libcm/cmProc2.c
kevin 6c66569f79 Many Files (See list in comment): Added #include "cmTime.h" to support Audio and MIDI time stamps.
app/cmOnset.c
app/cmPickup.c
app/cmScore.c
app/cmScoreProc.c
app/cmTimeLine.c
cmAudDsp.c
cmAudioAggDev.c
cmAudioFileDev.c
cmAudioNrtDev.c
cmAudioPort.c
cmAudioPortFile.c
cmDevCfg.c
cmFeatFile.c
cmMidi.c
cmMidiFile.c
cmProc2.c
cmProc3.c
cmProc4.c
cmProcTest.c
cmRbm.c
cmUiRtSysMstr.c
dsp/cmDspClass.c
dsp/cmDspFx.c
dsp/cmDspNet.c
dsp/cmDspPgmKr.c
dsp/cmDspPgmPP.c
dsp/cmDspPgmPPMain.c
dsp/cmDspSys.c
dsp/cmDspUi.c
2013-12-15 18:14:27 -05:00

4304 linhas
109 KiB
C

#include "cmPrefix.h"
#include "cmGlobal.h"
#include "cmRpt.h"
#include "cmErr.h"
#include "cmCtx.h"
#include "cmMem.h"
#include "cmMallocDebug.h"
#include "cmLinkedHeap.h"
#include "cmSymTbl.h"
#include "cmFloatTypes.h"
#include "cmComplexTypes.h"
#include "cmFile.h"
#include "cmFileSys.h"
#include "cmProcObj.h"
#include "cmProcTemplate.h"
#include "cmAudioFile.h"
#include "cmMath.h"
#include "cmProc.h"
#include "cmVectOps.h"
#include "cmKeyboard.h"
#include "cmGnuPlot.h"
#include "cmTime.h"
#include "cmMidi.h"
#include "cmProc2.h"
//------------------------------------------------------------------------------------------------------------
cmArray* cmArrayAllocate( cmCtx* c, cmArray* ap, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
{
cmArray* p = cmObjAlloc( cmArray, c, ap );
if( eleCnt > 0 && eleByteCnt > 0 )
if( cmArrayInit(p, eleCnt, eleByteCnt, flags ) != cmOkRC )
cmArrayFree(&p);
return cmOkRC;
}
cmRC_t cmArrayFree( cmArray** pp )
{
cmRC_t rc = cmOkRC;
cmArray* p = *pp;
if( pp == NULL || *pp == NULL )
return cmOkRC;
if((rc = cmArrayFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->ptr);
cmObjFree(pp);
return rc;
}
cmRC_t cmArrayInit( cmArray* p, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
{
cmRC_t rc = cmOkRC;
if((rc = cmArrayFinal(p)) != cmOkRC )
return rc;
p->allocByteCnt = eleCnt * eleByteCnt;
p->ptr = cmIsFlag(flags,kZeroArrayFl) ? cmMemResizeZ( char, p->ptr, p->allocByteCnt ) : cmMemResize( char, p->ptr, p->allocByteCnt );
p->eleCnt = eleCnt;
p->eleByteCnt = eleByteCnt;
return rc;
}
cmRC_t cmArrayFinal( cmArray* p )
{ return cmOkRC; }
char* cmArrayReallocDestroy(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
{
// if memory is expanding
if( newEleCnt * newEleByteCnt > p->allocByteCnt )
cmArrayInit( p, newEleCnt, newEleByteCnt, flags );
else
{
// ... otherwise memory is contrcmting
p->eleCnt = newEleCnt;
p->eleByteCnt = newEleByteCnt;
if( cmIsFlag( flags, kZeroArrayFl ))
memset(p->ptr,0,p->eleByteCnt);
}
return p->ptr;
}
void cmArrayReallocDestroyV(cmArray* p, int eleByteCnt,unsigned flags, ... )
{
unsigned i;
unsigned eleCnt = 0;
unsigned argCnt = 0;
va_list vl0,vl1;
assert(eleByteCnt>0);
va_start(vl0,flags);
va_copy(vl1,vl0);
while( va_arg(vl0,void**) != NULL )
{
int argEleCnt = va_arg(vl0,int);
assert(argEleCnt>0);
eleCnt += argEleCnt;
++argCnt;
}
va_end(vl0);
char* a = cmArrayReallocDestroy(p,eleCnt,eleByteCnt,flags);
for(i=0; i<argCnt; ++i)
{
void** vp = va_arg(vl1,void**);
unsigned n = va_arg(vl1,unsigned);
*vp = a;
a += n*eleByteCnt;
}
va_end(vl1);
}
char* cmArrayReallocPreserve(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
{
unsigned cn = p->eleCnt * p->eleByteCnt;
unsigned dn = newEleCnt * newEleByteCnt;
if( dn > p->allocByteCnt )
p->allocByteCnt = dn;
p->ptr = cmIsFlag(flags,kZeroArrayFl ) ? cmMemResizePZ( char, p->ptr, cn ) : cmMemResizeP( char, p->ptr, cn);
p->eleCnt = newEleCnt;
p->eleByteCnt= newEleByteCnt;
return p->ptr;
}
//------------------------------------------------------------------------------------------------------------
cmAudioFileWr* cmAudioFileWrAlloc( cmCtx* c, cmAudioFileWr* ap, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
{
cmAudioFileWr* p = cmObjAlloc( cmAudioFileWr, c, ap );
if( cmAudioFileWrInit( p, procSmpCnt, fn, srate, chCnt, bitsPerSample ) != cmOkRC )
cmObjFree(&p);
return p;
}
cmRC_t cmAudioFileWrFree( cmAudioFileWr** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmAudioFileWr* p = *pp;
if((rc = cmAudioFileWrFinal(p)) == cmOkRC )
{
cmMemPtrFree(&p->bufV);
cmMemPtrFree(&p->fn );
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmAudioFileWrInit( cmAudioFileWr* p, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
{
cmRC_t rc;
cmRC_t afRC;
if((rc = cmAudioFileWrFinal( p)) != cmOkRC )
return rc;
p->h = cmAudioFileNewCreate( fn, srate, bitsPerSample, chCnt, &afRC, p->obj.err.rpt );
if( afRC != kOkAfRC )
return cmCtxRtCondition( &p->obj, afRC, "Unable to open the audio file:'%s'", fn );
p->bufV = cmMemResize( cmSample_t, p->bufV, procSmpCnt * chCnt );
p->procSmpCnt = procSmpCnt;
p->chCnt = chCnt;
p->curChCnt = 0;
p->fn = cmMemResizeZ( cmChar_t, p->fn, strlen(fn)+1 );
strcpy(p->fn,fn);
return rc;
}
cmRC_t cmAudioFileWrFinal( cmAudioFileWr* p )
{
cmRC_t afRC;
if( p != NULL )
{
if( cmAudioFileIsValid( p->h ) )
if(( afRC = cmAudioFileDelete( &p->h )) != kOkAfRC )
return cmCtxRtCondition( &p->obj, afRC, "Unable to close the audio file:'%s'", p->fn );
}
return cmOkRC;
}
cmRC_t cmAudioFileWrExec( cmAudioFileWr* p, unsigned chIdx, const cmSample_t* sp, unsigned sn )
{
cmRC_t afRC;
assert( sn <= p->procSmpCnt && chIdx < p->chCnt );
cmSample_t* buf = p->bufV + (chIdx * p->procSmpCnt);
cmVOS_Copy( buf, sn, sp);
if( sn < p->procSmpCnt )
cmVOS_Fill( buf+sn, p->procSmpCnt-sn, 0 );
p->curChCnt++;
if( p->curChCnt == p->chCnt )
{
p->curChCnt = 0;
cmSample_t* bufPtrPtr[ p->chCnt ];
unsigned i = 0;
for(i=0; i<p->chCnt; ++i)
bufPtrPtr[i] = p->bufV + (i*p->procSmpCnt);
if((afRC = cmAudioFileWriteSample( p->h, p->procSmpCnt, p->chCnt, bufPtrPtr )) != kOkAfRC )
return cmCtxRtCondition( &p->obj, afRC, "Write failed on audio file:'%s'", p->fn );
}
return cmOkRC;
}
void cmAudioFileWrTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
const char* fn = "/home/kevin/src/cm/test0.aif";
double durSecs = 10;
double srate = 44100;
unsigned chCnt = 2;
unsigned bitsPerSmp = 16;
unsigned procSmpCnt = 64;
double hz = 1000;
unsigned overToneCnt= 1;
unsigned smpCnt = durSecs * srate;
unsigned i;
cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
cmSigGen* sgp = cmSigGenAlloc( c, NULL, procSmpCnt, srate, kWhiteWfId, hz, overToneCnt );
cmAudioFileWr* awp = cmAudioFileWrAlloc( c, NULL, procSmpCnt, fn, srate, chCnt, bitsPerSmp );
for(i=0; i<smpCnt; ++i)
{
cmSigGenExec( sgp );
cmAudioFileWrExec( awp, 0, sgp->outV, sgp->outN );
cmAudioFileWrExec( awp, 1, sgp->outV, sgp->outN );
i += sgp->outN;
}
printf("Frames:%i\n",smpCnt);
cmAudioFileWrFree(&awp);
cmSigGenFree( &sgp );
cmCtxFree(&c);
cmAudioFileReportFn( fn, 0, 20, rpt );
}
//------------------------------------------------------------------------------------------------------------
cmMatrixBuf* cmMatrixBufAllocFile( cmCtx* c, cmMatrixBuf* p, const char* fn )
{
cmRC_t rc;
cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
if( fn != NULL )
if((rc = cmMatrixBufInitFile(op,fn)) != cmOkRC )
cmObjFree(&op);
return op;
}
cmMatrixBuf* cmMatrixBufAllocCopy(cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
{
cmRC_t rc;
cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
if( sp != NULL && rn > 0 && cn > 0 )
if((rc = cmMatrixBufInitCopy(op,rn,cn,sp)) != cmOkRC )
cmObjFree(&op);
return op;
}
cmMatrixBuf* cmMatrixBufAlloc( cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn )
{
cmRC_t rc;
cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
if( rn > 0 && cn > 0 )
if((rc = cmMatrixBufInit(op,rn,cn)) != cmOkRC )
cmObjFree(&op);
return op;
}
cmRC_t cmMatrixBufFree( cmMatrixBuf** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmMatrixBuf* p = *pp;
if((rc = cmMatrixBufFinal(p)) == cmOkRC )
{
cmMemPtrFree(&p->bufPtr);
cmObjFree(pp);
}
}
return rc;
}
void _cmMatrixBufGetFileSize( FILE* fp, unsigned* lineCharCntPtr, unsigned* lineCntPtr )
{
*lineCharCntPtr = 0;
*lineCntPtr = 0;
while( !feof(fp) )
{
char ch;
unsigned charCnt = 0;
while( (ch = getc(fp)) != EOF )
{
charCnt++;
if( ch == '\n' )
break;
}
*lineCntPtr += 1;
if(charCnt > *lineCharCntPtr )
*lineCharCntPtr = charCnt;
}
*lineCharCntPtr += 5; // add a safety margin
}
cmRC_t _cmMatrixBufGetMatrixSize( cmObj* op, FILE* fp, unsigned lineCharCnt, unsigned lineCnt, unsigned* rowCntPtr, unsigned * colCntPtr, const char* fn )
{
unsigned i;
char lineBuf[ lineCharCnt + 1 ];
*rowCntPtr = 0;
*colCntPtr = 0;
for(i=0; i<lineCnt; ++i)
{
if(fgets(lineBuf,lineCharCnt,fp)==NULL)
{
// if the last line is blank then return from here
if( feof(fp) )
return cmOkRC;
return cmCtxRtCondition( op, cmSystemErrorRC, "A read error occured on the matrix file:'%s'.",fn);
}
assert( strlen(lineBuf) < lineCharCnt );
char* lp = lineBuf;
char* tp;
// eat any leading white space
while( (*lp) && isspace(*lp) )
++lp;
// if the line was blank then skip it
if( strlen(lp) == 0 || *lp == '#' )
continue;
(*rowCntPtr) += 1;
unsigned colCnt;
for(colCnt=0; (tp = strtok(lp," ")) != NULL; ++colCnt )
lp = NULL;
if( colCnt > *colCntPtr )
*colCntPtr = colCnt;
}
return cmOkRC;
}
double _cmMatrixBufStrToNum( cmObj* op, const char* cp )
{
double v;
if( sscanf(cp,"%le ",&v) != 1 )
cmCtxRtCondition( op, cmArgAssertRC, "Parse error reading matrix file.");
return v;
}
cmRC_t _cmMatrixBufReadFile(cmObj* op, FILE* fp, cmSample_t* p, unsigned lineCharCnt, unsigned rn, unsigned cn)
{
char lineBuf[ lineCharCnt+1 ];
unsigned ci = 0;
unsigned ri = 0;
while( fgets(lineBuf,lineCharCnt,fp) != NULL )
{
char* lp = lineBuf;
char* tp;
while( (*lp) && isspace(*lp) )
lp++;
if( strlen(lp) == 0 || *lp == '#' )
continue;
for(ci=0; (tp = strtok(lp," ")) != NULL; ++ci )
{
p[ (ci*rn) + ri ] = _cmMatrixBufStrToNum(op,tp); //atof(tp);
lp = NULL;
}
++ri;
}
return cmOkRC;
}
cmRC_t cmMatrixBufInitFile( cmMatrixBuf* p, const char* fn )
{
cmRC_t rc;
FILE* fp;
unsigned lineCharCnt;
unsigned lineCnt;
unsigned rn;
unsigned cn;
if((fp = fopen(fn,"rt")) == NULL )
return cmCtxRtCondition( &p->obj, cmSystemErrorRC, "Unable to open the matrix file:'%s'", fn );
// get the length of the longest line in the file
_cmMatrixBufGetFileSize(fp,&lineCharCnt,&lineCnt);
rewind(fp);
// get the count of matrix rows and columns
if((rc=_cmMatrixBufGetMatrixSize( &p->obj, fp, lineCharCnt, lineCnt, &rn, &cn, fn )) != cmOkRC )
goto errLabel;
rewind(fp);
// allocate the matrix memory
cmMatrixBufInit(p,rn,cn);
// fill the matrix from the file
rc = _cmMatrixBufReadFile(&p->obj,fp,p->bufPtr,lineCharCnt,rn,cn);
errLabel:
if( rc != cmOkRC )
cmMatrixBufFinal(p);
fclose(fp);
return rc;
}
cmRC_t cmMatrixBufInitCopy( cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
{
cmRC_t rc;
if((rc = cmMatrixBufInit(p,rn,cn)) != cmOkRC )
return rc;
cmVOS_Copy(p->bufPtr,(rn*cn),sp);
return rc;
}
cmRC_t cmMatrixBufInit( cmMatrixBuf* p, unsigned rn, unsigned cn )
{
cmRC_t rc;
if((rc = cmMatrixBufFinal(p)) != cmOkRC )
return rc;
p->rn = rn;
p->cn = cn;
p->bufPtr = cmMemResize( cmSample_t, p->bufPtr, rn*cn );
return cmOkRC;
}
cmRC_t cmMatrixBufFinal( cmMatrixBuf* p )
{ return cmOkRC; }
cmSample_t* cmMatrixBufColPtr( cmMatrixBuf* p, unsigned ci )
{ assert(ci<p->cn); return p->bufPtr + (ci * p->rn); }
cmSample_t* cmMatrixBufRowPtr( cmMatrixBuf* p, unsigned ri )
{ assert(ri<p->rn); return p->bufPtr + ri; }
void cmMatrixBufTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
cmSample_t v[] = {1,2,2,3};
cmCtx* c = cmCtxAlloc(NULL,rpt,lhH,stH);
cmMatrixBuf* mbp = cmMatrixBufAllocFile(c, NULL, "temp.mat" );
cmMatrixBuf* vbp = cmMatrixBufAllocCopy(c, NULL, 4,1,v);
unsigned i;
printf("rn:%i cn:%i\n",mbp->rn,mbp->cn);
//cmVOS_Print( stdout, 10, 10, mbp->bufPtr );
printf("%.1f\n ",cmVOS_Median( cmMatrixBufColPtr(vbp,0),vbp->rn));
for(i=0; i<mbp->cn; ++i)
{
//cmVOS_Print( stdout, 1, mbp->cn, cmMatrixBufColPtr(c,mbp,i) );
printf("%.1f, ",cmVOS_Median( cmMatrixBufColPtr(mbp,i),mbp->rn));
}
printf("\n");
cmMatrixBufFree(&mbp);
cmMatrixBufFree(&vbp);
cmCtxFree(&c);
}
//------------------------------------------------------------------------------------------------------------
cmSigGen* cmSigGenAlloc( cmCtx* c, cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
{
cmSigGen* op = cmObjAlloc( cmSigGen, c, p );
if( procSmpCnt > 0 && srate > 0 && wfId != kInvalidWfId )
if( cmSigGenInit( op, procSmpCnt, srate, wfId, fundFrqHz, overToneCnt ) != cmOkRC )
cmObjFree(&op);
return op;
}
cmRC_t cmSigGenFree( cmSigGen** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmSigGen* p = *pp;
if((rc = cmSigGenFinal(p)) == cmOkRC )
{
cmMemPtrFree(&p->outV);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmSigGenInit( cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
{
assert( srate > 0 && procSmpCnt > 0 );
p->outV = cmMemResize( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->wfId = wfId;
p->overToneCnt = overToneCnt;
p->fundFrqHz = fundFrqHz;
p->phase = 0;
p->delaySmp = 0;
p->srate = srate;
return cmOkRC;
}
cmRC_t cmSigGenFinal( cmSigGen* p )
{ return cmOkRC; }
cmRC_t cmSigGenExec( cmSigGen* p )
{
switch( p->wfId )
{
case kSineWfId: p->phase = cmVOS_SynthSine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kCosWfId: p->phase = cmVOS_SynthCosine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kSquareWfId: p->phase = cmVOS_SynthSquare( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kTriangleWfId: p->phase = cmVOS_SynthTriangle( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kSawtoothWfId: p->phase = cmVOS_SynthSawtooth( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kWhiteWfId: cmVOS_Random( p->outV, p->outN, -1.0, 1.0 ); break;
case kPinkWfId: p->delaySmp = cmVOS_SynthPinkNoise(p->outV, p->outN, p->delaySmp ); break;
case kPulseWfId: p->phase = cmVOS_SynthPulseCos( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kImpulseWfId: p->phase = cmVOS_SynthImpulse( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kSilenceWfId: cmVOS_Fill( p->outV, p->outN, 0 ); break;
case kPhasorWfId: p->phase = cmVOS_SynthPhasor( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kSeqWfId: p->phase = cmVOS_Seq( p->outV, p->outN, p->phase, 1 ); break;
case kInvalidWfId:
default:
return cmCtxRtAssertFailed( &p->obj, 0, "Invalid waveform shape.");
}
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmDelay* cmDelayAlloc( cmCtx* c, cmDelay* ap, unsigned procSmpCnt, unsigned delaySmpCnt )
{
cmDelay* p = cmObjAlloc( cmDelay, c, ap );
if( procSmpCnt > 0 && delaySmpCnt > 0 )
if( cmDelayInit( p,procSmpCnt,delaySmpCnt) != cmOkRC && ap == NULL )
cmObjFree(&p);
return p;
}
cmRC_t cmDelayFree( cmDelay** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmDelay* p = *pp;
if((rc = cmDelayFinal(*pp)) == cmOkRC )
{
cmMemPtrFree(&p->bufPtr);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmDelayInit( cmDelay* p, unsigned procSmpCnt, unsigned delaySmpCnt )
{
p->procSmpCnt = procSmpCnt;
p->delaySmpCnt = delaySmpCnt;
p->bufSmpCnt = delaySmpCnt + procSmpCnt;
p->bufPtr = cmMemResizeZ( cmSample_t, p->bufPtr, p->bufSmpCnt);
p->delayInIdx = 0;
p->outCnt = 1;
p->outV[0] = p->bufPtr;
p->outN[0] = p->procSmpCnt;
p->outV[1] = NULL;
p->outN[1] = 0;
return cmOkRC;
}
cmRC_t cmDelayFinal( cmDelay* p )
{ return cmOkRC; }
cmRC_t cmDelayCopyIn( cmDelay* p, const cmSample_t* sp, unsigned sn )
{
assert(sn<=p->procSmpCnt);
unsigned n0 = cmMin(sn,p->bufSmpCnt - p->delayInIdx);
// copy as many samples as possible from the input to the delayInIdx
cmVOS_Copy(p->bufPtr + p->delayInIdx, n0, sp);
p->delayInIdx = (p->delayInIdx + n0) % p->bufSmpCnt;
// if there was not enough room to copy all the samples into the end of the buffer ....
