libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmVectOpsRICode.h 30KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #ifdef cmVectOpsRICode_h
  4. VECT_OP_TYPE* VECT_OP_FUNC(Col)( VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
  5. {
  6. assert(ci<cn);
  7. return m + (ci*rn);
  8. }
  9. VECT_OP_TYPE* VECT_OP_FUNC(Row)( VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
  10. {
  11. assert(ri<rn);
  12. return m + ri;
  13. }
  14. VECT_OP_TYPE* VECT_OP_FUNC(ElePtr)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  15. {
  16. assert(ri<rn && ci<cn);
  17. return m + (ci*rn) + ri;
  18. }
  19. VECT_OP_TYPE VECT_OP_FUNC(Ele)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  20. { return *VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn); }
  21. void VECT_OP_FUNC(Set)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn, VECT_OP_TYPE v )
  22. { *(VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn)) = v; }
  23. const VECT_OP_TYPE* VECT_OP_FUNC(CCol)( const VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
  24. {
  25. assert(ci<cn);
  26. return m + (ci*rn);
  27. }
  28. const VECT_OP_TYPE* VECT_OP_FUNC(CRow)( const VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
  29. {
  30. assert(ri<rn);
  31. return m + ri;
  32. }
  33. const VECT_OP_TYPE* VECT_OP_FUNC(CElePtr)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  34. {
  35. assert(ri<rn && ci<cn);
  36. return m + (ci*rn) + ri;
  37. }
  38. VECT_OP_TYPE VECT_OP_FUNC(CEle)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
  39. { return *VECT_OP_FUNC(CElePtr)(m,ri,ci,rn,cn); }
  40. VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
  41. {
  42. unsigned i,j;
  43. for(i=0,j=0; i<n && j<n; ++i,++j)
  44. dbp[ (i*n) + j ] = sbp[i];
  45. return dbp;
  46. }
  47. VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)(VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
  48. {
  49. VECT_OP_FUNC(Fill)(dbp,n*n,0);
  50. return VECT_OP_FUNC(Diag)(dbp,n,sbp);
  51. }
  52. VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
  53. {
  54. unsigned i,j;
  55. for(i=0,j=0; i<cn && j<rn; ++i,++j)
  56. dbp[ (i*rn) + j ] = 1;
  57. return dbp;
  58. }
  59. VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
  60. {
  61. VECT_OP_FUNC(Fill)(dbp,rn*cn,0);
  62. return VECT_OP_FUNC(Identity)(dbp,rn,cn);
  63. }
  64. VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
  65. {
  66. VECT_OP_TYPE* dp = dbp;
  67. const VECT_OP_TYPE* dep = dbp + (srn*scn);
  68. while( dbp < dep )
  69. {
  70. const VECT_OP_TYPE* sbp = sp++;
  71. const VECT_OP_TYPE* sep = sbp + (srn*scn);
  72. for(; sbp < sep; sbp+=srn )
  73. *dbp++ = *sbp;
  74. }
  75. return dp;
  76. }
  77. VECT_OP_TYPE* VECT_OP_FUNC(Fill)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE value )
  78. {
  79. const VECT_OP_TYPE* dep = dbp + dn;
  80. VECT_OP_TYPE* dp = dbp;
  81. if( value == 0 )
  82. memset(dbp,0,(dep-dbp)*sizeof(VECT_OP_TYPE));
