApAggCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  52. {
  53. unsigned i;
  54. cmApAudioPacket_t pkt;
  55. for(i=0; i<inPktCnt; ++i)
  56. {
  57. cmApAggDev_t* dp = (cmApAggDev_t*)inPktArray[i].userCbPtr;
  58. pkt = inPktArray[i];
  59. pkt.devIdx = dp->ap->sysDevIdx;
  60. pkt.begChIdx = dp->iChIdx;
  61. pkt.userCbPtr = dp->ap->cbArg;
  62. dp->ap->cbFunc( &pkt, 1, NULL, 0 );
  63. }
  64. for(i=0; i<outPktCnt; ++i)
  65. {
  66. cmApAggDev_t* dp = (cmApAggDev_t*)outPktArray[i].userCbPtr;
  67. pkt = outPktArray[i];
  68. pkt.devIdx = dp->ap->sysDevIdx;
  69. pkt.begChIdx = dp->oChIdx;
  70. pkt.userCbPtr = dp->ap->cbArg;
  71. dp->ap->cbFunc( NULL, 0, &pkt, 1 );
  72. }
  73. }
  74. void _cmApAgDeleteAggDev( cmApAgg_t* ap )
  75. {
  76. cmApAgg_t* cp = _cmAg.list;
  77. cmApAgg_t* pp = NULL;
  78. while( cp != NULL )
  79. {
  80. if( cp == ap )
  81. {
  82. if( pp == NULL )
  83. _cmAg.list = cp->link;
  84. else
  85. pp->link = cp->link;
  86. cmMemFree(ap->label);
  87. cmMemFree(ap->devArray);
  88. cmMemFree(ap);
  89. return;
  90. }
  91. pp = cp;
  92. cp = cp->link;
  93. }
  94. }
  95. cmAgRC_t cmApAggAllocate( cmRpt_t* rpt )
  96. {
  97. cmAgRC_t rc = kOkAgRC;
  98. cmErrSetup(&_cmAg.err,rpt,"cmAudioAggDev");
  99. _cmAg.list = NULL;
  100. return rc;
  101. }
  102. cmAgRC_t cmApAggFree()
  103. {
  104. cmAgRC_t rc = kOkAgRC;
  105. while( _cmAg.list != NULL )
  106. _cmApAgDeleteAggDev(_cmAg.list );
  107. return rc;
  108. }
  109. cmAgRC_t cmApAggInitialize( cmRpt_t* rpt, unsigned baseApDevIdx )
  110. {
  111. cmApAgg_t* ap = _cmAg.list;
  112. unsigned i;
  113. assert( baseApDevIdx == cmApDeviceCount() );
  114. for(i=0; ap!=NULL; ap=ap->link,++i)
  115. {
  116. ap->sysDevIdx = cmApDeviceCount() + i;
  117. ap->iChCnt = 0;
  118. ap->oChCnt = 0;
  119. unsigned i;
  120. for(i=0; i<ap->devCnt; ++i)
  121. {
  122. ap->devArray[i].iChIdx = ap->iChCnt;
  123. ap->devArray[i].oChIdx = ap->oChCnt;
  124. ap->devArray[i].iChCnt = cmApDeviceChannelCount(ap->devArray[i].physDevIdx,true);
  125. ap->devArray[i].oChCnt = cmApDeviceChannelCount(ap->devArray[i].physDevIdx,false);
  126. ap->iChCnt += ap->devArray[i].iChCnt;
  127. ap->oChCnt += ap->devArray[i].oChCnt;
  128. }
  129. }
  130. return kOkAgRC;
  131. }
  132. cmAgRC_t cmApAggFinalize()
  133. { return kOkAgRC; }
  134. cmAgRC_t cmApAggCreateDevice(
  135. const cmChar_t* label,
  136. unsigned devCnt,
  137. const unsigned physDevIdxArray[],
  138. unsigned flags )
  139. {
  140. cmAgRC_t rc = kOkAgRC;
  141. unsigned i;
  142. if( devCnt < 2 )
  143. return cmErrMsg(&_cmAg.err,kMustAggTwoAgRC,"Cannot aggregate less than two devices.");
  144. /*
  145. for(i=0; i<devCnt; ++i)
  146. {
  147. unsigned physDevIdx = physDevIdxArray[i];
  148. if( cmApAggIsDeviceAggregated(physDevIdx) )
  149. return cmErrMsg(&_cmAg.err,kDevAlreadyAggAgRC,"The physical device associated with index '%i' ('%s') has already been assigned to another aggregated device.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  150. if( cmApDeviceIsStarted(physDevIdx) )
  151. return cmErrMsg(&_cmAg.err,kCantUseStartedDevAgRC,"The physical device associated with index '%i' ('%s') cannot be aggregated while it is running.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  152. }
  153. */
  154. cmApAgg_t* ap = cmMemAllocZ(cmApAgg_t,1);