if( n0 < sn )
{
assert( p->delayInIdx == 0 );
// ... then copy the rest to the beginning of the buffer
unsigned n1 = sn - n0;
cmVOS_Copy(p->bufPtr,n1, sp + n0 );
p->delayInIdx = (p->delayInIdx + n1) % p->bufSmpCnt;
}
return cmOkRC;
}
cmRC_t cmDelayAdvance( cmDelay* p, unsigned sn )
{
// advance the output by sn and make sn samples available
int delayOutIdx = ((p->outV[0] - p->bufPtr) + sn) % p->bufSmpCnt;
p->outV[0] = p->bufPtr + delayOutIdx;
p->outN[0] = cmMin(p->bufSmpCnt - delayOutIdx , sn );
p->outCnt = p->outN[0] == sn ? 1 : 2 ;
p->outV[1] = p->outCnt == 1 ? NULL : p->bufPtr;
p->outN[1] = p->outCnt == 1 ? 0 : sn - p->outN[0];
return cmOkRC;
}
cmRC_t cmDelayExec( cmDelay* p, const cmSample_t* sp, unsigned sn, bool bypassFl )
{
cmRC_t rc = cmOkRC;
if( bypassFl )
memcpy(p->outV,sp,sn*sizeof(cmSample_t));
else
{
cmDelayCopyIn(p,sp,sn);
rc = cmDelayAdvance(p,sn);
}
return rc;
}
void cmDelayTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
cmCtx ctx;
cmDelay delay;
cmSigGen sigGen;
unsigned procCnt = 4;
unsigned procSmpCnt = 5;
unsigned delaySmpCnt = 3;
unsigned i;
cmCtx* c = cmCtxAlloc( &ctx, rpt, lhH, stH );
cmDelay* dlp = cmDelayAlloc( c, &delay, procSmpCnt, delaySmpCnt );
cmSigGen* sgp = cmSigGenAlloc( c, &sigGen, procSmpCnt, 0, kSeqWfId,0, 0);
for(i=0; i<procCnt; ++i)
{
cmSigGenExec(sgp);
cmDelayExec(dlp,sgp->outV,sgp->outN,false);
//cmVOS_Print( c->outFp, 1, sgp->outN, sgp->outV, 5, 0 );
cmCtxPrint(c,"%i %i : ",i,0);
cmVOS_PrintE( rpt, 1, dlp->outN[0], dlp->outV[0] );
if( dlp->outN[1] > 0 )
{
cmCtxPrint(c,"%i %i : ",i,1);
cmVOS_PrintE( rpt, 1, dlp->outN[1], dlp->outV[1] );
}
}
cmSigGenFinal(sgp);
cmDelayFinal(dlp);
cmCtxFinal(c);
}
//------------------------------------------------------------------------------------------------------------
cmFIR* cmFIRAllocKaiser(cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb )
{
cmFIR* op = cmObjAlloc( cmFIR, c, p );
if( procSmpCnt > 0 && srate > 0 )
if( cmFIRInitKaiser(op,procSmpCnt,srate,passHz,stopHz,passDb,stopDb) != cmOkRC )
cmObjFree(&op);
return op;
}
cmFIR* cmFIRAllocSinc( cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags )
{
cmFIR* op = cmObjAlloc( cmFIR, c, p );
if( srate > 0 && sincSmpCnt > 0 )
if( cmFIRInitSinc(op,procSmpCnt,srate,sincSmpCnt,fcHz,flags) != cmOkRC )
cmObjFree(&op);
return op;
}
cmRC_t cmFIRFree( cmFIR** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL)
{
cmFIR* p = *pp;
if((rc = cmFIRFinal(*pp)) != cmOkRC )
{
cmMemPtrFree(&p->coeffV);
cmMemPtrFree(&p->outV);
cmMemPtrFree(&p->delayV);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmFIRInitKaiser( cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb )
{
// pass/stop frequencies above nyquist produce incorrect results
assert( passHz <= srate/2 && stopHz<=srate/2);
// based on Orfandis, Introduction to Signal Processing, p.551 Prentice Hall, 1996
double fcHz = (passHz + stopHz) / 2; // fc is half way between passHz and stopHz
double dHz = fabs(stopHz-passHz);
//double signFcmt = stopHz > passHz ? 1 : -1;
// convert ripple spec from db to linear
double dPass = (pow(10,passDb/20)-1) / (pow(10,passDb/20)+1);
double dStop = pow(10,-stopDb/20);
// in prcmtice the ripple must be equal in the stop and pass band - so take the minimum between the two
double d = cmMin(dPass,dStop);
// convert the ripple bcmk to db
double A = -20 * log10(d);
// compute the kaiser alpha coeff
double alpha = 0;
if( A >= 50.0 ) // for ripple > 50
alpha = 0.1102 * (A-8.7);
else // for ripple <= 21
{
if( A > 21 )
alpha = (0.5842 * (pow(A-21.0,0.4))) + (0.07886*(A-21));
}
double D = 0.922;
if( A > 21 )
D = (A - 7.95) / 14.36;
// compute the filter order
unsigned N = (unsigned)(floor(D * srate / dHz) + 1);
//if N is even
if( cmIsEvenU(N) )
N = N + 1;
//printf("fc=%f df=%f dPass=%f dStop=%f d=%f alpha=%f A=%f D=%f N=%i\n",fcHz,dHz,dPass,dStop,d,alpha,A,D,N);
// form an ideal FIR LP impulse response based on a sinc function
cmFIRInitSinc(p,procSmpCnt,srate,N,fcHz,0);
// compute a kaiser function to truncate the sinc
double wnd[ N ];
cmVOD_Kaiser( wnd, N, alpha );
// apply the kaiser window to the sinc function
cmVOD_MultVV( p->coeffV, p->coeffCnt, wnd );
double sum = cmVOD_Sum(p->coeffV,p->coeffCnt);
cmVOD_DivVS(p->coeffV,p->coeffCnt,sum );
//cmVOD_Print(stdout,1,p->coeffCnt,p->coeffV);
return cmOkRC;
}
cmRC_t cmFIRInitSinc( cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags )
{
cmRC_t rc;
if((rc = cmFIRFinal(p)) != cmOkRC )
return rc;
p->coeffCnt = sincSmpCnt;
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->coeffV = cmMemResizeZ( double, p->coeffV, p->coeffCnt );
p->delayV = cmMemResizeZ( double, p->delayV, p->coeffCnt-1 ); // there is always one less delay than coeff
p->delayIdx = 0;
cmVOD_LP_Sinc(p->coeffV, p->coeffCnt, srate, fcHz, cmIsFlag(flags,kHighPassFIRFl) ? kHighPass_LPSincFl : 0 );
return cmOkRC;
}
cmRC_t cmFIRFinal( cmFIR* p )
{ return cmOkRC; }
cmRC_t cmFIRExec( cmFIR* p, const cmSample_t* sbp, unsigned sn )
{
unsigned delayCnt = p->coeffCnt-1;
int di = p->delayIdx;
const cmSample_t* sep = sbp + sn;
cmSample_t* op = p->outV;
assert( di < delayCnt );
assert( sn <= p->outN );
// for each input sample
while( sbp < sep )
{
// advance the delay line
p->delayIdx = (p->delayIdx + 1) % delayCnt;
const double* cbp = p->coeffV;
const double* cep = cbp + p->coeffCnt;
// mult input sample by coeff[0]
double v = *sbp * *cbp++;
// calc the output sample
while( cbp<cep)
{
// note that the delay is being iterated bcmkwards
if( di == -1 )
di=delayCnt-1;
v += *cbp++ * p->delayV[di];
--di;
}
// store the output sample
*op++ = v;
// insert the input sample
p->delayV[ p->delayIdx ] = *sbp++;
// store the position of the newest ele in the delay line
di = p->delayIdx;
}
return cmOkRC;
}
void cmFIRTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
unsigned N = 512;
cmKbRecd kb;
cmCtx c;
cmCtxInit(&c,rpt,lhH,stH);
double srate = N;
unsigned procSmpCnt = N;
cmPlotSetup("Test Proc Impl",2,1);
cmSample_t in[ procSmpCnt ];
cmVOS_Fill(in,procSmpCnt,0);
in[0] = 1;
cmVOS_Random(in,procSmpCnt, -1.0, 1.0 );
cmFIR* ffp = cmFIRAllocKaiser( &c, NULL, procSmpCnt,srate, srate*0.025, srate/2, 10, 60 );
//cmFIR* ffp = cmFIRAllocSinc( &c, NULL, 32, 1000, 0 );
cmFftSR* ftp = cmFftAllocSR( &c, NULL, ffp->outV, ffp->outN, kToPolarFftFl );
cmFIRExec( ffp, in, procSmpCnt );
cmFftExecSR( ftp, NULL, 0 );
cmVOR_AmplitudeToDb(ftp->magV,ftp->binCnt,ftp->magV);
printf("coeff cnt:%i\n",ffp->coeffCnt );
cmPlotClear();
cmPlotLineR( "test", NULL, ftp->magV, NULL, ftp->binCnt, NULL, kSolidPlotLineId );
cmPlotDraw();
cmKeyPress(&kb);
cmFftFreeSR(&ftp);
cmFIRFree(&ffp);
}
//------------------------------------------------------------------------------------------------------------
cmFuncFilter* cmFuncFilterAlloc( cmCtx* c, cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
{
cmRC_t rc;
cmFuncFilter* op = cmObjAlloc( cmFuncFilter,c, p );
if( procSmpCnt > 0 && funcPtr != NULL && wndSmpCnt > 0 )
{
if( cmShiftBufAlloc(c,&p->shiftBuf,0,0,0) != NULL )
if((rc = cmFuncFilterInit(op,procSmpCnt,funcPtr,userPtr,wndSmpCnt)) != cmOkRC )
{
cmShiftBuf* sbp = &p->shiftBuf;
cmShiftBufFree(&sbp);
cmObjFree(&op);
}
}
return op;
}
cmRC_t cmFuncFilterFree( cmFuncFilter** pp )
{
cmRC_t rc = cmOkRC;
if( pp!=NULL && *pp != NULL )
{
cmFuncFilter* p = *pp;
if((rc = cmFuncFilterFinal(*pp)) == cmOkRC )
{
cmShiftBuf* sbp = &p->shiftBuf;
cmShiftBufFree(&sbp);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmFuncFilterInit( cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
{
cmRC_t rc;
if(( rc = cmFuncFilterFinal(p)) != cmOkRC )
return rc;
// The shift buffer always consits of the p->wndSmpCnt-1 samples from the previous
// exec followed by the latest procSmpCnt samples at the end of the buffer
cmShiftBufInit( &p->shiftBuf, procSmpCnt, wndSmpCnt + procSmpCnt - 1, procSmpCnt );
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt);
p->outN = procSmpCnt;
p->funcPtr = funcPtr;
p->curWndSmpCnt = 1;
p->wndSmpCnt = wndSmpCnt;
return rc;
}
cmRC_t cmFuncFilterFinal( cmFuncFilter* p )
{ return cmOkRC; }
cmRC_t cmFuncFilterExec( cmFuncFilter* p, const cmSample_t* sp, unsigned sn )
{
assert( sn <= p->outN);
// The window used by this function is always causal. At the very beginning of the signal
// the window length begins at 1 and increases until is has the length p->wndSmpCnt.