  83. else
  84. {
  85. while( dbp < dep )
  86. *dbp++ = value;
  87. }
  88. return dp;
  89. }
  90. VECT_OP_TYPE* VECT_OP_FUNC(Zero)( VECT_OP_TYPE* dbp, unsigned dn )
  91. {
  92. memset( dbp, 0, sizeof(VECT_OP_TYPE)*dn);
  93. return dbp;
  94. }
  95. VECT_OP_TYPE* VECT_OP_FUNC(Move)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
  96. {
  97. memmove(bp,sp,sizeof(VECT_OP_TYPE)*bn);
  98. return bp;
  99. }
  100. VECT_OP_TYPE* VECT_OP_FUNC(Copy)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
  101. {
  102. memcpy(bp,sp,sizeof(VECT_OP_TYPE)*bn);
  103. return bp;
  104. }
  105. VECT_OP_TYPE* VECT_OP_FUNC(CopyN)( VECT_OP_TYPE* bp, unsigned bn, unsigned d_stride, const VECT_OP_TYPE* sp, unsigned s_stride )
  106. {
  107. VECT_OP_TYPE* dbp = bp;
  108. const VECT_OP_TYPE* ep = bp + (bn*d_stride);
  109. for(; bp < ep; bp += d_stride, sp += s_stride )
  110. *bp = *sp;
  111. return dbp;
  112. }
  113. VECT_OP_TYPE* VECT_OP_FUNC(CopyU)( VECT_OP_TYPE* bp, unsigned bn, const unsigned* sp )
  114. {
  115. VECT_OP_TYPE* dbp = bp;
  116. const VECT_OP_TYPE* ep = bp + bn;
  117. VECT_OP_TYPE* dp = bp;
  118. while( dp < ep )
  119. *dp++ = (VECT_OP_TYPE)*sp++;
  120. return dbp;
  121. }
  122. VECT_OP_TYPE* VECT_OP_FUNC(CopyI)( VECT_OP_TYPE* dbp, unsigned dn, const int* sp )
  123. {
  124. const VECT_OP_TYPE* dep = dbp + dn;
  125. VECT_OP_TYPE* dp = dbp;
  126. while( dp < dep )
  127. *dp++ = (VECT_OP_TYPE)*sp++;
  128. return dbp;
  129. }
  130. VECT_OP_TYPE* VECT_OP_FUNC(CopyF)( VECT_OP_TYPE* dbp, unsigned dn, const float* sp )
  131. {
  132. const VECT_OP_TYPE* dep = dbp + dn;
  133. VECT_OP_TYPE* dp = dbp;
  134. while( dp < dep )
  135. *dp++ = (VECT_OP_TYPE)*sp++;
  136. return dbp;
  137. }
  138. VECT_OP_TYPE* VECT_OP_FUNC(CopyD)( VECT_OP_TYPE* dbp, unsigned dn, const double* sp )
  139. {
  140. const VECT_OP_TYPE* dep = dbp + dn;
  141. VECT_OP_TYPE* dp = dbp;
  142. while( dp < dep )
  143. *dp++ = (VECT_OP_TYPE)*sp++;
  144. return dbp;
  145. }
  146. VECT_OP_TYPE* VECT_OP_FUNC(CopyS)( VECT_OP_TYPE* dbp, unsigned dn, const cmSample_t* sp )
  147. {
  148. const VECT_OP_TYPE* dep = dbp + dn;
  149. VECT_OP_TYPE* dp = dbp;
  150. while( dp < dep )
  151. *dp++ = (VECT_OP_TYPE)*sp++;
  152. return dbp;
  153. }
  154. VECT_OP_TYPE* VECT_OP_FUNC(CopyR)( VECT_OP_TYPE* dbp, unsigned dn, const cmReal_t* sp )
  155. {
  156. const VECT_OP_TYPE* dep = dbp + dn;
  157. VECT_OP_TYPE* dp = dbp;
  158. while( dp < dep )
  159. *dp++ = (VECT_OP_TYPE)*sp++;
  160. return dbp;
  161. }
  162. VECT_OP_TYPE* VECT_OP_FUNC(CopyStride)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, unsigned srcStride )
  163. {
  164. const VECT_OP_TYPE* dep = dbp + dn;
  165. VECT_OP_TYPE* dp = dbp;
  166. for(; dp < dep; sp += srcStride )
  167. *dp++ = *sp;
  168. return dbp;
  169. }
  170. VECT_OP_TYPE* VECT_OP_FUNC(Shrink)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
  171. {
  172. assert( s <= t && t <= (s+sn) );