  155. ap->label = cmMemAllocStr(label==NULL?"Aggregated Device":label);
  156. ap->devArray = cmMemAllocZ(cmApAggDev_t,devCnt);
  157. ap->aggDevIdx = cmApAggDeviceCount();
  158. ap->sysDevIdx = cmInvalidIdx;
  159. ap->devCnt = devCnt;
  160. ap->iChCnt = 0;
  161. ap->oChCnt = 0;
  162. for(i=0; i<devCnt; ++i)
  163. {
  164. ap->devArray[i].ap = ap;
  165. ap->devArray[i].physDevIdx = physDevIdxArray[i];
  166. }
  167. ap->link = _cmAg.list;
  168. _cmAg.list = ap;
  169. return rc;
  170. }
  171. cmApAgg_t* _cmApAggDevIdxToPtr( unsigned aggDevIdx )
  172. {
  173. cmApAgg_t* ap = _cmAg.list;
  174. unsigned i = 0;
  175. for(; ap!=NULL; ap=ap->link,++i)
  176. if( ap->aggDevIdx == aggDevIdx )
  177. return ap;
  178. return NULL;
  179. }
  180. cmAgRC_t _cmApAggGetAgg( unsigned aggDevIdx, cmApAgg_t** retPtrPtr )
  181. {
  182. if((*retPtrPtr = _cmApAggDevIdxToPtr(aggDevIdx)) == NULL )
  183. return cmErrMsg(&_cmAg.err,kInvalidDevIdxAgRC,"The aggregate system device index '%i' is invalid.");
  184. return kOkAgRC;
  185. }
  186. bool cmApAggIsDeviceAggregated( unsigned physDevIdx )
  187. {
  188. cmApAgg_t* ap = _cmAg.list;
  189. for(; ap!=NULL; ap=ap->link)
  190. {
  191. unsigned i;
  192. for(i=0; i<ap->devCnt; ++i)
  193. if( ap->devArray[i].physDevIdx == physDevIdx )
  194. return true;
  195. }
  196. return false;
  197. }
  198. cmAgRC_t cmApAggDeviceCount()
  199. {
  200. unsigned devCnt=0;
  201. cmApAgg_t* ap = _cmAg.list;
  202. for(; ap!=NULL; ap=ap->link)
  203. ++devCnt;
  204. return devCnt;
  205. }
  206. const char* cmApAggDeviceLabel( unsigned aggDevIdx )
  207. {
  208. cmApAgg_t* ap;
  209. cmAgRC_t rc;
  210. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  211. return ap->label;
  212. return NULL;
  213. }
  214. unsigned cmApAggDeviceChannelCount( unsigned aggDevIdx, bool inputFl )
  215. {
  216. cmApAgg_t* ap;
  217. cmAgRC_t rc;
  218. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  219. return inputFl ? ap->iChCnt : ap->oChCnt;
  220. return 0;
  221. }
  222. double cmApAggDeviceSampleRate( unsigned aggDevIdx )
  223. {
  224. cmApAgg_t* ap;
  225. cmAgRC_t rc;
  226. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  227. return ap->srate;
  228. return 0;
  229. }
  230. unsigned cmApAggDeviceFramesPerCycle( unsigned aggDevIdx, bool inputFl )
  231. {
  232. cmApAgg_t* ap;
  233. cmAgRC_t rc;
  234. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  235. return ap->framesPerCycle;
  236. return 0;
  237. }
  238. cmAgRC_t cmApAggDeviceSetup(
  239. unsigned aggDevIdx,
  240. double srate,
  241. unsigned framesPerCycle,
  242. cmApCallbackPtr_t callbackPtr,
  243. void* userCbPtr )
  244. {
  245. cmApAgg_t* ap;
  246. cmAgRC_t rc;
  247. unsigned i;
  248. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  249. return rc;
  250. if((rc = cmApAggDeviceStop(aggDevIdx)) != kOkAgRC )
  251. return rc;
  252. for(i=0; i<ap->devCnt; ++i)
  253. {
  254. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  255. cmApAggDev_t* devPtr = ap->devArray + i;
  256. if( cmApDeviceSetup( physDevIdx, srate, framesPerCycle, _cmApAggCb, devPtr ) != kOkApRC )
  257. rc = cmErrMsg(&_cmAg.err,kPhysDevSetupFailAgRC,"The physical device (index:%i '%s') setup failed for sample rate:%f frames-per-cycle:%i.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)),srate,framesPerCycle);