// Note that this approach ignores any zeros automatically prepended to the beginning of the
// signal by the shift buffer. The first window processed always has a length of 1 and
// begins with the first actual sample given to the shift buffer. Successive windows increase
// by one and start at the first actual sample until the full window length is available
// from the shift buffer. At this point the window length remains constant and it is hopped
// by one sample for each window.
while(cmShiftBufExec(&p->shiftBuf,sp,sn))
{
const cmSample_t* fsp = p->shiftBuf.outV;
cmSample_t* dp = p->outV;
cmSample_t* ep = p->outV + sn; // produce as many output values as there are input samples
// for each output sample
while( dp < ep )
{
// the source range should never extend outside the shift buffer
assert( fsp + p->curWndSmpCnt <= p->shiftBuf.outV + p->shiftBuf.wndSmpCnt );
// calc the next output value
*dp++ = p->funcPtr( fsp, p->curWndSmpCnt, p->userPtr );
// if the window has not yet achieved its full length ...
if( p->curWndSmpCnt < p->wndSmpCnt )
++p->curWndSmpCnt; // ... then increase its length by 1
else
++fsp; // ... otherwise shift it ahead by 1
}
}
return cmOkRC;
}
cmSample_t cmFuncFiltTestFunc( const cmSample_t* sp, unsigned sn, void* vp )
{
//printf("% f % f %p % i\n",*sp,*sp+(sn-1),sp,sn);
cmSample_t v = cmVOS_Median(sp,sn);
printf("%f ",v);
return v;
//return *sp;
}
void cmFuncFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
unsigned procSmpCnt = 1;
unsigned N = 32;
cmSample_t v[N];
cmCtx c;
unsigned i;
cmCtxAlloc(&c,rpt,lhH,stH);
cmVOS_Seq(v,N,0,1);
cmVOS_Print(rpt,1,32,v);
cmFuncFilter* ffp = NULL;
ffp = cmFuncFilterAlloc( &c, NULL, procSmpCnt, cmFuncFiltTestFunc, NULL, 5 );
for(i=0; i<N; ++i)
cmFuncFilterExec(ffp,v+(i*procSmpCnt),procSmpCnt);
cmFuncFilterFree( &ffp );
cmCtxFinal(&c);
//unsigned v1n = 9;
//cmSample_t v1[9] = { 1, 75, 91, 35, 6, 80, 40, 91, 79};
//cmSample_t v1[10] = {53, 64, 48, 78, 30, 59, 7, 50, 71, 53 };
//printf("Median: %f \n",cmVOS_Median(v1,v1+v1n));
}
//------------------------------------------------------------------------------------------------------------
cmDhmm* cmDhmmAlloc( cmCtx* c, cmDhmm* ap, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
{
cmDhmm* p = cmObjAlloc( cmDhmm, c, ap );
if( stateN > 0 && symN > 0 )
if( cmDhmmInit(p, stateN, symN, initV, transM, stsM ) != cmOkRC )
cmObjFree(&p);
return p;
}
cmRC_t cmDhmmFree( cmDhmm** pp )
{
cmRC_t rc = cmOkRC;
cmDhmm* p = *pp;
if( pp==NULL || *pp==NULL )
return cmOkRC;
if((rc = cmDhmmFinal(p)) != cmOkRC )
return cmOkRC;
cmObjFree(pp);
return rc;
}
cmRC_t cmDhmmInit( cmDhmm* p, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
{
cmRC_t rc;
if((rc = cmDhmmFinal(p)) != cmOkRC )
return rc;
p->stateN = stateN;
p->symN = symN;
p->initV = initV;
p->transM = transM;
p->stsM = stsM;
return cmOkRC;
}
cmRC_t cmDhmmFinal( cmDhmm* p )
{ return cmOkRC; }
cmRC_t cmDhmmExec( cmDhmm* p )
{
return cmOkRC;
}
// Generate a random matrix with rows that sum to 1.0.
void _cmDhmmGenRandMatrix( cmReal_t* dp, unsigned rn, unsigned cn )
{
cmReal_t v[ cn ];
unsigned i,j;
for(i=0; i<rn; ++i)
{
cmVOR_Random( v, cn, 0.0, 1.0 );
cmVOR_NormalizeProbability( v, cn);
for(j=0; j<cn; ++j)
dp[ (j * rn) + i ] = v[j];
}
}
enum { kEqualProbHmmFl=0x01, kRandProbHmmFl=0x02, kManualProbHmmFl=0x04 };
void _cmDhmmGenProb( cmReal_t* dp, unsigned rn, unsigned cn, unsigned flags, const cmReal_t* sp )
{
switch( flags )
{
case kRandProbHmmFl:
_cmDhmmGenRandMatrix( dp, rn, cn );
break;
case kEqualProbHmmFl:
{
// equal prob
cmReal_t pr = 1.0/cn;
unsigned i,j;
for(i=0; i<rn; ++i)
for(j=0; j<cn; ++j)
dp[ (j*rn) + i ] = pr;
}
break;
case kManualProbHmmFl:
cmVOR_Copy( dp, (rn*cn), sp );
break;
default:
assert(0);
}
}
// generate a random integer in the range 0 to probN-1 where probV[ probN ] contains
// the probability of generating each of the possible values.
unsigned _cmDhmmGenRandInt( const cmReal_t* probV, unsigned probN, unsigned stride )
{
cmReal_t tmp[ probN ];
cmReal_t cumSumV[ probN+1 ];
const cmReal_t* sp = probV;
cumSumV[0] = 0;
if( stride > 1 )
{
cmVOR_CopyStride( tmp, probN, probV, stride );
sp = tmp;
}
cmVOR_CumSum( cumSumV+1, probN, sp );
return cmVOR_BinIndex( cumSumV, probN+1, (cmReal_t)rand()/RAND_MAX );
}
cmRC_t cmDhmmGenObsSequence( cmDhmm* p, unsigned* dbp, unsigned dn )
{
const unsigned* dep = dbp + dn;
// generate the first state based on the init state prob. vector
unsigned state = _cmDhmmGenRandInt( p->initV, p->stateN, 1 );
// generate an observation from the state based on the symbol prob. vector
*dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
while( dbp < dep )
{
// get the next state based on the previous state
state = _cmDhmmGenRandInt( p->transM + state, p->stateN, p->stateN );
// given a state generate an observation
*dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
}
return cmOkRC;
}
/// Perform a forward evaluation of the model given a set of observations.
/// initPrV[ stateN ] is the probability of the model being in each state at the start of the evaluation.
/// alphaM[ stateN, obsN ] is a return value and represents the probability of seeing each symbol at each time step.
enum { kNoLogScaleHmmFl = 0x00, kLogScaleHmmFl = 0x01 };
cmRC_t cmDHmmForwardEval( cmDhmm* p, const cmReal_t* initPrV, const unsigned* obsV, unsigned obsN, cmReal_t* alphaM, unsigned flags, cmReal_t* logProbPtr )
{
bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
cmReal_t logProb = 0;
cmReal_t* abp = alphaM; // define first dest. column
const cmReal_t* aep = abp + p->stateN;
const cmReal_t* sts = p->stsM + (obsV[0] * p->stateN); // stsM[] column for assoc'd with first obs. symbol
unsigned i;
// calc the prob of begining in each state given the obs. symbol
for(i=0; abp < aep; ++i )
*abp++ = *initPrV++ * *sts++;
// scale to prevent underflow
if( scaleFl )
{
cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
if( sum > 0 )
{
cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
logProb += log(sum);
}
}
// for each time step
for(i=1; i<obsN; ++i)
{
// next state 0 (first col, first row) is calc'd first
const cmReal_t* tm = p->transM;
// pick the stsM[] column assoc'd with ith observation symbol
const cmReal_t* sts = p->stsM + (obsV[i] * p->stateN);
// store a pointer to the alpha column assoc'd with obsV[i-1]
const cmReal_t* app0 = abp - p->stateN;
aep = abp + p->stateN;
// for each dest state
while( abp < aep )
{
// prob of being in each state on the previous time step
const cmReal_t* app = app0;
const cmReal_t* ape = app + p->stateN;
*abp = 0;
// for each src state - calc prob. of trans from src to dest
while( app<ape )
*abp += *app++ * *tm++;
// calc prob of obs symbol in dest state
*abp++ *= *sts++;
}
// scale to prevent underflow
if( scaleFl )
{
cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
if( sum > 0 )
{
cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
logProb += log(sum);
}
}
}
if( logProbPtr != NULL )
*logProbPtr = logProb;
return cmOkRC;
}
cmRC_t cmDHmmBcmkwardEval( cmDhmm* p, const unsigned* obsV, unsigned obsN, cmReal_t* betaM, unsigned flags )
{
bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
int i,j,t;
cmVOR_Fill(betaM+((obsN-1)*p->stateN),p->stateN,1.0);
// for each time step
for(t=obsN-2; t>=0; --t)
{
// for each state at t
for(i=0; i<p->stateN; ++i)
{
double Bt = 0;
// for each state at t+1
for(j=0; j<p->stateN; ++j)
{
double aij = p->transM[ (j * p->stateN) + i ];
double bj = p->stsM[ (obsV[t+1] * p->stateN) + j ];
double Bt1 = betaM[ ((t+1) * p->stateN) + j ];
Bt += aij * bj * Bt1;
}
betaM[ (t * p->stateN) + i ] = Bt;
}
if( scaleFl )
{
double* bp = betaM + (t * p->stateN);
double sum = cmVOR_Sum(bp, p->stateN );
if( sum > 0 )
cmVOR_DivVS( bp, p->stateN, sum );
}
}
return cmOkRC;
}
void _cmDhmmNormRow( cmReal_t* p, unsigned pn, unsigned stride, const cmReal_t* sp )
{
if( sp == NULL )
sp = p;
cmReal_t sum = 0;
unsigned n = pn * stride;
const cmReal_t* bp = sp;
const cmReal_t* ep = bp + n;
for(; bp<ep; bp+=stride)
sum += *bp;
for(ep = p+n; p<ep; p+=stride,sp+=stride)
*p = *sp / sum;
}
void _cmDhmmNormMtxRows( cmReal_t* dp, unsigned rn, unsigned cn, const cmReal_t* sp )
{
const cmReal_t* erp = sp + rn;
while( sp < erp )
_cmDhmmNormRow( dp++, cn, rn, sp++ );
}
cmRC_t cmDhmmTrainEM( cmDhmm* p, const unsigned* obsV, unsigned obsN, unsigned iterCnt, unsigned flags )
{
unsigned i,j,k,t;
cmReal_t alphaM[ p->stateN * obsN ];
cmReal_t betaM[ p->stateN * obsN ];
cmReal_t g[ p->stateN * obsN ];
cmReal_t q[ p->stateN * p->symN ];
cmReal_t E[ p->stateN * p->stateN ];
cmReal_t logProb = 0;
//cmDhmmReport(p->obj.ctx,p);
for(k=0; k<iterCnt; ++k)
{
cmVOR_Fill( q, (p->stateN * p->symN), 0 );
cmVOR_Fill( E, (p->stateN * p->stateN), 0 );
// calculate alpha and beta
cmDHmmForwardEval( p, p->initV, obsV, obsN, alphaM, flags, &logProb);
cmDHmmBcmkwardEval( p, obsV, obsN, betaM, flags );
// gamma[ stateN, obsN ] = alphaM .* betaM - gamma is the probability of being in each state at each time step
cmVOR_MultVVV( g,(p->stateN*obsN), alphaM, betaM );
// normalize gamma
for(i=0; i<obsN; ++i)
cmVOR_NormalizeProbability( g + (i*p->stateN), p->stateN );
//printf("ITER:%i logProb:%f\n",k,logProb);
// count the number of times state i emits obsV[0] in the starting location
cmVOR_Copy( q + (obsV[0] * p->stateN), p->stateN, g );
for(t=0; t<obsN-1; ++t)
{
// point to alpha[:,t] and beta[:,t+1]
const cmReal_t* alpha_t0 = alphaM + (t*p->stateN);
const cmReal_t* beta_t1 = betaM + ((t+1)*p->stateN);
cmReal_t Et[ p->stateN * p->stateN ];
cmReal_t Esum = 0;
// for each source state
for(i=0; i<p->stateN; ++i)
{
// for each dest state
for(j=0; j<p->stateN; ++j)
{
// prob of transitioning from state i to j and emitting obs[t] at time t
cmReal_t Eps = alpha_t0[i] * p->transM[ (j*p->stateN) + i ] * p->stsM[ (obsV[t+1]*p->stateN) + j ] * beta_t1[j];
// count the number of transitions from i to j
Et[ (j*p->stateN) + i ] = Eps;
Esum += Eps;
}
// count the number of times state i emits obsV[t]
q[ (obsV[t+1] * p->stateN) + i ] += g[ ((t+1)*p->stateN) + i ];
}
// normalize Et and sum it into E
cmVOR_DivVS( Et, (p->stateN*p->stateN), Esum );
cmVOR_AddVV( E, (p->stateN*p->stateN), Et );
}
// update the model
_cmDhmmNormMtxRows( p->initV, 1, p->stateN, g );
_cmDhmmNormMtxRows( p->transM, p->stateN, p->stateN, E );
_cmDhmmNormMtxRows( p->stsM, p->stateN, p->symN, q );
}
return cmOkRC;
}
cmRC_t cmDhmmReport( cmDhmm* p )
{
cmVOR_PrintL("initV:\n", p->obj.err.rpt, 1, p->stateN, p->initV );
cmVOR_PrintL("transM:\n", p->obj.err.rpt, p->stateN, p->stateN, p->transM );
cmVOR_PrintL("symM:\n", p->obj.err.rpt, p->stateN, p->symN, p->stsM );
return cmOkRC;
}
void cmDhmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
unsigned stateN = 2;
unsigned symN = 3;
unsigned obsN = 4;
unsigned iterN = 10;
cmReal_t initV0[ stateN ];
cmReal_t transM0[ stateN * stateN ];
cmReal_t stsM0[ symN * stateN ];
cmReal_t initV1[ stateN ];
cmReal_t transM1[ stateN * stateN ];
cmReal_t stsM1[ symN * stateN ];
unsigned obsV[ obsN ];
unsigned hist[ symN ];
unsigned genFl = kManualProbHmmFl;
cmReal_t initV[] =
{
0.44094,
0.55906
};
cmReal_t transM[] =
{
0.48336,
0.81353,
0.51664,
0.18647,
};
cmReal_t stsM[] =
{
0.20784,
0.18698,
0.43437,
0.24102,
0.35779,
0.57199
};
unsigned obsM[] = { 2, 2, 2, 0 };
cmReal_t initV2[] = { 0.79060, 0.20940 };
cmReal_t transM2[] = { 0.508841, 0.011438, 0.491159, 0.988562 };
cmReal_t stsM2[] = { 0.25789, 0.35825, 0.61981, 0.42207, 0.12230, 0.21969 };
//srand( time(NULL) );
// generate a random HMM
_cmDhmmGenProb( initV0, 1, stateN, genFl, initV );
_cmDhmmGenProb( transM0, stateN, stateN, genFl, transM );
_cmDhmmGenProb( stsM0, stateN, symN, genFl, stsM );
cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH);
cmDhmm* h0p = cmDhmmAlloc( c, NULL, stateN, symN, initV0, transM0, stsM0 );
// generate an observation sequence based on the random HMM
//cmDhmmGenObsSequence(c, h0p, obsV, obsN );
memcpy(obsV,obsM,obsN*sizeof(unsigned));
if( 0 )
{
// print the HMM
cmDhmmReport( h0p);
// print the observation symbols
cmVOU_PrintL("obs:\n", rpt, 1, obsN, obsV );
// print the histogram of the obs. symbols
cmVOU_Hist( hist, symN, obsV, obsN );
cmVOU_PrintL("hist:\n", rpt, 1, symN, hist );
// calc alpha (the forward probabilities)
cmReal_t alphaM[ h0p->stateN*obsN ];
cmReal_t logProb=0;
cmDHmmForwardEval( h0p, h0p->initV, obsV, obsN, alphaM, kLogScaleHmmFl, &logProb);
printf("log prob:%f\n alpha:\n", logProb );
cmVOR_Print( rpt, h0p->stateN, obsN, alphaM );
// calc beta (the bcmkward probabilities)
cmReal_t betaM[ h0p->stateN*obsN ];
logProb=0;
cmDHmmBcmkwardEval( h0p, obsV, obsN, betaM, kLogScaleHmmFl);
printf("log prob:%f\n beta:\n", logProb );
cmVOR_Print( h0p->obj.err.rpt, h0p->stateN, obsN, betaM );