  173. assert( s <= (t+tn) && (t+tn) <= (s+sn));
  174. //VECT_OP_FUNC(Move)(s,sn - ((t - s) + tn),t+tn);
  175. VECT_OP_FUNC(Move)((VECT_OP_TYPE*)t,(sn - ((t+tn)-s)) + 1,t+tn);
  176. return s;
  177. }
  178. VECT_OP_TYPE* VECT_OP_FUNC(Expand)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
  179. {
  180. assert( s <= t && t <= s+sn );
  181. unsigned i = t - s;
  182. s = cmMemResizeP(VECT_OP_TYPE,s,sn+tn);
  183. t = s + i;
  184. assert( t + tn + sn - i == s + sn + tn );
  185. VECT_OP_FUNC(Move)(((VECT_OP_TYPE*)t)+tn,sn-i,t);
  186. return s;
  187. }
  188. VECT_OP_TYPE* VECT_OP_FUNC(Replace)(VECT_OP_TYPE* s, unsigned* sn, const VECT_OP_TYPE* t, unsigned tn, const VECT_OP_TYPE* u, unsigned un )
  189. {
  190. // if s is empty and t[tn] is empty
  191. if( s == NULL && tn == 0 )
  192. {
  193. if( un == 0 )
  194. return s;
  195. s = cmMemAllocZ(VECT_OP_TYPE,un);
  196. VECT_OP_FUNC(Copy)(s,un,u);
  197. if( sn != NULL )
  198. *sn = un;
  199. return s;
  200. }
  201. assert( s!=NULL && t != NULL );
  202. assert( (u!=NULL && un>0) || (u==NULL && un==0) );
  203. if( (tn==0 && un==0) || (t==NULL && u==NULL))
  204. return s;
  205. // if the area to replace is greater than the area to insert ...
  206. if( tn > un )
  207. {
  208. VECT_OP_FUNC(Shrink)(s,*sn,t+un,tn-un); // ... then shrink the buffer
  209. *sn -= tn-un;
  210. }
  211. else
  212. // if the area to insert is greater than the area to replace ...
  213. if( un > tn )
  214. {
  215. unsigned offs = t - s;
  216. s = VECT_OP_FUNC(Expand)(s,*sn,t+tn,un-tn); // ... then expand the buffer
  217. t = s + offs;
  218. *sn += un-tn;
  219. }
  220. assert(t+un <= s+(*sn));
  221. if( u!=NULL )
  222. VECT_OP_FUNC(Copy)((VECT_OP_TYPE*)t,un,u);
  223. return s;
  224. }
  225. VECT_OP_TYPE* VECT_OP_FUNC(Rotate)( VECT_OP_TYPE* v, unsigned n, int i )
  226. {
  227. int c, j;
  228. if(v == NULL || n <= 0)
  229. return NULL;
  230. if(i < 0 || i >= n)
  231. {
  232. i %= n;
  233. if (i < 0)
  234. i += n;
  235. }
  236. if(i == 0)
  237. return 0;
  238. c = 0;
  239. for(j = 0; c < n; j++)
  240. {
  241. int t = j, k = j + i;
  242. VECT_OP_TYPE tmp = v[j];
  243. c++;
  244. while( k != j )
  245. {
  246. v[t] = v[k];
  247. t = k;
  248. k += i;
  249. if( k >= n )
  250. k -= n;
  251. c++;
  252. }
  253. v[t] = tmp;
  254. }
  255. return v;
  256. }
  257. VECT_OP_TYPE* VECT_OP_FUNC(RotateM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sbp, int rShiftCnt, int cShiftCnt )
  258. {
  259. int j;
  260. while( rShiftCnt < 0 )
  261. rShiftCnt += drn;
  262. while( cShiftCnt < 0 )
  263. cShiftCnt += dcn;
  264. int m = rShiftCnt % drn;
  265. int n = cShiftCnt % dcn;
  266. for(j=0; j<dcn; ++j,++n)
  267. {
  268. if(n==dcn)
  269. n = 0;
  270. // cnt from dst position to end of column
  271. unsigned cn = drn - m;
  272. // copy from top of src col to bottom of dst column
  273. VECT_OP_FUNC(Copy)(dbp + (n*drn) + m, cn, sbp );