  258. }
  259. if( rc == kOkAgRC )
  260. {
  261. ap->cbFunc = callbackPtr;
  262. ap->cbArg = userCbPtr;
  263. }
  264. return rc;
  265. }
  266. cmAgRC_t cmApAggDeviceStart( unsigned aggDevIdx )
  267. {
  268. cmAgRC_t rc = kOkAgRC;
  269. cmApAgg_t* ap;
  270. unsigned i;
  271. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  272. return rc;
  273. for(i=0; i<ap->devCnt; ++i)
  274. {
  275. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  276. if( cmApDeviceStart( physDevIdx ) != kOkApRC )
  277. return cmErrMsg(&_cmAg.err,kPhysDevStartFailAgRC,"The physical device (index:%i '%s') start failed.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  278. }
  279. ap->startedFl = true;
  280. return rc;
  281. }
  282. cmAgRC_t cmApAggDeviceStop( unsigned aggDevIdx )
  283. {
  284. cmAgRC_t rc = kOkAgRC;
  285. cmApAgg_t* ap;
  286. unsigned i;
  287. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  288. return rc;
  289. for(i=0; i<ap->devCnt; ++i)
  290. {
  291. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  292. if( cmApDeviceStop( physDevIdx ) != kOkApRC )
  293. return cmErrMsg(&_cmAg.err,kPhysDevStartFailAgRC,"The physical device (index:%i '%s') start failed.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  294. }
  295. ap->startedFl = false;
  296. return rc;
  297. }
  298. bool cmApAggDeviceIsStarted( unsigned aggDevIdx )
  299. {
  300. cmApAgg_t* ap;
  301. if(_cmApAggGetAgg(aggDevIdx, &ap ) != kOkAgRC )
  302. return false;
  303. return ap->startedFl;
  304. }
  305. typedef struct
  306. {
  307. unsigned bufCnt; // 2=double buffering 3=triple buffering
  308. unsigned chIdx; // first test channel
  309. unsigned chCnt; // count of channels to test
  310. unsigned framesPerCycle; // DSP frames per cycle
  311. unsigned bufFrmCnt; // count of DSP frames used by the audio buffer (bufCnt * framesPerCycle)
  312. unsigned bufSmpCnt; // count of samples used by the audio buffer (chCnt * bufFrmCnt)
  313. unsigned inDevIdx; // input device index
  314. unsigned outDevIdx; // output device index
  315. double srate; // audio sample rate
  316. unsigned meterMs; // audio meter buffer length
  317. // param's and state for cmApSynthSine()
  318. bool synthFl;
  319. unsigned phase; // sine synth phase
  320. double frqHz; // sine synth frequency in Hz
  321. // buffer and state for cmApCopyIn/Out()
  322. cmApSample_t* buf; // buf[bufSmpCnt] - circular interleaved audio buffer
  323. unsigned bufInIdx; // next input buffer index
  324. unsigned bufOutIdx; // next output buffer index
  325. unsigned bufFullCnt; // count of full samples
  326. unsigned cbCnt; // count the callback
  327. unsigned underunCnt; //
  328. unsigned overunCnt;
  329. double* iMeter; // iMeter[ chCnt ]
  330. FILE* ifp;
  331. FILE* ofp;
  332. } cmApAggPortTestRecd;
  333. // The application can request any block of channels from the device. The packets are provided with the starting
  334. // device channel and channel count. This function converts device channels and channel counts to buffer
  335. // channel indexes and counts.
  336. //
  337. // Example:
  338. // input output
  339. // i,n i n
  340. // App: 0,4 0 1 2 3 -> 2 2
  341. // Pkt 2,8 2 3 4 5 6 7 8 -> 0 2
  342. //
  343. // The return value is the count of application requested channels located in this packet.