}
// initialize a second HMM with random probabilities
_cmDhmmGenProb( initV1, 1, stateN, kManualProbHmmFl, initV2 );
_cmDhmmGenProb( transM1, stateN, stateN, kManualProbHmmFl, transM2 );
_cmDhmmGenProb( stsM1, stateN, symN, kManualProbHmmFl, stsM2 );
cmDhmm* h1p = cmDhmmAlloc( c, NULL, stateN, symN, initV1, transM1, stsM1 );
cmDhmmTrainEM( h1p, obsV, obsN, iterN, kLogScaleHmmFl );
cmDhmmFree(&h1p);
cmDhmmFree(&h0p);
cmCtxFree(&c);
}
//------------------------------------------------------------------------------------------------------------
cmConvolve* cmConvolveAlloc( cmCtx* c, cmConvolve* ap, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
{
cmConvolve* p = cmObjAlloc( cmConvolve, c, ap);
p->fft = cmFftAllocSR( c,NULL,NULL,0,kNoConvertFftFl);
p->ifft= cmIFftAllocRS(c,NULL,p->fft->binCnt);
if( hn > 0 && procSmpCnt > 0 )
if( cmConvolveInit(p,h,hn,procSmpCnt) != cmOkRC )
cmObjFree(&p);
return p;
}
cmRC_t cmConvolveFree( cmConvolve** pp )
{
cmRC_t rc;
cmConvolve* p = *pp;
if( pp == NULL || *pp == NULL )
return cmOkRC;
if((rc = cmConvolveFinal(p)) != cmOkRC )
return cmOkRC;
cmFftFreeSR(&p->fft);
cmIFftFreeRS(&p->ifft);
cmMemPtrFree(&p->H);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmConvolveInit( cmConvolve* p, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
{
cmRC_t rc;
unsigned i;
unsigned cn = cmNextPowerOfTwo( hn + procSmpCnt - 1 );
if((rc = cmConvolveFinal(p)) != cmOkRC )
return rc;
cmFftInitSR( p->fft, NULL, cn, kNoConvertFftFl );
cmIFftInitRS( p->ifft, p->fft->binCnt);
p->H = cmMemResizeZ( cmComplexR_t,p->H, p->fft->binCnt );
p->outV = cmMemResizeZ( cmSample_t,p->outV, cn );
p->olaV = p->outV + procSmpCnt;
p->outN = procSmpCnt;
p->hn = hn;
// take the FFT of the impulse response
cmFftExecSR( p->fft, h, hn );
// copy the FFT of the impulse response to p->H[]
for(i=0; i<p->fft->binCnt; ++i)
p->H[i] = p->fft->complexV[i] / p->fft->wndSmpCnt;
return cmOkRC;
}
cmRC_t cmConvolveFinal( cmConvolve* p )
{ return cmOkRC; }
cmRC_t cmConvolveExec( cmConvolve* p, const cmSample_t* x, unsigned xn )
{
unsigned i;
// take FT of input signal
cmFftExecSR( p->fft, x, xn );
// multiply the signal spectra of the input signal and impulse response
for(i=0; i<p->fft->binCnt; ++i)
p->ifft->complexV[i] = p->H[i] * p->fft->complexV[i];
// take the IFFT of the convolved spectrum
cmIFftExecRS(p->ifft,NULL);
// sum with previous impulse response tail
cmVOS_AddVVV( p->outV, p->outN-1, p->olaV, p->ifft->outV );
// first sample of the impulse response tail is complete
p->outV[p->outN-1] = p->ifft->outV[p->outN-1];
// store the new impulse response tail
cmVOS_Copy(p->olaV,p->hn-1,p->ifft->outV + p->outN );
return cmOkRC;
}
cmRC_t cmConvolveSignal( cmCtx* c, const cmSample_t* h, unsigned hn, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn )
{
cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
cmConvolveExec(p,x,xn);
unsigned n = cmMin(p->outN,yn);
cmVOS_Copy(y,n,p->outV);
if( yn > p->outN )
{
unsigned m = cmMin(yn-p->outN,p->hn-1);
cmVOS_Copy(y+n,m,p->olaV);
}
cmConvolveFree(&p);
return cmOkRC;
}
cmRC_t cmConvolveTest(cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
cmCtx *c = cmCtxAlloc(NULL,rpt,lhH,stH);
cmSample_t h[] = { 1, .5, .25, 0, 0 };
unsigned hn = sizeof(h) / sizeof(h[0]);
cmSample_t x[] = { 1, 0, 0, 0, 1, 0, 0, 0 };
unsigned xn = sizeof(x) / sizeof(x[0]);
unsigned yn = xn+hn-1;
cmSample_t y[yn];
//cmVOS_Hann(h,5);
cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
cmConvolveExec(p,x,xn);
cmVOS_Print( rpt, 1, p->outN, p->outV );
cmVOS_Print( rpt, 1, p->hn-1, p->olaV );
cmConvolveFree(&p);
cmConvolveSignal(c,h,hn,x,xn,y,yn);
cmVOS_Print( rpt, 1, hn+xn-1, y );
cmCtxFree(&c);
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmBfcc* cmBfccAlloc( cmCtx* ctx, cmBfcc* ap, unsigned bandCnt, unsigned binCnt, double binHz )
{
cmBfcc* p = cmObjAlloc( cmBfcc, ctx, ap );
if( bandCnt > 0 )
if( cmBfccInit( p, bandCnt, binCnt, binHz ) != cmOkRC )
cmBfccFree(&p);
return p;
}
cmRC_t cmBfccFree( cmBfcc** pp )
{
cmRC_t rc;
if( pp== NULL || *pp==NULL)
return cmOkRC;
cmBfcc* p = *pp;
if((rc = cmBfccFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->dctMtx);
cmMemPtrFree(&p->filtMask);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return rc;
}
cmRC_t cmBfccInit( cmBfcc* p, unsigned bandCnt, unsigned binCnt, double binHz )
{
cmRC_t rc;
if((rc = cmBfccFinal(p)) != cmOkRC )
return rc;
p->dctMtx = cmMemResizeZ( cmReal_t, p->dctMtx, bandCnt*bandCnt);
p->filtMask = cmMemResizeZ( cmReal_t, p->filtMask, bandCnt*binCnt);
p->outV = cmMemResizeZ( cmReal_t, p->outV, bandCnt );
p->binCnt = binCnt;
p->bandCnt = bandCnt;
cmVOR_BarkMask( p->filtMask, bandCnt, binCnt, binHz );
cmVOR_DctMatrix(p->dctMtx, bandCnt, bandCnt );
return rc;
}
cmRC_t cmBfccFinal( cmBfcc* p )
{ return cmOkRC; }
cmRC_t cmBfccExec( cmBfcc* p, const cmReal_t* magV, unsigned binCnt )
{
assert( binCnt <= p->binCnt );
cmReal_t t[ p->bandCnt ];
cmReal_t v[ binCnt ];
// convert magnitude to power
cmVOR_PowVVS(v,binCnt,magV,2.0);
// apply the filter mask to the power spectrum
cmVOR_MultVMV( t, p->bandCnt, p->filtMask, binCnt, v );
//cmVOR_PrintL("\t:\n", p->obj.ctx->outFuncPtr, 1, p->bandCnt, t);
cmVOR_ReplaceLte( t, p->bandCnt, t, 0, 0.1e-5 );
cmVOR_LogV( t, p->bandCnt, t );
// decorellate the bands with a DCT
cmVOR_MultVMV( p->outV, p->bandCnt, p->dctMtx, p->bandCnt, t );
return cmOkRC;
}
void cmBfccTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
double srate = 11025;
unsigned binCnt = 129;
double binHz = srate/(binCnt-1);
unsigned bandCnt = kDefaultBarkBandCnt;
cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
cmBfcc* b = cmBfccAlloc( c, NULL, bandCnt, binCnt, binHz );
cmReal_t powV[] = {
0.8402, 0.3944, 0.7831, 0.7984, 0.9116, 0.1976, 0.3352, 0.7682, 0.2778, 0.5540,
0.4774, 0.6289, 0.3648, 0.5134, 0.9522, 0.9162, 0.6357, 0.7173, 0.1416, 0.6070,
0.0163, 0.2429, 0.1372, 0.8042, 0.1567, 0.4009, 0.1298, 0.1088, 0.9989, 0.2183,
0.5129, 0.8391, 0.6126, 0.2960, 0.6376, 0.5243, 0.4936, 0.9728, 0.2925, 0.7714,
0.5267, 0.7699, 0.4002, 0.8915, 0.2833, 0.3525, 0.8077, 0.9190, 0.0698, 0.9493,
0.5260, 0.0861, 0.1922, 0.6632, 0.8902, 0.3489, 0.0642, 0.0200, 0.4577, 0.0631,
0.2383, 0.9706, 0.9022, 0.8509, 0.2667, 0.5398, 0.3752, 0.7602, 0.5125, 0.6677,
0.5316, 0.0393, 0.4376, 0.9318, 0.9308, 0.7210, 0.2843, 0.7385, 0.6400, 0.3540,
0.6879, 0.1660, 0.4401, 0.8801, 0.8292, 0.3303, 0.2290, 0.8934, 0.3504, 0.6867,
0.9565, 0.5886, 0.6573, 0.8587, 0.4396, 0.9240, 0.3984, 0.8148, 0.6842, 0.9110,
0.4825, 0.2158, 0.9503, 0.9201, 0.1477, 0.8811, 0.6411, 0.4320, 0.6196, 0.2811,
0.7860, 0.3075, 0.4470, 0.2261, 0.1875, 0.2762, 0.5564, 0.4165, 0.1696, 0.9068,
0.1032, 0.1261, 0.4954, 0.7605, 0.9848, 0.9350, 0.6844, 0.3832, 0.7498 };
//cmVOR_Random(powV, binCnt, 0.0, 1.0 );
cmBfccExec(b,powV,binCnt);
//cmVOR_PrintL("\nin:\n", rpt, 1, binCnt, powV);
//cmVOR_PrintL("\nfilt:\n", rpt, bandCnt, binCnt, b->filtMask);
//cmVOR_PrintL("\ndct:\n", rpt, bandCnt, bandCnt,b->dctMtx);
cmVOR_PrintL("\nbfcc:\n", rpt, 1, bandCnt, b->outV);
cmBfccFree(&b);
cmCtxFree(&c);
}
//------------------------------------------------------------------------------------------------------------
cmCeps* cmCepsAlloc( cmCtx* ctx, cmCeps* ap, unsigned binCnt, unsigned outN )
{
cmCeps* p = cmObjAlloc( cmCeps, ctx, ap );
//cmIFftAllocRR( ctx, &p->ft, 0 );
if( binCnt > 0 )
if( cmCepsInit( p, binCnt, outN ) != cmOkRC )
cmCepsFree(&p);
return p;
}
cmRC_t cmCepsFree( cmCeps** pp )
{
cmRC_t rc;
if( pp== NULL || *pp==NULL)
return cmOkRC;
cmCeps* p = *pp;
if((rc = cmCepsFinal(p)) != cmOkRC )
return rc;
//cmObjFreeStatic( cmIFftFreeRR, cmIFftRR, p->ft );
cmMemPtrFree(&p->dctM);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return rc;
}
cmRC_t cmCepsInit( cmCeps* p, unsigned binCnt, unsigned outN )
{
cmRC_t rc;
if((rc = cmCepsFinal(p)) != cmOkRC )
return rc;
//cmIFftInitRR( &p->ft, binCnt );
p->dct_cn = (binCnt-1)*2;
p->dctM = cmMemResize( cmReal_t, p->dctM, outN*p->dct_cn );
p->outN = outN; //p->ft.outN;
p->outV = cmMemResizeZ( cmReal_t, p->outV, outN ); //p->ft.outV;
p->binCnt = binCnt;
assert( outN <= p->dct_cn );
cmVOR_DctMatrix( p->dctM, outN, p->dct_cn );
return rc;
}
cmRC_t cmCepsFinal( cmCeps* p )
{ return cmOkRC; }
cmRC_t cmCepsExec( cmCeps* p, const cmReal_t* magV, const cmReal_t* phsV, unsigned binCnt )
{
assert( binCnt == p->binCnt );
cmReal_t v[ p->dct_cn ];
// guard against zeros in the magn spectrum
cmVOR_ReplaceLte(v,binCnt,magV,0.0,0.00001);
// take the log of the spectrum
cmVOR_LogV(v,binCnt,v);
// reconstruct the negative frequencies
int i,j;
for(i=1,j=p->dct_cn-1; i<binCnt; ++i,--j)
v[j] = v[i];
// take the DCT
cmVOR_MultVMV( p->outV, p->outN, p->dctM, p->dct_cn, v );
//cmIFftExecPolarRR( &p->ft, v, phsV );
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmOla* cmOlaAlloc( cmCtx* ctx, cmOla* ap, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
{
cmOla* p = cmObjAlloc( cmOla, ctx, ap );
cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
if( wndSmpCnt > 0 )
if( cmOlaInit(p,wndSmpCnt,hopSmpCnt,procSmpCnt,wndTypeId) != cmOkRC )
cmOlaFree(&p);
return p;
}
cmRC_t cmOlaFree( cmOla** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmOla* p = *pp;
if(( rc = cmOlaFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->bufV);
cmMemPtrFree(&p->outV);
cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
cmObjFree(pp);
return rc;
}
cmRC_t cmOlaInit( cmOla* p, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
{
cmRC_t rc;
if((rc = cmOlaFinal(p)) != cmOkRC )
return rc;
if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
return rc;
p->bufV = cmMemResizeZ( cmSample_t, p->bufV, wndSmpCnt );
p->outV = cmMemResizeZ( cmSample_t, p->outV, hopSmpCnt );
p->outPtr = p->outV + hopSmpCnt;
// hopSmpCnt must be an even multiple of procSmpCnt
assert( hopSmpCnt % procSmpCnt == 0 );
assert( wndSmpCnt >= hopSmpCnt );
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = hopSmpCnt;
p->procSmpCnt= procSmpCnt;
p->idx = 0;
return rc;
}
cmRC_t cmOlaFinal( cmOla* p )
{ return cmOkRC; }
// The incoming buffer and the ola buf (bufV)
// can be divided into three logical parts:
//
// [head][middle][tail]
//
// head = hopSmpCnt values
// tail = hopSmpCnt values
// middle = wndSmpCnt - (2*hopSmpCnt) values
//
// Each exec can be broken into three phases:
//
// outV = bufV[tail] + in[head]
// bufV[middle] += in[middle]
// bufV[tail] = in[tail]
//
cmRC_t cmOlaExecS( cmOla* p, const cmSample_t* sp, unsigned sN )
{
assert( sN == p->wndSmpCnt );
cmRC_t rc = cmOkRC;
const cmSample_t* ep = sp + sN;
const cmSample_t* wp = p->wf.wndV;
int i,j,k,n;
// [Sum head of incoming samples with tail of ola buf]
// fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
for(i=0; i<p->hopSmpCnt; ++i)
{
p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
if( p->idx == p->wndSmpCnt )
p->idx = 0;
}
// [Sum middle of incoming samples with middle of ola buf]
// sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
n = p->wndSmpCnt - (2*p->hopSmpCnt);
k = p->idx;
for(j=0; j<n; ++j)
{
p->bufV[k++] += (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
// [Assign tail of incoming to tail of ola buf]
// assign ending samples from sp[] into bufV[]
while( sp < ep )
{
p->bufV[k++] = (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
p->outPtr = p->outV;
return rc;
}
cmRC_t cmOlaExecR( cmOla* p, const cmReal_t* sp, unsigned sN )
{
assert( sN == p->wndSmpCnt );
cmRC_t rc = cmOkRC;
const cmReal_t* ep = sp + sN;
const cmSample_t* wp = p->wf.wndV;
int i,j,k,n;
// fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
for(i=0; i<p->hopSmpCnt; ++i)
{
p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
if( p->idx == p->wndSmpCnt )
p->idx = 0;
}
// sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
n = p->wndSmpCnt - (2*p->hopSmpCnt);
k = p->idx;
for(j=0; j<n; ++j)
{
p->bufV[k++] += (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
// assign ending samples from sp[] into bufV[]
while( sp < ep )
{
p->bufV[k++] = (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
p->outPtr = p->outV;
return rc;
}
const cmSample_t* cmOlaExecOut(cmOla* p)
{
const cmSample_t* sp = p->outPtr;
if( sp >= p->outV + p->hopSmpCnt )
return NULL;
p->outPtr += p->procSmpCnt;
return sp;
}
//------------------------------------------------------------------------------------------------------------
cmPhsToFrq* cmPhsToFrqAlloc( cmCtx* c, cmPhsToFrq* ap, double srate, unsigned binCnt, unsigned hopSmpCnt )
{
cmPhsToFrq* p = cmObjAlloc( cmPhsToFrq, c, ap );
if( srate != 0 )
if( cmPhsToFrqInit( p, srate, binCnt, hopSmpCnt ) != cmOkRC )
cmPhsToFrqFree(&p);
return p;
}
cmRC_t cmPhsToFrqFree( cmPhsToFrq** pp )
{
cmRC_t rc = cmOkRC;
cmPhsToFrq* p = *pp;
if( pp==NULL || *pp== NULL )
return rc;