  274. sbp+=cn;
  275. if( cn < drn )
  276. {
  277. // copy from bottom of src col to top of dst column
  278. VECT_OP_FUNC(Copy)(dbp + (n*drn), drn-cn, sbp );
  279. sbp += drn-cn;
  280. }
  281. }
  282. return dbp;
  283. }
  284. VECT_OP_TYPE* VECT_OP_FUNC(Shift)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt, VECT_OP_TYPE fillValue )
  285. {
  286. VECT_OP_TYPE* dep = dbp + dn;
  287. VECT_OP_TYPE* rp = dbp;
  288. unsigned n = dep - dbp;
  289. if( shiftCnt == 0 )
  290. return dbp;
  291. if( abs(shiftCnt) >= n )
  292. return VECT_OP_FUNC(Fill)(dbp,dn,fillValue);
  293. if( shiftCnt > 0 )
  294. {
  295. const VECT_OP_TYPE* sbp = dep - (shiftCnt+1);
  296. const VECT_OP_TYPE* sep = dbp;
  297. VECT_OP_TYPE* dp = dbp + (n-1);
  298. while( sbp >= sep )
  299. *dp-- = *sbp--;
  300. while(dbp <= dp )
  301. *dbp++ = fillValue;
  302. }
  303. else
  304. {
  305. const VECT_OP_TYPE* sbp = dbp + abs(shiftCnt);
  306. while( sbp < dep )
  307. *dbp++ = *sbp++;
  308. while(dbp<dep)
  309. *dbp++ = fillValue;
  310. }
  311. return rp;
  312. }
  313. VECT_OP_TYPE* VECT_OP_FUNC(Flip)( VECT_OP_TYPE* dbp, unsigned dn)
  314. {
  315. VECT_OP_TYPE* p0 = dbp;
  316. VECT_OP_TYPE* p1 = dbp + dn - 1;
  317. while( p0 < p1 )
  318. {
  319. VECT_OP_TYPE t = *p0;
  320. *p0++ = *p1;
  321. *p1-- = t;
  322. }
  323. return dbp;
  324. }
  325. VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr )
  326. {
  327. const VECT_OP_TYPE* dep = dbp + dn;
  328. unsigned i = 0;
  329. for(; dbp<dep; ++i)
  330. *dbp++ = beg + (incr*i);
  331. return beg + (incr*i);
  332. }
  333. VECT_OP_TYPE* VECT_OP_FUNC(SubVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
  334. {
  335. const VECT_OP_TYPE* ep = bp + n;
  336. VECT_OP_TYPE* dp = bp;
  337. while( dp < ep )
  338. *dp++ -= v;
  339. return bp;
  340. }
  341. VECT_OP_TYPE* VECT_OP_FUNC(SubVV)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v )
  342. {
  343. const VECT_OP_TYPE* ep = bp + n;
  344. VECT_OP_TYPE* dp = bp;
  345. while( dp < ep )
  346. *dp++ -= *v++;
  347. return bp;
  348. }
  349. VECT_OP_TYPE* VECT_OP_FUNC(SubVVS)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
  350. {
  351. const VECT_OP_TYPE* ep = bp + n;
  352. VECT_OP_TYPE* dp = bp;
  353. while( dp < ep )
  354. *dp++ = *v++ - s;
  355. return bp;
  356. }
  357. VECT_OP_TYPE* VECT_OP_FUNC(SubVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  358. {
  359. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  360. VECT_OP_TYPE* dbp = dp;
  361. for(; dp < ep; dp+=dnn, v+=n )
  362. *dp -= *v;
  363. return dbp;
  364. }
  365. VECT_OP_TYPE* VECT_OP_FUNC(SubVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  366. {
  367. const VECT_OP_TYPE* dep = dbp + dn;
  368. VECT_OP_TYPE* dp = dbp;
  369. while( dbp < dep )
  370. *dbp++ = *sb0p++ - *sb1p++;
  371. return dp;
  372. }
  373. VECT_OP_TYPE* VECT_OP_FUNC(SubVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
  374. {