  344. //
  345. // input: *appChIdxPtr and appChCnt describe a block of device channels requested by the application.
  346. // *pktChIdxPtr and pktChCnt describe a block of device channels provided to the application
  347. //
  348. // output:*appChIdxPtr and <return value> describe a block of app buffer channels which will send/recv samples.
  349. // *pktChIdxPtr and <return value> describe a block of pkt buffer channels which will send/recv samples
  350. //
  351. unsigned _cmApAggDeviceToBuffer( unsigned* appChIdxPtr, unsigned appChCnt, unsigned* pktChIdxPtr, unsigned pktChCnt )
  352. {
  353. unsigned abi = *appChIdxPtr;
  354. unsigned aei = abi+appChCnt-1;
  355. unsigned pbi = *pktChIdxPtr;
  356. unsigned pei = pbi+pktChCnt-1;
  357. // if the ch's rqstd by the app do not overlap with this packet - return false.
  358. if( aei < pbi || abi > pei )
  359. return 0;
  360. // if the ch's rqstd by the app overlap with the beginning of the pkt channel block
  361. if( abi < pbi )
  362. {
  363. appChCnt -= pbi - abi;
  364. *appChIdxPtr = pbi - abi;
  365. *pktChIdxPtr = 0;
  366. }
  367. else
  368. {
  369. // the rqstd ch's begin inside the pkt channel block
  370. pktChCnt -= abi - pbi;
  371. *pktChIdxPtr = abi - pbi;
  372. *appChIdxPtr = 0;
  373. }
  374. // if the pkt channels extend beyond the rqstd ch block
  375. if( aei < pei )
  376. pktChCnt -= pei - aei;
  377. else
  378. appChCnt -= aei - pei; // the rqstd ch's extend beyond or coincide with the pkt block
  379. // the returned channel count must always be the same for both the rqstd and pkt
  380. return cmMin(appChCnt,pktChCnt);
  381. }
  382. // synthesize a sine signal into an interleaved audio buffer
  383. unsigned _cmApAggSynthSine( cmApAggPortTestRecd* r, float* p, unsigned chIdx, unsigned chCnt, unsigned frmCnt, unsigned phs, double hz )
  384. {
  385. long ph = 0;
  386. unsigned i;
  387. unsigned bufIdx = r->chIdx;
  388. unsigned bufChCnt;
  389. if( (bufChCnt = _cmApAggDeviceToBuffer( &bufIdx, r->chCnt, &chIdx, chCnt )) == 0)
  390. return phs;
  391. //if( r->cbCnt < 50 )
  392. // printf("ch:%i cnt:%i ch:%i cnt:%i bi:%i bcn:%i\n",r->chIdx,r->chCnt,chIdx,chCnt,bufIdx,bufChCnt);
  393. for(i=bufIdx; i<bufIdx+bufChCnt; ++i)
  394. {
  395. unsigned j;
  396. float* op = p + i;
  397. ph = phs;
  398. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  399. {
  400. *op = (float)(0.9 * sin( 2.0 * M_PI * hz * ph / r->srate ));
  401. }
  402. }
  403. return ph;
  404. }
  405. // Copy the audio samples in the interleaved audio buffer sp[srcChCnt*srcFrameCnt]
  406. // to the internal record buffer.