if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->hzV);
cmMemPtrFree(&p->phsV);
cmMemPtrFree(&p->wV);
cmObjFree(pp);
return rc;
}
cmRC_t cmPhsToFrqInit( cmPhsToFrq* p, double srate, unsigned binCnt, unsigned hopSmpCnt )
{
cmRC_t rc;
unsigned i;
if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
return rc;
p->hzV = cmMemResizeZ( cmReal_t, p->hzV, binCnt );
p->phsV = cmMemResizeZ( cmReal_t, p->phsV, binCnt );
p->wV = cmMemResizeZ( cmReal_t, p->wV, binCnt );
p->srate = srate;
p->binCnt = binCnt;
p->hopSmpCnt = hopSmpCnt;
for(i=0; i<binCnt; ++i)
p->wV[i] = M_PI * i * hopSmpCnt / (binCnt-1);
return rc;
}
cmRC_t cmPhsToFrqFinal(cmPhsToFrq* p )
{ return cmOkRC; }
cmRC_t cmPhsToFrqExec( cmPhsToFrq* p, const cmReal_t* phsV )
{
cmRC_t rc = cmOkRC;
unsigned i;
double twoPi = 2.0 * M_PI;
double den = twoPi * p->hopSmpCnt;
for(i=0; i<p->binCnt; ++i)
{
cmReal_t dPhs = phsV[i] - p->phsV[i];
// unwrap phase - see phase_study.m for explanation
cmReal_t k = round( (p->wV[i] - dPhs) / twoPi);
// convert phase change to Hz
p->hzV[i] = (k * twoPi + dPhs) * p->srate / den;
// store phase for next iteration
p->phsV[i] = phsV[i];
}
return rc;
}
//------------------------------------------------------------------------------------------------------------
cmPvAnl* cmPvAnlAlloc( cmCtx* ctx, cmPvAnl* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
{
cmRC_t rc;
cmPvAnl* p = cmObjAlloc( cmPvAnl, ctx, ap );
cmShiftBufAlloc(ctx, &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt );
cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
cmFftAllocSR( ctx, &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl);
cmPhsToFrqAlloc(ctx, &p->pf, srate, p->ft.binCnt, hopSmpCnt );
if( procSmpCnt > 0 )
if((rc = cmPvAnlInit(p,procSmpCnt,srate,wndSmpCnt,hopSmpCnt,flags)) != cmOkRC )
cmPvAnlFree(&p);
return p;
}
cmRC_t cmPvAnlFree( cmPvAnl** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmPvAnl* p = *pp;
if((rc = cmPvAnlFinal(p) ) != cmOkRC )
return rc;
cmObjFreeStatic( cmPhsToFrqFree, cmPhsToFrq, p->pf );
cmObjFreeStatic( cmFftFreeSR, cmFftSR, p->ft );
cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
cmObjFreeStatic( cmShiftBufFree, cmShiftBuf, p->sb );
cmObjFree(pp);
return rc;
}
cmRC_t cmPvAnlInit( cmPvAnl* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
{
cmRC_t rc;
if((rc = cmPvAnlFinal(p)) != cmOkRC )
return rc;
if((rc = cmShiftBufInit( &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt )) != cmOkRC )
return rc;
if((rc = cmWndFuncInit( &p->wf, kHannWndId | kNormByLengthWndFl, wndSmpCnt, 0)) != cmOkRC )
return rc;
if((rc = cmFftInitSR( &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl)) != cmOkRC )
return rc;
if((rc = cmPhsToFrqInit( &p->pf, srate, p->ft.binCnt, hopSmpCnt)) != cmOkRC )
return rc;
// if the window was just initialized
// divide the window to indirectly apply the magnitude normalization
//if( p->wndSmpCnt != wndSmpCnt )
// cmVOS_DivVS( p->wf.wndV, p->wf.outN, wndSmpCnt );
p->flags = flags;
p->procSmpCnt = procSmpCnt;
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = hopSmpCnt;
p->binCnt = p->ft.binCnt;
p->magV = p->ft.magV;
p->phsV = p->ft.phsV;
p->hzV = p->pf.hzV;
return rc;
}
cmRC_t cmPvAnlFinal(cmPvAnl* p )
{ return cmOkRC; }
bool cmPvAnlExec( cmPvAnl* p, const cmSample_t* x, unsigned xN )
{
bool fl = false;
while( cmShiftBufExec(&p->sb,x,xN) )
{
cmWndFuncExec(&p->wf, p->sb.outV, p->sb.wndSmpCnt );
cmFftExecSR(&p->ft,NULL,0);
if( cmIsFlag(p->flags,kCalcHzPvaFl) )
cmPhsToFrqExec(&p->pf,p->phsV);
fl = true;
}
return fl;
}
//------------------------------------------------------------------------------------------------------------
cmPvSyn* cmPvSynAlloc( cmCtx* ctx, cmPvSyn* ap, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
{
cmRC_t rc;
cmPvSyn* p = cmObjAlloc( cmPvSyn, ctx, ap );
cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
cmIFftAllocRS( ctx, &p->ft, wndSmpCnt/2+1 );
cmOlaAlloc( ctx, &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId );
if( procSmpCnt )
if((rc = cmPvSynInit(p,procSmpCnt,outSrate,wndSmpCnt,hopSmpCnt,wndTypeId)) != cmOkRC )
cmPvSynFree(&p);
return p;
}
cmRC_t cmPvSynFree( cmPvSyn** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmPvSyn* p = *pp;
if((rc = cmPvSynFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->minRphV);
cmMemPtrFree(&p->maxRphV);
cmMemPtrFree(&p->itrV);
cmMemPtrFree(&p->phs0V);
cmMemPtrFree(&p->phsV);
cmMemPtrFree(&p->mag0V);
cmMemPtrFree(&p->magV);
cmObjFreeStatic( cmOlaFree, cmOla, p->ola);
cmObjFreeStatic( cmIFftFreeRS, cmIFftRS, p->ft );
cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmPvSynInit( cmPvSyn* p, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
{
cmRC_t rc;
int k;
double twoPi = 2.0 * M_PI;
bool useHannFl = true;
int m = useHannFl ? 2 : 1;
if((rc = cmPvSynFinal(p)) != cmOkRC )
return rc;
p->outSrate = outSrate;
p->procSmpCnt = procSmpCnt;
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = hopSmpCnt;
p->binCnt = wndSmpCnt / 2 + 1;
p->minRphV = cmMemResizeZ( cmReal_t, p->minRphV, p->binCnt );
p->maxRphV = cmMemResizeZ( cmReal_t, p->maxRphV, p->binCnt );
p->itrV = cmMemResizeZ( cmReal_t, p->itrV, p->binCnt );
p->phs0V = cmMemResizeZ( cmReal_t, p->phs0V, p->binCnt );
p->phsV = cmMemResizeZ( cmReal_t, p->phsV, p->binCnt );
p->mag0V = cmMemResizeZ( cmReal_t, p->mag0V, p->binCnt );
p->magV = cmMemResizeZ( cmReal_t, p->magV, p->binCnt );
if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
return rc;
if((rc = cmIFftInitRS( &p->ft, p->binCnt )) != cmOkRC )
return rc;
if((rc = cmOlaInit( &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId )) != cmOkRC )
return rc;
for(k=0; k<p->binCnt; ++k)
{
// complete revolutions per hop in radians
p->itrV[k] = twoPi * floor((double)k * hopSmpCnt / wndSmpCnt );
p->minRphV[k] = ((cmReal_t)(k-m)) * hopSmpCnt * twoPi / wndSmpCnt;
p->maxRphV[k] = ((cmReal_t)(k+m)) * hopSmpCnt * twoPi / wndSmpCnt;
//printf("%f %f %f\n",p->itrV[k],p->minRphV[k],p->maxRphV[k]);
}
return rc;
}
cmRC_t cmPvSynFinal(cmPvSyn* p )
{ return cmOkRC; }
cmRC_t cmPvSynExec( cmPvSyn* p, const cmReal_t* magV, const cmReal_t* phsV )
{
double twoPi = 2.0 * M_PI;
unsigned k;
for(k=0; k<p->binCnt; ++k)
{
// phase dist between cur and prv frame
cmReal_t dp = phsV[k] - p->phs0V[k];
// dist must be positive (accum phase always increases)
if( dp < -0.00001 )
dp += twoPi;
// add in complete revolutions based on the bin frequency
// (these would have been lost from 'dp' due to phase wrap)
dp += p->itrV[k];
// constrain the phase change to lie within the range of the kth bin
if( dp < p->minRphV[k] )
dp += twoPi;
if( dp > p->maxRphV[k] )
dp -= twoPi;
p->phsV[k] = p->phs0V[k] + dp;
p->magV[k] = p->mag0V[k];
p->phs0V[k] = phsV[k];
p->mag0V[k] = magV[k];
}
cmIFftExecPolarRS( &p->ft, magV, phsV );
cmOlaExecS( &p->ola, p->ft.outV, p->ft.outN );
//printf("%i %i\n",p->binCnt,p->ft.binCnt );
//cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, magV );
//cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, p->phsV );
//cmVOS_Print( p->obj.ctx->outFuncPtr, 1, 10, p->ft.outV );
return cmOkRC;
}
cmRC_t cmPvSynDoIt( cmPvSyn* p, const cmSample_t* v )
{
cmOlaExecS( &p->ola, v, p->wndSmpCnt );
//printf("%f\n",cmVOS_RMS(s,p->wndSmpCnt,p->wndSmpCnt));
return cmOkRC;
}
const cmSample_t* cmPvSynExecOut(cmPvSyn* p )
{ return cmOlaExecOut(&p->ola); }
//------------------------------------------------------------------------------------------------------------
cmMidiSynth* cmMidiSynthAlloc( cmCtx* ctx, cmMidiSynth* ap, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
{
cmMidiSynth* p = cmObjAlloc( cmMidiSynth, ctx, ap );
if( pgmArray != NULL )
if( cmMidiSynthInit( p, pgmArray, pgmCnt, voiceCnt, procSmpCnt, outChCnt, srate ) != cmOkRC )
cmMidiSynthFree(&p);
return p;
}
cmRC_t cmMidiSynthFree( cmMidiSynth** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL)
return cmOkRC;
cmMidiSynth* p = *pp;
if((rc = cmMidiSynthFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->voiceArray);
cmMemPtrFree(&p->outM);
cmMemPtrFree(&p->outChArray);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmMidiSynthInit( cmMidiSynth* p, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
{
// at least one pgm must be given
assert( pgmCnt > 0 );
unsigned i;
cmRC_t rc;
if((rc = cmMidiSynthFinal(p)) != cmOkRC )
return rc;
p->voiceArray = cmMemResizeZ( cmMidiVoice, p->voiceArray, voiceCnt );
p->outM = cmMemResizeZ( cmSample_t, p->outM, outChCnt * procSmpCnt );
p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
p->avail = p->voiceArray;
p->voiceCnt = voiceCnt;
p->activeVoiceCnt = 0;
p->voiceStealCnt = 0;
p->procSmpCnt = procSmpCnt;
p->outChCnt = outChCnt;
p->srate = srate;
for(i=0; i<outChCnt; ++i)
p->outChArray[i] = p->outM + (i*procSmpCnt);
for(i=0; i<kMidiChCnt; ++i)
{
p->chArray[i].pgm = 0;
p->chArray[i].active = NULL;
p->chArray[i].pitchBend = 0;
p->chArray[i].synthPtr = p;
memset(p->chArray[i].midiCtl, 0, kMidiCtlCnt * sizeof(cmMidiByte_t));
}
for(i=0; i<voiceCnt; ++i)
{
p->voiceArray[i].index = i;
p->voiceArray[i].flags = 0;
p->voiceArray[i].pitch = kInvalidMidiPitch;
p->voiceArray[i].velocity = kInvalidMidiVelocity;
p->voiceArray[i].pgm.pgm = kInvalidMidiPgm;
p->voiceArray[i].pgm.cbPtr = NULL;
p->voiceArray[i].pgm.cbDataPtr = NULL;
p->voiceArray[i].chPtr = NULL;
p->voiceArray[i].link = i<voiceCnt-1 ? p->voiceArray + i + 1 : NULL;
}
for(i=0; i<pgmCnt; ++i)
{
unsigned idx = pgmArray[i].pgm;
if( idx >= kMidiPgmCnt )
rc = cmCtxRtCondition( &p->obj, cmArgAssertRC, "MIDI program change values must be less than %i.",kMidiPgmCnt);
else
{
p->pgmArray[ idx ].cbPtr = pgmArray[i].cbPtr;
p->pgmArray[ idx ].cbDataPtr = pgmArray[i].cbDataPtr;
p->pgmArray[ idx ].pgm = idx;
}
}
return rc;
}
cmRC_t cmMidiSynthFinal( cmMidiSynth* p )
{ return cmOkRC; }
cmRC_t _cmMidiSynthOnNoteOn( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
{
assert( ch < kMidiChCnt );
if( p->activeVoiceCnt == p->voiceCnt )
{
++p->voiceStealCnt;
return cmOkRC;
}
assert( p->avail != NULL );
cmMidiSynthCh* chPtr = p->chArray + ch;
cmMidiVoice* vp = p->avail;
++p->activeVoiceCnt;
// update avail
p->avail = p->avail->link;
// update active
vp->flags |= kActiveMsFl | kKeyGateMsFl;
vp->pitch = pitch;
vp->velocity = vel;
vp->pgm = p->pgmArray[ chPtr->pgm ];
vp->chPtr = chPtr;
vp->link = chPtr->active;
chPtr->active = vp;
vp->pgm.cbPtr( vp, kAttackMsId, NULL, 0 );
return cmOkRC;
}
cmRC_t _cmMidiSynthOnNoteOff( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
{
assert( ch < kMidiChCnt );
cmMidiSynthCh* cp = p->chArray + ch;
cmMidiVoice* vp = cp->active;
// find the voice for the given pitch
while( vp != NULL )
{
if( (vp->pitch == pitch) && (cmIsFlag(vp->flags,kKeyGateMsFl)==true) )
break;
vp = vp->link;
}
// if no voice had a key down on this pitch
if( vp == NULL )
{
return cmOkRC;
}
// mark the key as 'up'
vp->flags = cmClrFlag(vp->flags,kKeyGateMsFl);
// if the sustain pedal is up
if( cp->midiCtl[ kSustainCtlMdId ] == 0 )
vp->pgm.cbPtr( vp, kReleaseMsId, NULL, 0 );
return cmOkRC;
}
cmRC_t _cmMidiSynthOnCtl( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t ctlId, cmMidiByte_t ctlValue )
{
assert( ch < kMidiChCnt && ctlId < kMidiCtlCnt );
cmMidiSynthCh* cp = p->chArray + ch;
cp->midiCtl[ ctlId ] = ctlValue;
// if the sustain pedal is going up
if( ctlId == kSustainCtlMdId && ctlValue == 0 )
{
cmMidiVoice* vp = cp->active;
while(vp != NULL)
{
if( cmIsFlag(vp->flags,kKeyGateMsFl)==false )
vp->pgm.cbPtr(vp, kReleaseMsId, NULL, 0 );
vp = vp->link;
}
}
//printf("%i %i %f\n",ctlId,ctlValue,ctlValue/127.0);
return cmOkRC;
}
cmRC_t cmMidiSynthOnMidi( cmMidiSynth* p, const cmMidiPacket_t* pktArray, unsigned pktCnt )
{
unsigned i=0;
for(i=0; i<pktCnt; ++i)
if( pktArray[i].msgArray != NULL )
{
unsigned j;
for(j=0; j<pktArray[i].msgCnt; ++j)
{
const cmMidiMsg* mp = pktArray[i].msgArray + j;
cmMidiByte_t ch = mp->status & 0x0f;
cmMidiByte_t status = mp->status & 0xf0;
switch( status )
{
case kNoteOnMdId:
if( mp->d1 != 0 )
{
_cmMidiSynthOnNoteOn(p,ch,mp->d0,mp->d1);
break;
}
// fall through
case kNoteOffMdId:
_cmMidiSynthOnNoteOff(p,ch,mp->d0,mp->d1);
break;
case kPolyPresMdId:
break;
case kCtlMdId:
_cmMidiSynthOnCtl( p, ch, mp->d0, mp->d1 );
break;
case kPgmMdId:
break;
case kChPresMdId:
break;
case kPbendMdId:
break;
default:
printf("Unknown MIDI status:%i %i\n",(int)status,(int)mp->status);
break;
}
}
}
return cmOkRC;
}
cmRC_t cmMidiSynthExec( cmMidiSynth* p, cmSample_t* outChArray[], unsigned outChCnt )
{
unsigned i;
cmSample_t** chArray = outChArray == NULL ? p->outChArray : outChArray;
unsigned chCnt = outChArray == NULL ? p->outChCnt : outChCnt;
// FIX: make one active chain attached to cmMidiSynth rather than many
// active chains attached to each channel - this will avoid the extra
// iterations below.