  375. const VECT_OP_TYPE* dep = dbp + dn;
  376. VECT_OP_TYPE* dp = dbp;
  377. while( dbp < dep )
  378. *dbp++ = s0 - *sb1p++;
  379. return dp;
  380. }
  381. VECT_OP_TYPE* VECT_OP_FUNC(AddVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
  382. {
  383. const VECT_OP_TYPE* ep = bp + n;
  384. VECT_OP_TYPE* dp = bp;
  385. while( dp < ep )
  386. *dp++ += v;
  387. return bp;
  388. }
  389. VECT_OP_TYPE* VECT_OP_FUNC(AddVV)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v )
  390. {
  391. const VECT_OP_TYPE* ep = bp + bn;
  392. VECT_OP_TYPE* dp = bp;
  393. while( dp < ep )
  394. *dp++ += *v++;
  395. return bp;
  396. }
  397. VECT_OP_TYPE* VECT_OP_FUNC(AddVVS)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
  398. {
  399. const VECT_OP_TYPE* ep = bp + bn;
  400. VECT_OP_TYPE* dp = bp;
  401. while( dp < ep )
  402. *dp++ = *v++ + s;
  403. return bp;
  404. }
  405. VECT_OP_TYPE* VECT_OP_FUNC(AddVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  406. {
  407. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  408. VECT_OP_TYPE* dbp = dp;
  409. for(; dp < ep; v+=n, dp+=dnn )
  410. *dp += *v;
  411. return dbp;
  412. }
  413. VECT_OP_TYPE* VECT_OP_FUNC(AddVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  414. {
  415. const VECT_OP_TYPE* dep = dbp + dn;
  416. VECT_OP_TYPE* dp = dbp;
  417. while( dbp < dep )
  418. *dbp++ = *sb0p++ + *sb1p++;
  419. return dp;
  420. }
  421. VECT_OP_TYPE* VECT_OP_FUNC(MultVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  422. {
  423. const VECT_OP_TYPE* dep = dbp + dn;
  424. VECT_OP_TYPE* dp = dbp;
  425. while( dbp < dep )
  426. *dbp++ = *sb0p++ * *sb1p++;
  427. return dp;
  428. }
  429. VECT_OP_TYPE* VECT_OP_FUNC(MultVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
  430. {
  431. const VECT_OP_TYPE* dep = dbp + dn;
  432. VECT_OP_TYPE* dp = dbp;
  433. while( dbp < dep )
  434. *dbp++ *= *sbp++;
  435. return dp;
  436. }
  437. VECT_OP_TYPE* VECT_OP_FUNC(MultVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  438. {
  439. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  440. VECT_OP_TYPE* dbp = dp;
  441. for(; dp < ep; v+=n, dp+=dnn )
  442. *dp *= *v;
  443. return dbp;
  444. }
  445. VECT_OP_TYPE* VECT_OP_FUNC(MultVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
  446. {
  447. const VECT_OP_TYPE* dep = dbp + dn;
  448. VECT_OP_TYPE* dp = dbp;
  449. while( dbp < dep )
  450. *dbp++ *= s;
  451. return dp;
  452. }
  453. VECT_OP_TYPE* VECT_OP_FUNC(MultVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
  454. {
  455. const VECT_OP_TYPE* dep = dbp + dn;
  456. VECT_OP_TYPE* dp = dbp;
  457. while( dbp < dep )
  458. *dbp++ = *sbp++ * s;
  459. return dp;
  460. }
  461. VECT_OP_TYPE* VECT_OP_FUNC(MultVaVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
  462. {
  463. const VECT_OP_TYPE* dep = dbp + dn;
  464. VECT_OP_TYPE* dp = dbp;
  465. while( dbp < dep )
  466. *dbp++ += *sbp++ * s;
  467. return dp;