  407. void _cmApAggCopyIn( cmApAggPortTestRecd* r, const cmApSample_t* sp, unsigned srcChIdx, unsigned srcChCnt, unsigned srcFrameCnt )
  408. {
  409. unsigned i,j;
  410. unsigned chCnt = cmMin(r->chCnt,srcChCnt);
  411. // write the incoming sample to an output file for debugging
  412. if( r->ifp != NULL )
  413. if( fwrite(sp,sizeof(cmApSample_t),srcChCnt*srcFrameCnt,r->ifp) != srcChCnt*srcFrameCnt )
  414. printf("file write fail.\n");
  415. // zero the input meter array
  416. for(i=0; i<r->chCnt; ++i)
  417. r->iMeter[i] = 0;
  418. for(i=0; i<srcFrameCnt; ++i)
  419. {
  420. // copy samples from the src to the buffer - both src and buffer are interleaved
  421. for(j=0; j<chCnt; ++j)
  422. {
  423. r->buf[ r->bufInIdx + j ] = sp[ (i*srcChCnt) + srcChIdx + j ];
  424. // record the max value in the input meter array
  425. if( r->buf[ r->bufInIdx + j ] > r->iMeter[j] )
  426. r->iMeter[j] = r->buf[ r->bufInIdx + j ];
  427. }
  428. // zero channels that are not used in the buffer
  429. for(; j<r->chCnt; ++j)
  430. r->buf[ r->bufInIdx + j ] = 0;
  431. // advance to the next frame
  432. r->bufInIdx = (r->bufInIdx+r->chCnt) % r->bufFrmCnt;
  433. }
  434. //r->bufFullCnt = (r->bufFullCnt + srcFrameCnt) % r->bufFrmCnt;
  435. cmThUIntIncr(&r->bufFullCnt,srcFrameCnt);
  436. if( r->bufFullCnt > r->bufFrmCnt )
  437. {
  438. //printf("Input buffer overrun.\n");
  439. ++r->overunCnt;
  440. r->bufFullCnt = 0;
  441. }
  442. }
  443. // Copy audio samples out of the internal record buffer into dp[dstChCnt*dstFrameCnt].
  444. void _cmApAggCopyOut( cmApAggPortTestRecd* r, cmApSample_t* dp, unsigned dstChIdx, unsigned dstChCnt, unsigned dstFrameCnt )
  445. {
  446. // if there are not enough samples available to fill the destination
  447. // buffer then zero the dst buf.
  448. if( r->bufFullCnt < dstFrameCnt )
  449. {
  450. //printf("Empty Output Buffer %i < %i\n",r->bufFullCnt,dstFrameCnt);
  451. memset( dp, 0, dstFrameCnt*dstChCnt*sizeof(cmApSample_t) );
  452. ++r->underunCnt;
  453. }
  454. else
  455. {
  456. unsigned i,j;
  457. unsigned chCnt = cmMin(dstChCnt,r->chCnt);
  458. for(i=0; i<dstFrameCnt; ++i)
  459. {
  460. // copy the stored buffer samples to the dst buffer
  461. for(j=0; j<chCnt; ++j)
  462. dp[ (i*dstChCnt) + dstChIdx + j ] = r->buf[ r->bufOutIdx + j ];
  463. // zero unset channels in the dst buffer
  464. for(; j<dstChCnt; ++j)
  465. dp[ (i*dstChCnt) + dstChIdx + j ] = 0;
  466. r->bufOutIdx = (r->bufOutIdx + r->chCnt) % r->bufFrmCnt;
  467. }
  468. cmThUIntDecr(&r->bufFullCnt,dstFrameCnt);
  469. }
  470. if( r->ofp != NULL )
  471. fwrite(dp,sizeof(cmApSample_t),dstChCnt*dstFrameCnt,r->ofp);
  472. }
  473. // Audio port callback function called from the audio device thread.
  474. void _cmApAggPortCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  475. {
  476. unsigned i;
  477. // for each incoming audio packet
  478. for(i=0; i<inPktCnt; ++i)
  479. {
  480. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)inPktArray[i].userCbPtr;
  481. if( r->synthFl==false && inPktArray[i].devIdx == r->inDevIdx )
  482. {
  483. // copy the incoming audio into an internal buffer where it can be picked up by _cpApCopyOut().