// for each channel
for(i=0; i<kMidiChCnt; ++i)
{
cmMidiVoice* vp = p->chArray[i].active;
cmMidiVoice* prv = NULL;
// for each voice assigned to this channel
while(vp != NULL)
{
// tell the voice to perform its DSP function - returns 0 if the voice is no longer active
if( vp->pgm.cbPtr( vp, kDspMsId, chArray, chCnt ) )
{
prv = vp;
vp = vp->link;
}
else
{
cmMidiVoice* nvp = vp->link;
// remove vp from the active chain
if( prv != NULL )
prv->link = vp->link;
else
{
assert( vp == p->chArray[i].active );
// vp is first recd on active chain, nvp becomes first ...
p->chArray[i].active = vp->link;
prv = NULL; // ... so prv must be NULL
}
// insert this voice on the available chain
vp->link = p->avail;
p->avail = vp;
--p->activeVoiceCnt;
vp = nvp;
}
}
}
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmWtVoice* cmWtVoiceAlloc( cmCtx* ctx, cmWtVoice* ap, unsigned procSmpCnt, cmReal_t hz )
{
cmWtVoice* p = cmObjAlloc( cmWtVoice, ctx, ap );
if( procSmpCnt != 0 )
if( cmWtVoiceInit( p, procSmpCnt, hz ) != cmOkRC )
cmWtVoiceFree(&p);
return p;
}
cmRC_t cmWtVoiceFree( cmWtVoice** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmWtVoice* p = *pp;
if((rc = cmWtVoiceFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return rc;
}
cmRC_t cmWtVoiceInit( cmWtVoice* p, unsigned procSmpCnt, cmReal_t hz )
{
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->hz = hz;
p->level = 0;
p->durSmpCnt = 0;
p->phase = 0;
p->state = kOffWtId;
return cmOkRC;
}
cmRC_t cmWtVoiceFinal( cmWtVoice* p )
{ return cmOkRC; }
int cmWtVoiceExec( cmWtVoice* p, struct cmMidiVoice_str* mvp, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
{
switch( sel )
{
case kAttackMsId:
p->state = kAtkWtId;
p->hz = (13.75 * pow(2,(-9.0/12.0))) * pow(2,((double)mvp->pitch / 12));
//printf("%fhz\n",p->hz);
break;
case kReleaseMsId:
p->state = kRlsWtId;
//printf("rls:%f\n",p->phase);
break;
case kDspMsId:
{
if( p->state == kRlsWtId )
{
p->state = kOffWtId;
return 0;
}
cmMidiSynth* sp = mvp->chPtr->synthPtr;
cmSample_t* dp = outChCnt == 0 ? p->outV : outChArray[0];
cmSample_t* ep = dp + p->outN;
cmReal_t rps = (2.0 * M_PI * p->hz) / sp->srate;
cmReal_t sum=0;
unsigned i=0;
for(; dp < ep; ++dp)
{
*dp += (cmSample_t)(0.5 * sin( p->phase ));
sum += *dp;
++i;
p->phase += rps;
}
//printf("(%f %f %i %i %p) ",p->phase,sum,i,p->outN,outChArray[0] );
}
break;
default:
assert(0);
break;
}
return 1;
}
//------------------------------------------------------------------------------------------------------------
cmWtVoiceBank* cmWtVoiceBankAlloc( cmCtx* ctx, cmWtVoiceBank* ap, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
{
cmWtVoiceBank* p = cmObjAlloc( cmWtVoiceBank, ctx, ap );
if( srate != 0 )
if( cmWtVoiceBankInit( p, srate, procSmpCnt, voiceCnt, chCnt ) != cmOkRC )
cmWtVoiceBankFree(&p);
return p;
}
cmRC_t cmWtVoiceBankFree( cmWtVoiceBank** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL)
return cmOkRC;
cmWtVoiceBank* p = *pp;
if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->voiceArray);
cmMemPtrFree(&p->chArray);
cmMemPtrFree(&p->buf);
cmObjFree(pp);
return rc;
}
cmRC_t cmWtVoiceBankInit( cmWtVoiceBank* p, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
{
cmRC_t rc;
unsigned i;
if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
return rc;
p->voiceArray = cmMemResizeZ( cmWtVoice*, p->voiceArray, voiceCnt );
for(i=0; i<voiceCnt; ++i)
p->voiceArray[i] = cmWtVoiceAlloc(p->obj.ctx,NULL,procSmpCnt,0);
p->voiceCnt = voiceCnt;
p->buf = cmMemResizeZ( cmSample_t, p->buf, chCnt * procSmpCnt );
p->chArray = cmMemResizeZ( cmSample_t*, p->chArray, chCnt );
for(i=0; i<chCnt; ++i)
p->chArray[i] = p->buf + (i*procSmpCnt);
p->chCnt = chCnt;
p->procSmpCnt = procSmpCnt;
return cmOkRC;
}
cmRC_t cmWtVoiceBankFinal( cmWtVoiceBank* p )
{
unsigned i;
for(i=0; i<p->voiceCnt; ++i)
cmWtVoiceFree(&p->voiceArray[i]);
return cmOkRC;
}
int cmWtVoiceBankExec( cmWtVoiceBank* p, struct cmMidiVoice_str* voicePtr, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
{
cmWtVoice* vp = p->voiceArray[ voicePtr->index ];
bool fl = outChArray==NULL || outChCnt==0;
cmSample_t** chArray = fl ? p->chArray : outChArray;
unsigned chCnt = fl ? p->chCnt : outChCnt;
return cmWtVoiceExec( vp, voicePtr, sel, chArray, chCnt );
}
//------------------------------------------------------------------------------------------------------------
cmAudioFileBuf* cmAudioFileBufAlloc( cmCtx* ctx, cmAudioFileBuf* ap, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
{
cmAudioFileBuf* p = cmObjAlloc( cmAudioFileBuf, ctx, ap );
if( procSmpCnt != 0 )
if( cmAudioFileBufInit( p, procSmpCnt, fn, audioChIdx, begSmpIdx, durSmpCnt ) != cmOkRC )
cmAudioFileBufFree(&p);
return p;
}
cmRC_t cmAudioFileBufFree( cmAudioFileBuf** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL)
return cmOkRC;
cmAudioFileBuf* p = *pp;
if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->bufV);
cmMemPtrFree(&p->fn);
cmObjFree(pp);
return rc;
}
cmRC_t cmAudioFileBufInit( cmAudioFileBuf* p, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
{
cmAudioFileH_t afH;
cmRC_t rc;
if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
return rc;
// open the audio file for reading
if( cmAudioFileIsValid( afH = cmAudioFileNewOpen( fn, &p->info, &rc, p->obj.err.rpt ))==false || rc != kOkAfRC )
return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file '%s' could not be opend.",fn );
// validate the audio channel
if( audioChIdx >= p->info.chCnt )
return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file channel index %i is out of range for the audio file '%s'.",audioChIdx,fn);
// validate the start sample index
if( begSmpIdx > p->info.frameCnt )
return cmCtxRtCondition(&p->obj, cmOkRC, "The start sample index %i is past the end of the audio file '%s'.",begSmpIdx,fn);
if( durSmpCnt == cmInvalidCnt )
durSmpCnt = p->info.frameCnt - begSmpIdx;
// validate the duration
if( begSmpIdx + durSmpCnt > p->info.frameCnt )
{
unsigned newDurSmpCnt = p->info.frameCnt - begSmpIdx;
cmCtxRtCondition(&p->obj, cmOkRC, "The selected sample duration %i is past the end of the audio file '%s' and has been shorted to %i samples.",durSmpCnt,fn,newDurSmpCnt);
durSmpCnt = newDurSmpCnt;
}
// seek to the starting sample
if( cmAudioFileSeek( afH, begSmpIdx ) != kOkAfRC )
return cmCtxRtCondition(&p->obj, cmArgAssertRC,"Seek to sample index %i failed on the audio file '%s'.",begSmpIdx,fn);
// allocate the buffer memory
p->bufV = cmMemResizeZ( cmSample_t, p->bufV, durSmpCnt );
p->fn = cmMemResize( char, p->fn, strlen(fn)+1 );
p->bufN = durSmpCnt;
p->begSmpIdx = begSmpIdx;
p->chIdx = audioChIdx;
strcpy(p->fn,fn);
cmSample_t* outV = p->bufV;
// read the file into the buffer
unsigned rdSmpCnt = cmMin(4096,durSmpCnt);
unsigned cmc = 0;
while( cmc < durSmpCnt )
{
unsigned actualReadCnt = 0;
unsigned n = rdSmpCnt;
cmSample_t* chArray[] = {outV};
if( cmc + n > durSmpCnt )
n = durSmpCnt - cmc;
if((rc=cmAudioFileReadSample( afH, n, audioChIdx, 1, chArray, &actualReadCnt)) != kOkAfRC )
break;
cmc += actualReadCnt;
outV += actualReadCnt;
}
if( rc==kOkAfRC || (rc != kOkAfRC && cmAudioFileIsEOF(afH)))
rc = cmOkRC;
return rc;
}
cmRC_t cmAudioFileBufFinal(cmAudioFileBuf* p )
{ return cmOkRC; }
unsigned cmAudioFileBufExec( cmAudioFileBuf* p, unsigned smpIdx, cmSample_t* outV, unsigned outN, bool sumIntoOutFl )
{
if( outV == NULL || outN == 0 || smpIdx >= p->bufN )
return 0;
unsigned n = cmMin(outN,p->bufN-smpIdx);
if( sumIntoOutFl )
cmVOS_AddVV(outV,n,p->bufV + smpIdx);
else
cmVOS_Copy(outV,n,p->bufV + smpIdx );
if( n < outN )
memset(outV+n,0,(outN-n)*sizeof(cmSample_t));
return n;
}
//------------------------------------------------------------------------------------------------------------
cmMDelay* cmMDelayAlloc( cmCtx* ctx, cmMDelay* ap, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
{
cmMDelay* p = cmObjAlloc( cmMDelay, ctx, ap );
if( procSmpCnt != 0 )
if( cmMDelayInit( p, procSmpCnt, srate, fbCoeff, delayCnt, delayMsArray, delayGainArray ) != cmOkRC )
cmMDelayFree(&p);
return p;
}
cmRC_t cmMDelayFree( cmMDelay** pp )
{
cmRC_t rc;
if( pp == NULL || *pp==NULL)
return cmOkRC;
cmMDelay* p = *pp;
if((rc = cmMDelayFinal(p)) != cmOkRC )
return rc;
unsigned i;
for(i=0; i<p->delayCnt; ++i)
cmMemPtrFree(&p->delayArray[i].delayBuf);
cmMemPtrFree(&p->delayArray);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmMDelayInit( cmMDelay* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
{
cmRC_t rc;
if((rc = cmMDelayFinal(p)) != cmOkRC )
return rc;
if( delayCnt <= 0 )
return rc;
p->delayArray = cmMemResizeZ( cmMDelayHead, p->delayArray, delayCnt );
unsigned i;
for(i=0; i<delayCnt; ++i)
{
p->delayArray[i].delayGain = delayGainArray == NULL ? 1.0 : delayGainArray[i];
p->delayArray[i].delayMs = delayMsArray[i];
p->delayArray[i].delaySmpFrac = delayMsArray[i] * srate / 1000.0;
p->delayArray[i].delayBufSmpCnt = ceil(delayMsArray[i] * srate / 1000)+2;
p->delayArray[i].delayBuf = cmMemResizeZ( cmSample_t, p->delayArray[i].delayBuf, p->delayArray[i].delayBufSmpCnt );
p->delayArray[i].inIdx = 0;
}
p->delayCnt= delayCnt;
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->fbCoeff = fbCoeff;
p->srate = srate;
return cmOkRC;
}
cmRC_t cmMDelayFinal( cmMDelay* p )
{ return cmOkRC; }
void _cmMDelayExec( cmMDelay* p, cmMDelayHead* hp, const cmSample_t inV[], cmSample_t outV[], unsigned sigN )
{
cmSample_t* dl = hp->delayBuf; // ptr to the base of the delay line
cmReal_t dfi = (cmReal_t)(hp->inIdx - hp->delaySmpFrac) + hp->delayBufSmpCnt; // fractional delay in samples
int dii0 = ((int)dfi) % hp->delayBufSmpCnt; // index to the sample just before the delay position
int dii1 = (dii0 + 1) % hp->delayBufSmpCnt; // index to the sample just after the delay position
//cmReal_t frac = 0; //dfi - dii0; // interpolation coeff.