  468. }
  469. VECT_OP_TYPE* VECT_OP_FUNC(MultSumVVS)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
  470. {
  471. const VECT_OP_TYPE* dep = dbp + dn;
  472. VECT_OP_TYPE* dp = dbp;
  473. while( dbp < dep )
  474. *dbp++ += *sbp++ * s;
  475. return dp;
  476. }
  477. VECT_OP_TYPE* VECT_OP_FUNC(DivVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, VECT_OP_TYPE s1 )
  478. {
  479. const VECT_OP_TYPE* dep = dbp + dn;
  480. VECT_OP_TYPE* dp = dbp;
  481. while( dbp < dep )
  482. *dbp++ = *sb0p++ / s1;
  483. return dp;
  484. }
  485. VECT_OP_TYPE* VECT_OP_FUNC(DivVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
  486. {
  487. const VECT_OP_TYPE* dep = dbp + dn;
  488. VECT_OP_TYPE* dp = dbp;
  489. while( dbp < dep )
  490. *dbp++ /= *sb0p++;
  491. return dp;
  492. }
  493. VECT_OP_TYPE* VECT_OP_FUNC(DivVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  494. {
  495. const VECT_OP_TYPE* dep = dbp + dn;
  496. VECT_OP_TYPE* dp = dbp;
  497. while( dbp < dep )
  498. *dbp++ = *sb0p++ / *sb1p++;
  499. return dp;
  500. }
  501. VECT_OP_TYPE* VECT_OP_FUNC(DivVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
  502. {
  503. const VECT_OP_TYPE* ep = dp + (dn*dnn);
  504. VECT_OP_TYPE* dbp = dp;
  505. for(; dp < ep; v+=n, dp+=dnn )
  506. *dp /= *v;
  507. return dbp;
  508. }
  509. VECT_OP_TYPE* VECT_OP_FUNC(DivVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
  510. {
  511. const VECT_OP_TYPE* dep = dbp + dn;
  512. VECT_OP_TYPE* dp = dbp;
  513. while( dbp < dep )
  514. *dbp++ /= s;
  515. return dp;
  516. }
  517. VECT_OP_TYPE* VECT_OP_FUNC(DivVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
  518. {
  519. const VECT_OP_TYPE* dep = dbp + dn;
  520. VECT_OP_TYPE* dp = dbp;
  521. while( dbp < dep )
  522. *dbp++ = s0 / *sb1p++;
  523. return dp;
  524. }
  525. VECT_OP_TYPE* VECT_OP_FUNC(DivVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
  526. {
  527. const VECT_OP_TYPE* dep = dbp + dn;
  528. VECT_OP_TYPE* dp = dbp;
  529. for(; dbp < dep; ++sb0p )
  530. if( *sb0p == 0 )
  531. *dbp++ = 0;
  532. else
  533. *dbp++ /= *sb0p;
  534. return dp;
  535. }
  536. VECT_OP_TYPE* VECT_OP_FUNC(DivVVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
  537. {
  538. const VECT_OP_TYPE* dep = dbp + dn;
  539. VECT_OP_TYPE* dp = dbp;
  540. for(; dbp < dep; ++sb0p,++sb1p )
  541. if( *sb1p == 0 )
  542. *dbp++ = 0;
  543. else
  544. *dbp++ = *sb0p / *sb1p;
  545. return dp;
  546. }
  547. VECT_OP_TYPE* VECT_OP_FUNC(DivMS)( VECT_OP_TYPE* dp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sp )
  548. {
  549. unsigned i;
  550. for(i=0; i<dcn; ++i)
  551. VECT_OP_FUNC(DivVS)( dp + i*drn, drn, sp[i] );
  552. return dp;
  553. }
  554. VECT_OP_TYPE VECT_OP_FUNC(Sum)( const VECT_OP_TYPE* bp, unsigned n )
  555. {
  556. const VECT_OP_TYPE* ep = bp + n;
  557. VECT_OP_TYPE s = 0;
  558. while( bp < ep )
  559. s += *bp++;
  560. return s;
  561. }