  484. _cmApAggCopyIn( r, (cmApSample_t*)inPktArray[i].audioBytesPtr, inPktArray[i].begChIdx, inPktArray[i].chCnt, inPktArray[i].audioFramesCnt );
  485. }
  486. ++r->cbCnt;
  487. //printf("i %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  488. }
  489. unsigned hold_phase = 0;
  490. // for each outgoing audio packet
  491. for(i=0; i<outPktCnt; ++i)
  492. {
  493. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)outPktArray[i].userCbPtr;
  494. if( outPktArray[i].devIdx == r->outDevIdx )
  495. {
  496. // zero the output buffer
  497. memset(outPktArray[i].audioBytesPtr,0,outPktArray[i].chCnt * outPktArray[i].audioFramesCnt * sizeof(cmApSample_t) );
  498. // if the synth is enabled
  499. if( r->synthFl )
  500. {
  501. unsigned tmp_phase = _cmApAggSynthSine( r, outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt, r->phase, r->frqHz );
  502. // the phase will only change on packets that are actually used
  503. if( tmp_phase != r->phase )
  504. hold_phase = tmp_phase;
  505. }
  506. else
  507. {
  508. // copy the any audio in the internal record buffer to the playback device
  509. _cmApAggCopyOut( r, (cmApSample_t*)outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt );
  510. }
  511. }
  512. r->phase = hold_phase;
  513. //printf("o %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  514. // count callbacks
  515. ++r->cbCnt;
  516. }
  517. }
  518. // print the usage message for cmAudioPortTest.c
  519. void _cmApAggPrintUsage( cmRpt_t* rpt )
  520. {
  521. char msg[] =
  522. "cmApAggPortTest() command switches\n"
  523. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -t -p -h \n"
  524. "\n"
  525. "-r <srate> = sample rate\n"
  526. "-a <chidx> = first channel\n"
  527. "-c <chcnt> = audio channels\n"
  528. "-b <bufcnt> = count of buffers\n"
  529. "-f <frmcnt> = count of samples per buffer\n"
  530. "-i <idevidx> = input device index\n"
  531. "-o <odevidx> = output device index\n"
  532. "-p = print report but do not start audio devices\n"
  533. "-h = print this usage message\n";
  534. cmRptPrintf(rpt,msg);
  535. }
  536. // Get a command line option.
  537. int _cmApAggGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  538. {
  539. int i = 0;
  540. for(; i<argc; ++i)
  541. if( strcmp(label,argv[i]) == 0 )
  542. {
  543. if(boolFl)
  544. return 1;
  545. if( i == (argc-1) )
  546. return defaultVal;
  547. return atoi(argv[i+1]);
  548. }
  549. return defaultVal;
  550. }
  551. void _cmApBufShowMeter( cmRpt_t* rpt, unsigned devIdx )
  552. {
  553. unsigned faultCnt = 0;
  554. unsigned meterCnt = cmApBufChannelCount(devIdx,kInApFl);
  555. double meterArray[ meterCnt ];
  556. unsigned n = cmApBufGetStatus(devIdx, kInApFl, meterArray, meterCnt, &faultCnt );
  557. unsigned i;
  558. cmRptPrintf(rpt,"In: actual:%i fault: %i : ",n,faultCnt);
  559. for(i=0; i<meterCnt; ++i)
  560. cmRptPrintf(rpt,"%i:%f ",i,meterArray[i]);
  561. cmRptPrintf(rpt,"\n");
  562. }
  563. unsigned _cmAggGlobalInDevIdx = 0;
  564. unsigned _cmAggGlobalOutDevIdx = 0;
  565. void _cmApAggPortCb2( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  566. {
  567. if( inPktCnt )
  568. {
  569. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)inPktArray[0].userCbPtr;
  570. r->cbCnt += 1;
  571. }
  572. if( outPktCnt )
  573. {
  574. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)outPktArray[0].userCbPtr;
  575. r->cbCnt += 1;
  576. }
  577. cmApBufInputToOutput( _cmAggGlobalInDevIdx, _cmAggGlobalOutDevIdx );
  578. cmApBufUpdate( inPktArray, inPktCnt, outPktArray, outPktCnt );
  579. }
  580. //void recdPrint();