unsigned i;
for(i=0; i<sigN; i++)
{
/*
outPtr[i] = -(((f+0)*(f-1)*(f-2)/6) * _wtPtr[iPhs0])
+(((f+1)*(f-1)*(f-2)/2) * _wtPtr[iPhs0+1])
-(((f+1)*(f-0)*(f-2)/2) * _wtPtr[iPhs0+2])
+(((f+1)*(f-0)*(f-1)/6) * _wtPtr[iPhs0+3]);
*/
cmSample_t outSmp = dl[dii0]; // + (frac * (dl[dii1]-dl[dii0]));
outV[i] += outSmp/p->delayCnt;
dl[hp->inIdx] = (p->fbCoeff * outSmp) + inV[i];
hp->inIdx = (hp->inIdx+1) % hp->delayBufSmpCnt;
dii0 = (dii0+1) % hp->delayBufSmpCnt;
dii1 = (dii1+1) % hp->delayBufSmpCnt;
}
}
cmRC_t cmMDelayExec( cmMDelay* p, const cmSample_t* inV, cmSample_t* outV, unsigned sigN, bool bypassFl )
{
assert( sigN <= p->outN);
if( outV == NULL )
{
outV = p->outV;
sigN = cmMin(sigN,p->outN);
cmVOS_Fill(outV,sigN,0);
}
else
{
cmVOS_Zero(outV,sigN);
}
if( inV == NULL )
return cmOkRC;
if( bypassFl )
{
memcpy(outV,inV,sigN*sizeof(cmSample_t));
return cmOkRC;
}
unsigned di;
for( di=0; di<p->delayCnt; ++di)
{
cmMDelayHead* hp = p->delayArray + di;
hp->delaySmpFrac = hp->delayMs * p->srate / 1000.0;
_cmMDelayExec(p,hp,inV,outV,sigN);
}
return cmOkRC;
}
void cmMDelaySetTapMs( cmMDelay* p, unsigned tapIdx, cmReal_t ms )
{
assert( tapIdx < p->delayCnt );
p->delayArray[tapIdx].delayMs = ms;
}
void cmMDelaySetTapGain(cmMDelay* p, unsigned tapIdx, cmReal_t gain )
{
assert( tapIdx < p->delayCnt );
p->delayArray[tapIdx].delayGain = gain;
}
void cmMDelayReport( cmMDelay* p, cmRpt_t* rpt )
{
cmRptPrintf(rpt,"tap cnt:%i fb:%f sr:%f\n",p->delayCnt,p->fbCoeff,p->srate);
}
//------------------------------------------------------------------------------------------------------------
cmAudioSegPlayer* cmAudioSegPlayerAlloc( cmCtx* ctx, cmAudioSegPlayer* ap, unsigned procSmpCnt, unsigned outChCnt )
{
cmAudioSegPlayer* p = cmObjAlloc( cmAudioSegPlayer, ctx, ap );
if( procSmpCnt != 0 )
if( cmAudioSegPlayerInit( p, procSmpCnt, outChCnt ) != cmOkRC )
cmAudioSegPlayerFree(&p);
return p;
}
cmRC_t cmAudioSegPlayerFree( cmAudioSegPlayer** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmAudioSegPlayer* p = *pp;
cmMemPtrFree(&p->segArray);
cmMemPtrFree(&p->outM);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmAudioSegPlayerInit( cmAudioSegPlayer* p, unsigned procSmpCnt, unsigned outChCnt )
{
cmRC_t rc = cmOkRC;
if((rc = cmAudioSegPlayerFinal(p)) != cmOkRC )
return rc;
p->procSmpCnt = procSmpCnt;
p->outChCnt = outChCnt;
p->segCnt = 0;
if( outChCnt )
{
unsigned i;
p->outM = cmMemResizeZ( cmSample_t, p->outM, procSmpCnt * outChCnt );
p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
for(i=0; i<outChCnt; ++i)
p->outChArray[i] = p->outM + (i*procSmpCnt);
}
return rc;
}
cmRC_t cmAudioSegPlayerFinal( cmAudioSegPlayer* p )
{ return cmOkRC; }
cmRC_t _cmAudioSegPlayerSegSetup( cmAudioSeg* sp, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
{
sp->bufPtr = bufPtr;
sp->id = id;
sp->smpIdx = smpIdx;
sp->smpCnt = smpCnt;
sp->outChIdx = outChIdx;
sp->outSmpIdx = 0;
sp->flags = 0;
return cmOkRC;
}
cmAudioSeg* _cmAudioSegPlayerIdToSegPtr( cmAudioSegPlayer* p, unsigned id, bool ignoreErrFl )
{
unsigned i = 0;
for(i=0; i<p->segCnt; ++i)
if( p->segArray[i].id == id )
return p->segArray + i;
if( !ignoreErrFl )
cmCtxRtCondition(&p->obj, cmArgAssertRC,"Unable to locate an audio segment with id=%i.",id);
return NULL;
}
cmRC_t cmAudioSegPlayerInsert( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
{
cmRC_t rc;
assert( _cmAudioSegPlayerIdToSegPtr( p, id, true ) == NULL );
p->segArray = cmMemResizePZ( cmAudioSeg, p->segArray, p->segCnt + 1 );
cmAudioSeg* sp = p->segArray + p->segCnt;
if((rc = _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx )) == cmOkRC )
++p->segCnt;
return rc;
}
cmRC_t cmAudioSegPlayerEdit( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
{
cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
return _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx );
}
cmRC_t cmAudioSegPlayerRemove( cmAudioSegPlayer* p, unsigned id, bool delFl )
{
cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
if( sp == NULL )
return cmArgAssertRC;
sp->flags = cmEnaFlag( sp->flags, kDelAspFl, delFl );
return cmOkRC;
}
cmRC_t cmAudioSegPlayerEnable( cmAudioSegPlayer* p, unsigned id, bool enableFl, unsigned outSmpIdx )
{
cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
if( sp == NULL )
return cmArgAssertRC;
if( outSmpIdx != cmInvalidIdx )
sp->outSmpIdx = outSmpIdx;
sp->flags = cmEnaFlag( sp->flags, kEnableAspFl, enableFl );
return cmOkRC;
}
void _cmAudioSegPlayerResetSeg( cmAudioSeg* sp )
{
sp->outSmpIdx = 0;
sp->flags = cmClrFlag(sp->flags, kEnableAspFl );
}
cmRC_t cmAudioSegPlayerReset( cmAudioSegPlayer* p )
{
unsigned i;
for(i=0; i<p->segCnt; ++i)
{
cmAudioSeg* sp = p->segArray + i;
_cmAudioSegPlayerResetSeg(sp);
}
return cmOkRC;
}
cmRC_t cmAudioSegPlayerExec( cmAudioSegPlayer* p, cmSample_t** outChPtr, unsigned outChCnt, unsigned procSmpCnt )
{
unsigned i;
if( outChPtr == NULL || outChCnt == 0 )
{
assert( p->outChCnt > 0 );
outChPtr = p->outChArray;
outChCnt = p->outChCnt;
assert( p->procSmpCnt <= procSmpCnt );
}
for(i=0; i<p->segCnt; ++i)
{
cmAudioSeg* sp = p->segArray + i;
// if the output channel is valid and the segment is enabled and not deleted
if( sp->outChIdx < outChCnt && (sp->flags & (kEnableAspFl | kDelAspFl)) == kEnableAspFl )
{
unsigned bufSmpIdx = sp->smpIdx + sp->outSmpIdx;
unsigned bufSmpCnt = 0;
// if all the samples have been played
if( sp->bufPtr->bufN <= bufSmpIdx )
_cmAudioSegPlayerResetSeg(sp);
else
{
// prevent playing past the end of the buffer
bufSmpCnt = cmMin( procSmpCnt, sp->bufPtr->bufN - bufSmpIdx );
// limit the number of samples to the segment length
bufSmpCnt = cmMin( bufSmpCnt, sp->smpCnt - sp->outSmpIdx );
// sum the samples into the output channel
cmVOS_AddVV( outChPtr[ sp->outChIdx ], bufSmpCnt, sp->bufPtr->bufV + bufSmpIdx );
// incr the next output sample index
sp->outSmpIdx += bufSmpCnt;
}
if( bufSmpCnt < procSmpCnt )
cmVOS_Zero( outChPtr[ sp->outChIdx ] + bufSmpCnt, procSmpCnt - bufSmpCnt );
}
}
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
/*
cmCluster0* cmCluster0Alloc( cmCtx* ctx, cmCluster0* ap, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* dstUserPtr )
{
cmCluster0* p = cmObjAlloc( cmCluster0, ctx, ap );
if( stateCnt != 0 )
if( cmCluster0Init( p, stateCnt, binCnt, flags, distFunc, distUserPtr ) != cmOkRC )
cmCluster0Free(&p);
return p;
}
cmRC_t cmCluster0Free( cmCluster0** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmCluster0* p = *pp;
cmMemPtrFree(&p->oM);
cmMemPtrFree(&p->tM);
cmMemPtrFree(&p->dV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmCluster0Init( cmCluster0* p, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* distUserPtr )
{
cmRC_t rc;
if((rc = cmCluster0Final(p)) != cmOkRC )
return rc;
p->oM = cmMemResizeZ( cmReal_t, p->oM, binCnt * stateCnt );
p->tM = cmMemResizeZ( cmReal_t, p->tM, stateCnt * stateCnt );
p->stateCnt = stateCnt;
p->binCnt = binCnt;
p->flags = flags;
p->distFunc = distFunc;
p->distUserPtr = distUserPtr;
p->cnt = 0;
}
cmRC_t cmCluster0Final( cmCluster0* p )
{ return cmOkRC; }
cmRC_t cmCluster0Exec( cmCluster0* p, const cmReal_t* v, unsigned vn )
{
assert( vn <= p->binCnt );
++cnt;
if( cnt <= stateCnt )
{
cmVOR_Copy( p->oM + ((cnt-1)*binCnt), vn, v );
return cmOkRC;
}
return cmOkRC;
}
*/
cmNmf_t* cmNmfAlloc( cmCtx* ctx, cmNmf_t* ap, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
{
cmNmf_t* p = cmObjAlloc( cmNmf_t, ctx, ap );
if( n != 0 )
if( cmNmfInit( p, n, m, r, maxIterCnt, convergeCnt ) != cmOkRC )
cmNmfFree(&p);
return p;
}
cmRC_t cmNmfFree( cmNmf_t** pp )
{
if( pp== NULL || *pp == NULL )
return cmOkRC;
cmNmf_t* p = *pp;
cmMemPtrFree(&p->V);
cmMemPtrFree(&p->W);
cmMemPtrFree(&p->H);
cmMemPtrFree(&p->tr);
cmMemPtrFree(&p->x);
cmMemPtrFree(&p->t0nm);
cmMemPtrFree(&p->t1nm);
cmMemPtrFree(&p->Wt);
cmMemPtrFree(&p->trm);
cmMemPtrFree(&p->crm);
cmMemPtrFree(&p->c0);
cmMemPtrFree(&p->c1);
cmMemPtrFree(&p->idxV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmNmfInit( cmNmf_t* p, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
{
cmRC_t rc;
if((rc = cmNmfFinal(p)) != cmOkRC )
return rc;
p->n = n;
p->m = m;
p->r = r;
p->maxIterCnt = maxIterCnt;
p->convergeCnt= convergeCnt;
p->V = cmMemResizeZ(cmReal_t, p->V, n*m );
p->W = cmMemResize( cmReal_t, p->W, n*r );
p->H = cmMemResize( cmReal_t, p->H, r*m );
p->tr = cmMemResize( cmReal_t, p->tr, r );
p->x = cmMemResize( cmReal_t, p->x, r*cmMax(m,n) );
p->t0nm = cmMemResize( cmReal_t, p->t0nm, cmMax(r,n)*m );
p->Ht = p->t0nm;
p->t1nm = cmMemResize( cmReal_t, p->t1nm, n*m );
p->Wt = cmMemResize( cmReal_t, p->Wt, r*n );
p->trm = cmMemResize( cmReal_t, p->trm, r*cmMax(m,n) );
p->crm = cmMemResizeZ(unsigned, p->crm, r*m);
p->tnr = p->trm;
p->c0 = cmMemResizeZ(unsigned, p->c0, m*m);
p->c1 = cmMemResizeZ(unsigned, p->c1, m*m);
p->idxV = cmMemResizeZ(unsigned, p->idxV, m );
p->c0m = p->c0;
p->c1m = p->c1;
cmVOR_Random(p->W,n*r,0.0,1.0);
cmVOR_Random(p->H,r*m,0.0,1.0);
return rc;
}
cmRC_t cmNmfFinal(cmNmf_t* p )
{ return cmOkRC; }
// NMF base on: Lee and Seung, 2001, Algo's for Non-negative Matrix Fcmtorization
// Connectivity stopping technique based on: http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m
cmRC_t cmNmfExec( cmNmf_t* p, const cmReal_t* vM, unsigned cn )
{
cmRC_t rc = cmOkRC;
unsigned i,j,k;
unsigned n = p->n;
unsigned m = p->m;
unsigned r = p->r;
unsigned stopIter = 0;
assert(cn <= m );
// shift in the incoming columns of V[]
if( cn < m )
cmVOR_Shift(p->V, n*m, n*cn,0);
cmVOR_Copy( p->V, n*cn,vM );
// shift H[] by the same amount as V[]
if( cn < m )
cmVOR_Shift( p->H, r*m, r*cn,0);
cmVOR_Random(p->H, r*cn, 0.0, 1.0 );
cmVOU_Zero( p->c1m, m*m );
for(i=0,j=0; i<p->maxIterCnt && stopIter<p->convergeCnt; ++i)
{
// x[r,m] =repmat(sum(W,1)',1,m);
cmVOR_SumM( p->W, n, r, p->tr );
for(j=0; j<m; ++j)
cmVOR_Copy( p->x + (j*r), r, p->tr );
cmVOR_Transpose(p->Wt,p->W,n,r);
//H=H.*(W'*(V./(W*H)))./x;
cmVOR_MultMMM(p->t0nm,n,m,p->W,p->H,r); // t0nm[n,m] = W*H
cmVOR_DivVVV( p->t1nm,n*m,p->V,p->t0nm); // t1nm[n,m] = V./(W*H)
cmVOR_MultMMM(p->trm,r,m,p->Wt,p->t1nm,n); // trm[r,m] = W'*(V./(W*H))
cmVOR_MultVV(p->H,r*m,p->trm); // H[r,m] = H .* (W'*(V./(W*H)))
cmVOR_DivVV(p->H,r*m, p->x ); // H[r,m] = (H .* (W'*(V./(W*H)))) ./ x
// x[n,r]=repmat(sum(H,2)',n,1);
cmVOR_SumMN(p->H, r, m, p->tr );
for(j=0; j<n; ++j)
cmVOR_CopyN(p->x + j, r, n, p->tr, 1 );
cmVOR_Transpose(p->Ht,p->H,r,m);
// W=W.*((V./(W*H))*H')./x;
cmVOR_MultMMM(p->tnr,n,r,p->t1nm,p->Ht,m); // tnr[n,r] = (V./(W*H))*Ht
cmVOR_MultVV(p->W,n*r,p->tnr); // W[n,r] = W.*(V./(W*H))*Ht
cmVOR_DivVV(p->W,n*r,p->x); // W[n,r] = W.*(V./(W*H))*Ht ./x
if( i % 10 == 0 )
{
cmVOR_ReplaceLte( p->H, r*m, p->H, 2.2204e-16, 2.2204e-16 );
cmVOR_ReplaceLte( p->W, n*r, p->W, 2.2204e-16, 2.2204e-16 );
cmVOR_MaxIndexM( p->idxV, p->H, r, m );
unsigned mismatchCnt = 0;
for(j=0; j<m; ++j)
for(k=0; k<m; ++k)
{
unsigned c_idx = (j*m)+k;
p->c0m[ c_idx ] = p->idxV[j] == p->idxV[k];
mismatchCnt += p->c0m[ c_idx ] != p->c1m[ c_idx ];
}
if( mismatchCnt == 0 )
++stopIter;
else
stopIter = 0;
printf("%i %i %i\n",i,stopIter,mismatchCnt);
fflush(stdout);
unsigned* tcm = p->c0m;
p->c0m = p->c1m;
p->c1m = tcm;
}
}
return rc;
}
//------------------------------------------------------------------------------------------------------------
cmSpecDist_t* cmSpecDistAlloc( cmCtx* ctx,cmSpecDist_t* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
{
cmSpecDist_t* p = cmObjAlloc( cmSpecDist_t, ctx, ap );
if( procSmpCnt != 0 )
{
if( cmSpecDistInit( p, procSmpCnt, srate, wndSmpCnt, hopFcmt, olaWndTypeId ) != cmOkRC )
cmSpecDistFree(&p);
}
return p;
}
cmRC_t cmSpecDistFree( cmSpecDist_t** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmSpecDist_t* p = *pp;
cmSpecDistFinal(p);
cmMemPtrFree(&p->hzV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmSpecDistInit( cmSpecDist_t* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
{
cmRC_t rc;
if((rc = cmSpecDistFinal(p)) != cmOkRC )
return rc;
unsigned flags = 0;
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = (unsigned)floor(wndSmpCnt/hopFcmt);
p->procSmpCnt = procSmpCnt;
p->mode = kBasicModeSdId;
p->thresh = 60;
p->offset = 0;
p->invertFl = false;
p->uprSlope = 0.0;
p->lwrSlope = 2.0;
p->pva = cmPvAnlAlloc(p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, flags );
p->pvs = cmPvSynAlloc(p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, olaWndTypeId );
p->spcBwHz = cmMin(srate/2,10000);
p->spcSmArg = 0.05;
p->spcMin = p->spcBwHz;