  562. VECT_OP_TYPE VECT_OP_FUNC(SumN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  563. {
  564. const VECT_OP_TYPE* ep = bp + (n*stride);
  565. VECT_OP_TYPE s = 0;
  566. for(; bp < ep; bp += stride )
  567. s += *bp;
  568. return s;
  569. }
  570. VECT_OP_TYPE* VECT_OP_FUNC(SumM)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
  571. {
  572. unsigned i;
  573. for(i=0; i<scn; ++i)
  574. dp[i] = VECT_OP_FUNC(Sum)(sp + (i*srn), srn );
  575. return dp;
  576. }
  577. VECT_OP_TYPE* VECT_OP_FUNC(SumMN)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
  578. {
  579. unsigned i;
  580. for(i=0; i<srn; ++i)
  581. dp[i] = VECT_OP_FUNC(SumN)(sp + i, scn, srn );
  582. return dp;
  583. }
  584. // mi is a target value - it holds the number of elements in ap[an] which must be be less than the median value.
  585. // If the initial array contains an even number of values then the median value is formed by averaging the two center values.
  586. // In this case *evenFlPtr is set and used to indicate that the center-upper value must be found during undwinding.
  587. VECT_OP_TYPE VECT_OP_FUNC(MedianSearch)( unsigned mi, const VECT_OP_TYPE* ap, unsigned an, bool* evenFlPtr )
  588. {
  589. VECT_OP_TYPE x = ap[0]; // pick a random value as a potential median value
  590. VECT_OP_TYPE a1[ an ]; // values below x
  591. VECT_OP_TYPE a3[ an ]; // values above x
  592. unsigned a1n = 0;
  593. unsigned a2n = 0; // values equal to x
  594. unsigned a3n = 0;
  595. const VECT_OP_TYPE* abp = ap;
  596. const VECT_OP_TYPE* aep = abp + an;
  597. for(; abp < aep; ++abp )
  598. {
  599. if( *abp < x )
  600. a1[a1n++] = *abp;
  601. else
  602. {
  603. if( *abp > x )
  604. a3[a3n++] = *abp;
  605. else
  606. ++a2n;
  607. }
  608. }
  609. //printf("%i : %i %i %i\n",mi,a1n,a2n,a3n);
  610. // there are more values below x (mi remains the target split point)
  611. if( a1n > mi )
  612. {
  613. x = VECT_OP_FUNC(MedianSearch)(mi,a1,a1n,evenFlPtr);
  614. }
  615. else
  616. {
  617. // the target was located
  618. if( a1n+a2n >= mi )
  619. {
  620. // if a1n alone matches mi then the max value in a1[] holds the median value otherwise x is the median
  621. if(a1n>=1 && a1n==mi)
  622. {
  623. VECT_OP_TYPE mv = VECT_OP_FUNC(Max)(a1,a1n,1);
  624. x = *evenFlPtr ? (mv+x)/2 : mv;
  625. *evenFlPtr = false;
  626. }
  627. // if the evenFl is set then the closest value above the median (x) must be located
  628. if( *evenFlPtr )
  629. {
  630. // if the next greater value is in a2[]
  631. if( a2n > 1 && (a1n+a2n) > mi )
  632. *evenFlPtr = false;
  633. else
  634. // if the next greater value is in a3[]
  635. if( a3n > 1 )
  636. {
  637. x = (x + VECT_OP_FUNC(Min)(a3,a3n,1))/2;
  638. *evenFlPtr = false;
  639. }
  640. }
  641. // no need for unwind processing - all the possibilities at this level have been exhausted
  642. return x;
  643. }
  644. else
  645. {
  646. // There are more values above x - the median must therefore be in a3[].