  581. // Audio Port testing function
  582. int cmApAggTest( bool runFl, cmCtx_t* ctx, int argc, const char* argv[] )
  583. {
  584. cmApAggPortTestRecd r;
  585. unsigned i;
  586. cmRpt_t* rpt = &ctx->rpt;
  587. int srateMult = 1;
  588. if( _cmApAggGetOpt(argc,argv,"-h",0,true) )
  589. _cmApAggPrintUsage(rpt);
  590. runFl = _cmApAggGetOpt(argc,argv,"-p",!runFl,true)?false:true;
  591. r.chIdx = _cmApAggGetOpt(argc,argv,"-a",0,false);
  592. r.chCnt = _cmApAggGetOpt(argc,argv,"-c",2,false);
  593. r.bufCnt = _cmApAggGetOpt(argc,argv,"-b",3,false);
  594. r.framesPerCycle = _cmApAggGetOpt(argc,argv,"-f",512,false);
  595. r.bufFrmCnt = (r.bufCnt*r.framesPerCycle);
  596. r.bufSmpCnt = (r.chCnt * r.bufFrmCnt);
  597. r.synthFl = false;
  598. r.meterMs = 50;
  599. cmApSample_t buf[r.bufSmpCnt];
  600. double imeter[r.chCnt];
  601. r.iMeter = imeter;
  602. r.inDevIdx = _cmAggGlobalInDevIdx = _cmApAggGetOpt(argc,argv,"-i",0,false);
  603. r.outDevIdx = _cmAggGlobalOutDevIdx = _cmApAggGetOpt(argc,argv,"-o",2,false);
  604. r.phase = 0;
  605. r.frqHz = 2000;
  606. r.srate = 96000;
  607. r.bufInIdx = 0;
  608. r.bufOutIdx = 0;
  609. r.bufFullCnt = 0;
  610. r.buf = buf;
  611. r.cbCnt = 0;
  612. r.underunCnt = 0;
  613. r.overunCnt = 0;
  614. r.ifp = NULL;
  615. r.ofp = NULL;
  616. if(0)
  617. {
  618. if((r.ifp = fopen("/home/kevin/temp/itemp0.bin","wb")) == NULL )
  619. cmRptPrintf(rpt,"File open failed.\n");
  620. if((r.ofp = fopen("/home/kevin/temp/otemp0.bin","wb")) == NULL )
  621. cmRptPrintf(rpt,"File open failed.\n");
  622. }
  623. cmRptPrintf(rpt,"%s in:%i out:%i chidx:%i chs:%i bufs=%i frm=%i rate=%f\n",runFl?"exec":"rpt",r.inDevIdx,r.outDevIdx,r.chIdx,r.chCnt,r.bufCnt,r.framesPerCycle,r.srate);
  624. // allocate the aggregate device system
  625. if( cmApAggAllocate(rpt) != kOkAgRC )
  626. {
  627. cmRptPrintf(rpt,"The aggregate device system allocation failed.\n");
  628. return 1;
  629. }
  630. // allocate the audio file device system
  631. if( cmApFileAllocate( rpt ) != kOkApRC )
  632. {
  633. cmRptPrintf(rpt,"The audio file device system allocation failed.\n");
  634. goto doneLabel;
  635. }
  636. // allocate the NRT device system
  637. if( cmApNrtAllocate(rpt) != kOkApRC )
  638. {
  639. cmRptPrintf(rpt,"The NRT audio device system allocation failed.\n");
  640. goto doneLabel;
  641. }
  642. unsigned physDevIdxArray[] = { 2, 4 };
  643. unsigned physDevCnt = sizeof(physDevIdxArray)/sizeof(physDevIdxArray[0]);
  644. if( cmApAggCreateDevice("aggdev",physDevCnt,physDevIdxArray,kInAggFl | kOutAggFl) != kOkAgRC )
  645. {
  646. cmRptPrintf(rpt,"The aggregate device creation failed.n");
  647. goto doneLabel;
  648. }
  649. // initialize the audio device interface
  650. if( cmApInitialize(rpt) != kOkApRC )
  651. {
  652. cmRptPrintf(rpt,"Initialize failed.\n");
  653. goto doneLabel;
  654. }
  655. // report the current audio device configuration
  656. for(i=0; i<cmApDeviceCount(); ++i)
  657. {
  658. cmRptPrintf(rpt,"%i [in: chs=%i frames=%i] [out: chs=%i frames=%i] srate:%f %s\n",i,cmApDeviceChannelCount(i,true),cmApDeviceFramesPerCycle(i,true),cmApDeviceChannelCount(i,false),cmApDeviceFramesPerCycle(i,false),cmApDeviceSampleRate(i),cmApDeviceLabel(i));
  659. }
  660. // report the current audio devices using the audio port interface function
  661. cmApReport(rpt);
  662. if( runFl )
  663. {
  664. // initialize the audio bufer
  665. cmApBufInitialize( cmApDeviceCount(), r.meterMs );
  666. // setup the buffer for the output device
  667. cmApBufSetup( r.outDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.outDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.outDevIdx,false), r.framesPerCycle, srateMult );