p->spcMax = 0.0;
p->spcSum = 0.0;
p->spcCnt = 0;
double binHz = srate / p->pva->wndSmpCnt;
p->spcBinCnt = (unsigned)floor(p->spcBwHz / binHz);
p->hzV = cmMemResizeZ(cmReal_t,p->hzV,p->spcBinCnt);
cmVOR_Seq( p->hzV, p->spcBinCnt, 0, 1 );
cmVOR_MultVS( p->hzV, p->spcBinCnt, binHz );
p->aeUnit = 0;
p->aeMin = 1000;
p->aeMax = -1000;
//p->bypOut = cmMemResizeZ(cmSample_t, p->bypOut, procSmpCnt );
return rc;
}
cmRC_t cmSpecDistFinal(cmSpecDist_t* p )
{
cmRC_t rc = cmOkRC;
cmPvAnlFree(&p->pva);
cmPvSynFree(&p->pvs);
return rc;
}
void _cmSpecDistBasicMode0(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
{
// octavez> thresh = 60;
// octave> X1m = [-62 -61 -60 -59];
// octave> -abs(abs(X1m+thresh)-(X1m+thresh)) - thresh
// octave> ans = -64 -62 -60 -60
unsigned i=0;
for(i=0; i<binCnt; ++i)
{
cmReal_t a = fabs(X1m[i]);
cmReal_t d = a - thresh;
X1m[i] = -thresh;
if( d > 0 )
X1m[i] -= 2*d;
}
}
void _cmSpecDistBasicMode(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
{
unsigned i=0;
if( p->lwrSlope < 0.3 )
p->lwrSlope = 0.3;
for(i=0; i<binCnt; ++i)
{
cmReal_t a = fabs(X1m[i]);
cmReal_t d = a - thresh;
X1m[i] = -thresh;
if( d > 0 )
X1m[i] -= (p->lwrSlope*d);
else
X1m[i] -= (p->uprSlope*d);
}
}
cmReal_t _cmSpecDistCentMode( cmSpecDist_t* p, cmReal_t* X1m )
{
// calc the spectral centroid
double num = cmVOR_MultSumVV( p->pva->magV, p->hzV, p->spcBinCnt );
double den = cmVOR_Sum( p->pva->magV, p->spcBinCnt );
double result = 0;
if( den != 0 )
result = num/den;
// apply smoothing filter to spectral centroid
p->spc = (result * p->spcSmArg) + (p->spc * (1.0-p->spcSmArg));
// track spec. cetr. min and max
p->spcMin = cmMin(p->spcMin,p->spc);
p->spcMax = cmMax(p->spcMax,p->spc);
//-----------------------------------------------------
++p->spcCnt;
p->spcSum += p->spc;
p->spcSqSum += p->spc * p->spc;
// use the one-pass std-dev calc. trick
//double mean = p->spcSum / p->spcCnt;
//double variance = p->spcSqSum / p->spcCnt - mean * mean;
//double std_dev = sqrt(variance);
double smin = p->spcMin;
double smax = p->spcMax;
//smin = mean - std_dev;
//smax = mean + std_dev;
//-----------------------------------------------------
// convert spec. cent. to unit range
double spcUnit = (p->spc - smin) / (smax - smin);
spcUnit = cmMin(1.0,cmMax(0.0,spcUnit));
if( p->invertFl )
spcUnit = 1.0 - spcUnit;
//if( p->spcMin==p->spc || p->spcMax==p->spc )
// printf("min:%f avg:%f sd:%f max:%f\n",p->spcMin,p->spcSum/p->spcCnt,std_dev,p->spcMax);
return spcUnit;
}
void _cmSpecDistBump( cmSpecDist_t* p, cmReal_t* x, unsigned binCnt, double thresh)
{
/*
thresh *= -1;
minDb = -100;
if db < minDb
db = minDb;
endif
if db > thresh
y = 1;
else
x = (minDb - db)/(minDb - thresh);
y = x + (x - (x.^coeff));
endif
y = minDb + abs(minDb) * y;
*/
unsigned i=0;
//printf("%f %f %f\n",thresh,p->lwrSlope,x[0]);
double minDb = -100.0;
thresh = -thresh;
for(i=0; i<binCnt; ++i)
{
double y;
if( x[i] < minDb )
x[i] = minDb;
if( x[i] > thresh )
y = 1;
else
{
y = (minDb - x[i])/(minDb - thresh);
y += y - pow(y,p->lwrSlope);
}
x[i] = minDb + (-minDb) * y;
}
}
void _cmSpecDistAmpEnvMode( cmSpecDist_t* p, cmReal_t* X1m )
{
cmReal_t smCoeff = 0.1;
//
cmReal_t mx = cmVOR_Max(X1m,p->pva->binCnt,1);
p->aeSmMax = (mx * smCoeff) + (p->aeSmMax * (1.0-smCoeff));
cmReal_t a = cmVOR_Mean(X1m,p->pva->binCnt);
p->ae = (a * smCoeff) + (p->ae * (1.0-smCoeff));
p->aeMin = cmMin(p->ae,p->aeMin);
p->aeMax = cmMax(p->ae,p->aeMax);
p->aeUnit = (p->ae - p->aeMin) / (p->aeMax-p->aeMin);
p->aeUnit = cmMin(1.0,cmMax(0.0,p->aeUnit));
if( p->invertFl )
p->aeUnit = 1.0 - p->aeUnit;
//printf("%f\n",p->aeSmMax);
}
cmRC_t cmSpecDistExec( cmSpecDist_t* p, const cmSample_t* sp, unsigned sn )
{
assert( sn == p->procSmpCnt );
// cmPvAnlExec() returns true when it calc's a new spectral output frame
if( cmPvAnlExec( p->pva, sp, sn ) )
{
cmReal_t X1m[p->pva->binCnt];
cmVOR_AmplToDbVV(X1m, p->pva->binCnt, p->pva->magV, -1000.0 );
switch( p->mode )
{
case kBypassModeSdId:
break;
case kBasicModeSdId:
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
break;
case kSpecCentSdId:
{
_cmSpecDistAmpEnvMode(p,X1m);
double spcUnit = _cmSpecDistCentMode(p,X1m);
double thresh = fabs(p->aeSmMax) - (spcUnit*p->offset);
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
}
break;
case kAmpEnvSdId:
{
_cmSpecDistAmpEnvMode(p,X1m);
//double thresh = fabs(p->aeSmMax) - p->offset;
double thresh = fabs(p->aeSmMax) - (p->aeUnit*p->offset);
thresh = fabs(p->thresh) - (p->aeUnit*p->offset);
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
}
break;
case kBumpSdId:
_cmSpecDistBump(p,X1m, p->pva->binCnt, p->offset);
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
break;
case 5:
break;
default:
break;
}
cmVOR_DbToAmplVV(X1m, p->pva->binCnt, X1m );
cmPvSynExec(p->pvs, X1m, p->pva->phsV );
}
return cmOkRC;
}
const cmSample_t* cmSpecDistOut( cmSpecDist_t* p )
{
return cmPvSynExecOut(p->pvs);
}
//------------------------------------------------------------------------------------------------------------
cmRC_t _cmBinMtxFileWriteHdr( cmBinMtxFile_t* p )
{
cmFileRC_t fileRC;
unsigned n = 3;
unsigned hdr[n];
hdr[0] = p->rowCnt;
hdr[1] = p->maxRowEleCnt;
hdr[2] = p->eleByteCnt;
if((fileRC = cmFileSeek(p->fh,kBeginFileFl,0)) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "File seek failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)));
if((fileRC = cmFileWriteUInt(p->fh,hdr,n)) != kOkFileRC )
return cmCtxRtCondition( &p->obj, fileRC, "Header write failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)) );
return cmOkRC;
}
cmBinMtxFile_t* cmBinMtxFileAlloc( cmCtx* ctx, cmBinMtxFile_t* ap, const cmChar_t* fn )
{
cmBinMtxFile_t* p = cmObjAlloc( cmBinMtxFile_t, ctx, ap );
if( fn != NULL )
if( cmBinMtxFileInit( p, fn ) != cmOkRC )
cmBinMtxFileFree(&p);
return p;
}
cmRC_t cmBinMtxFileFree( cmBinMtxFile_t** pp )
{
cmRC_t rc;
if( pp==NULL || *pp == NULL )
return cmOkRC;
cmBinMtxFile_t* p = *pp;
if((rc = cmBinMtxFileFinal(p)) == cmOkRC )
{
cmObjFree(pp);
}
return rc;
}
cmRC_t cmBinMtxFileInit( cmBinMtxFile_t* p, const cmChar_t* fn )
{
cmRC_t rc;
cmFileRC_t fileRC;
if((rc = cmBinMtxFileFinal(p)) != cmOkRC )
return rc;
// open the output file for writing
if((fileRC = cmFileOpen(&p->fh,fn,kWriteFileFl | kBinaryFileFl, p->obj.err.rpt)) != kOkFileRC )
return cmCtxRtCondition( &p->obj, fileRC, "Unable to open the matrix file:'%s'", cmStringNullGuard(fn) );
// iniitlaize the object
p->rowCnt = 0;
p->maxRowEleCnt = 0;
p->eleByteCnt = 0;
// write the blank header as place holder
if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
return rc;
return rc;
}
cmRC_t cmBinMtxFileFinal( cmBinMtxFile_t* p )
{
cmRC_t rc;
cmFileRC_t fileRC;
if( p != NULL && cmFileIsValid(p->fh))
{
// re-write the file header
if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
return rc;
// close the file
if((fileRC = cmFileClose(&p->fh)) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "Matrix file close failed on:'%s'",cmStringNullGuard(cmFileName(p->fh)));
}
return cmOkRC;
}
bool cmBinMtxFileIsValid( cmBinMtxFile_t* p )
{ return p != NULL && cmFileIsValid(p->fh); }
cmRC_t _cmBinMtxFileWriteRow( cmBinMtxFile_t* p, const void* buf, unsigned eleCnt, unsigned eleByteCnt )
{
cmFileRC_t fileRC;
if((fileRC = cmFileWrite(p->fh,&eleCnt,sizeof(eleCnt))) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i element count write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
if((fileRC = cmFileWrite(p->fh,buf,eleCnt*eleByteCnt)) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i data write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
if( eleCnt > p->maxRowEleCnt )
p->maxRowEleCnt = eleCnt;
++p->rowCnt;
return cmOkRC;
}
cmRC_t cmBinMtxFileExecS( cmBinMtxFile_t* p, const cmSample_t* x, unsigned xn )
{
// verify that all rows are written as cmSample_t
assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmSample_t));
p->eleByteCnt = sizeof(cmSample_t);
return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
}
cmRC_t cmBinMtxFileExecR( cmBinMtxFile_t* p, const cmReal_t* x, unsigned xn )
{
// verify that all rows are written as cmReal_t
assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmReal_t));
p->eleByteCnt = sizeof(cmReal_t);
return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
}
cmRC_t cmBinMtxFileWrite( const cmChar_t* fn, unsigned rowCnt, unsigned colCnt, const cmSample_t* sp, const cmReal_t* rp, cmCtx* ctx, cmRpt_t* rpt )
{
assert( sp == NULL || rp == NULL );
cmCtx* ctxp = NULL;
cmBinMtxFile_t* bp = NULL;
if( ctx == NULL )
ctx = ctxp = cmCtxAlloc(NULL,rpt,cmLHeapNullHandle,cmSymTblNullHandle);
if((bp = cmBinMtxFileAlloc(ctx,NULL,fn)) != NULL )
{
unsigned i = 0;
cmSample_t* sbp = sp == NULL ? NULL : cmMemAlloc(cmSample_t,colCnt);
cmReal_t* rbp = rp == NULL ? NULL : cmMemAlloc(cmReal_t,colCnt);
for(i=0; i<rowCnt; ++i)
{
if( sp!=NULL )
{
cmVOS_CopyN(sbp,colCnt,1,sp+i,rowCnt);
cmBinMtxFileExecS(bp,sbp,colCnt);
}
if( rp!=NULL )
{
cmVOR_CopyN(rbp,colCnt,1,rp+i,rowCnt);
cmBinMtxFileExecR(bp,rbp,colCnt);
}
}
cmMemPtrFree(&sbp);
cmMemPtrFree(&rbp);
cmBinMtxFileFree(&bp);
}
if( ctxp != NULL )
cmCtxFree(&ctxp);
return cmOkRC;
}
cmRC_t _cmBinMtxFileReadHdr( cmCtx_t* ctx, cmFileH_t h, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr, const cmChar_t* fn )
{
cmRC_t rc = cmOkRC;
unsigned hdr[3];
if( cmFileRead(h,&hdr,sizeof(hdr)) != kOkFileRC )
{
rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file header read failed on '%s'.",cmStringNullGuard(fn));
goto errLabel;
}
if( rowCntPtr != NULL )
*rowCntPtr = hdr[0];
if( colCntPtr != NULL )
*colCntPtr = hdr[1];
if( eleByteCntPtr != NULL )
*eleByteCntPtr = hdr[2];
errLabel:
return rc;
}
cmRC_t cmBinMtxFileSize( cmCtx_t* ctx, const cmChar_t* fn, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr )
{
cmFileH_t h = cmFileNullHandle;
cmRC_t rc = cmOkRC;
if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, ctx->err.rpt) != kOkFileRC )
{
rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
goto errLabel;
}
rc = _cmBinMtxFileReadHdr(ctx,h,rowCntPtr,colCntPtr,eleByteCntPtr,fn);
errLabel:
cmFileClose(&h);
return rc;
}
cmRC_t cmBinMtxFileRead( cmCtx_t* ctx, const cmChar_t* fn, unsigned mRowCnt, unsigned mColCnt, unsigned mEleByteCnt, void* retBuf, unsigned* colCntV )
{
cmFileH_t h = cmFileNullHandle;
cmRC_t rc = cmOkRC;
char* rowBuf = NULL;
unsigned rowCnt,colCnt,eleByteCnt,i;
cmErr_t err;
cmErrSetup(&err,ctx->err.rpt,"Binary Matrix File Reader");
if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, err.rpt) != kOkFileRC )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
goto errLabel;
}
if((rc = _cmBinMtxFileReadHdr(ctx,h,&rowCnt,&colCnt,&eleByteCnt,fn)) != cmOkRC )
goto errLabel;
if( mRowCnt != rowCnt )
rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file row count and the return buffer row count are not the same.");
if( mColCnt != colCnt )
rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file column count and the return buffer column count are not the same.");
if( mEleByteCnt != eleByteCnt )
rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file element byte count and the return buffer element byte count are not the same.");
if( rc == cmOkRC )
{
rowBuf = cmMemAllocZ(char,colCnt*eleByteCnt);
for(i=0; i<rowCnt; ++i)
{
unsigned cn;
// read the row length
if( cmFileReadUInt(h,&cn,1) != kOkFileRC )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"Error reading row length at row index:%i.",i);
goto errLabel;
}
if( colCntV != NULL )
colCntV[i] = cn;
// verify the actual col count does not exceed the max col count
if( cn > colCnt )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"The actual column count:%i exceeds the max column count:%i.",cn,colCnt);
goto errLabel;
}
//read the row data
if( cmFileReadChar(h,rowBuf,cn*eleByteCnt) != kOkFileRC )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"File read failed at row index:%i.",i);
goto errLabel;
}
char* dp = ((char*)retBuf) + i * eleByteCnt;
// the data is read in row-major order but the matrix must be
// returned on col major order - rearrange the columns here.
switch(eleByteCnt)
{
case sizeof(cmSample_t):
cmVOS_CopyN(((cmSample_t*)dp), cn, rowCnt, (cmSample_t*)rowBuf, 1 );
break;
case sizeof(cmReal_t):
cmVOR_CopyN(((cmReal_t*)dp), cn, rowCnt, (cmReal_t*)rowBuf, 1 );
break;
default:
rc = cmErrMsg(&err,cmSubSysFailRC,"Invalid element byte count:%i.",eleByteCnt);
goto errLabel;
}
}
}
errLabel:
cmMemPtrFree(&rowBuf);
cmFileClose(&h);
return rc;
}