  668. // setup the buffer for the input device
  669. if( r.inDevIdx != r.outDevIdx )
  670. cmApBufSetup( r.inDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.inDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.inDevIdx,false), r.framesPerCycle, srateMult );
  671. // setup an input device
  672. if( cmApDeviceSetup(r.inDevIdx,r.srate,r.framesPerCycle,_cmApAggPortCb2,&r) != kOkApRC )
  673. {
  674. cmRptPrintf(rpt,"In device setup failed.\n");
  675. goto errLabel;
  676. }
  677. // setup an output device
  678. if( r.inDevIdx != r.outDevIdx )
  679. {
  680. if(cmApDeviceSetup(r.outDevIdx,r.srate,r.framesPerCycle,_cmApAggPortCb2,&r) != kOkApRC )
  681. {
  682. cmRptPrintf(rpt,"Out device setup failed.\n");
  683. goto errLabel;
  684. }
  685. }
  686. // start the input device
  687. if( cmApDeviceStart(r.inDevIdx) != kOkApRC )
  688. {
  689. cmRptPrintf(rpt,"In device start failed.\n");
  690. goto errLabel;
  691. }
  692. if( r.inDevIdx != r.outDevIdx )
  693. {
  694. // start the output device
  695. if( cmApDeviceStart(r.outDevIdx) != kOkApRC )
  696. {
  697. cmRptPrintf(rpt,"Out Device start failed.\n");
  698. goto errLabel;
  699. }
  700. }
  701. cmApBufEnableChannel(r.inDevIdx, -1, kInApFl | kEnableApFl );
  702. cmApBufEnableChannel(r.outDevIdx, -1, kOutApFl | kEnableApFl );
  703. cmApBufEnableMeter( r.inDevIdx, -1, kInApFl | kEnableApFl );
  704. cmRptPrintf(rpt,"q=quit O/o output tone, I/i input tone P/p pass\n");
  705. char c;
  706. while((c=getchar()) != 'q')
  707. {
  708. //cmApDeviceRtReport(rpt,r.outDevIdx);
  709. switch(c)
  710. {
  711. case 'i':
  712. case 'I':
  713. cmApBufEnableTone(r.inDevIdx,-1,kInApFl | (c=='I'?kEnableApFl:0));
  714. break;
  715. case 'o':
  716. case 'O':
  717. cmApBufEnableTone(r.outDevIdx,2,kOutApFl | (c=='O'?kEnableApFl:0));
  718. break;
  719. case 'p':
  720. case 'P':
  721. cmApBufEnablePass(r.outDevIdx,-1,kOutApFl | (c=='P'?kEnableApFl:0));
  722. break;
  723. case 's':
  724. cmApBufReport(rpt);
  725. break;
  726. case 'm':
  727. _cmApBufShowMeter(rpt,_cmAggGlobalInDevIdx);
  728. /*
  729. cmRptPrintf(rpt,"iMeter: ");
  730. for(i=0; i<r.chCnt; ++i)
  731. cmRptPrintf(rpt,"%f ",r.iMeter[i]);
  732. cmRptPrintf(rpt,"\n");
  733. */
  734. break;
  735. case 'r':
  736. //recdPrint();
  737. break;
  738. default:
  739. cmRptPrintf(rpt,"cb:%i\n",r.cbCnt);
  740. }
  741. }
  742. errLabel:
  743. // stop the input device
  744. if( cmApDeviceIsStarted(r.inDevIdx) )
  745. if( cmApDeviceStop(r.inDevIdx) != kOkApRC )
  746. cmRptPrintf(rpt,"In device stop failed.\n");
  747. // stop the output device
  748. if( cmApDeviceIsStarted(r.outDevIdx) )
  749. if( cmApDeviceStop(r.outDevIdx) != kOkApRC )
  750. cmRptPrintf(rpt,"Out device stop failed.\n");
  751. }
  752. doneLabel:
  753. // report the count of audio buffer callbacks
  754. cmRptPrintf(rpt,"cb:%i under:%i over:%i\n", r.cbCnt, r.underunCnt, r.overunCnt );
  755. // release any resources held by the audio port interface
  756. if( cmApFinalize() != kOkApRC )
  757. cmRptPrintf(rpt,"Finalize failed.\n");
  758. if( cmApNrtFree() != kOkApRC )
  759. cmRptPrintf(rpt,"Audio NRT device system free failed.");
  760. if( cmApFileFree() != kOkApRC )
  761. cmRptPrintf(rpt,"Audio file device system free failed.");
  762. if( cmApAggFree() != kOkAgRC )
  763. cmRptPrintf(rpt,"Agg device system free failed.");
  764. if(r.ifp != NULL)
  765. fclose(r.ifp);
  766. if(r.ofp != NULL)
  767. fclose(r.ofp);
  768. cmApBufFinalize();
  769. return 0;
  770. }