  647. // Reset mi cmcounting for the fact that we know that there are
  648. // a1n+a2n values below the lowest value in a3.
  649. x = VECT_OP_FUNC(MedianSearch)(mi - (a1n+a2n), a3, a3n, evenFlPtr );
  650. }
  651. }
  652. if( *evenFlPtr )
  653. {
  654. // find the first value greater than x
  655. while( ap < aep && *ap <= x )
  656. ++ap;
  657. if( ap < aep )
  658. {
  659. VECT_OP_TYPE v = *ap++;
  660. // find the nearest value greater than x
  661. for(; ap < aep; ++ap )
  662. if( *ap > x && ((*ap - x) < (v-x)))
  663. v = *ap;
  664. x = (v + x)/2;
  665. *evenFlPtr = false;
  666. }
  667. }
  668. return x;
  669. }
  670. VECT_OP_TYPE VECT_OP_FUNC(Median)( const VECT_OP_TYPE* bp, unsigned n )
  671. {
  672. bool evenFl = cmIsEvenU(n);
  673. unsigned medIdx = evenFl ? n/2 : (n+1)/2;
  674. return VECT_OP_FUNC(MedianSearch)( medIdx, bp, n, &evenFl );
  675. }
  676. unsigned VECT_OP_FUNC(MinIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  677. {
  678. const VECT_OP_TYPE* ep = bp + (n*stride);
  679. if( bp >= ep )
  680. return cmInvalidIdx;
  681. const VECT_OP_TYPE* p = bp;
  682. const VECT_OP_TYPE* mp = bp;
  683. bp+=stride;
  684. for(; bp < ep; bp+=stride )
  685. if( *bp < *mp )
  686. mp = bp;
  687. return (mp - p)/stride;
  688. }
  689. unsigned VECT_OP_FUNC(MaxIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  690. {
  691. const VECT_OP_TYPE* ep = bp + (n*stride);
  692. if( bp >= ep )
  693. return cmInvalidIdx;
  694. const VECT_OP_TYPE* p = bp;
  695. const VECT_OP_TYPE* mp = bp;
  696. bp+=stride;
  697. for(; bp < ep; bp+=stride )
  698. if( *bp > *mp )
  699. mp = bp;
  700. return (mp - p)/stride;
  701. }
  702. VECT_OP_TYPE VECT_OP_FUNC(Min)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  703. {
  704. unsigned i;
  705. if((i = VECT_OP_FUNC(MinIndex)(bp,n,stride)) == cmInvalidIdx )
  706. {
  707. assert(0);
  708. return 0;
  709. }
  710. return bp[i*stride];
  711. }
  712. VECT_OP_TYPE VECT_OP_FUNC(Max)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  713. {
  714. unsigned i;
  715. if((i = VECT_OP_FUNC(MaxIndex)(bp,n,stride)) == cmInvalidIdx )
  716. {
  717. assert(0);
  718. return 0;
  719. }
  720. return bp[i*stride];
  721. }
  722. VECT_OP_TYPE* VECT_OP_FUNC(MinVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
  723. {
  724. unsigned i;
  725. for(i=0; i<dn; ++i)
  726. if( sp[i] < dp[i] )
  727. dp[i] = sp[i];
  728. return dp;
  729. }
  730. VECT_OP_TYPE* VECT_OP_FUNC(MaxVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
  731. {
  732. unsigned i;
  733. for(i=0; i<dn; ++i)
  734. if( sp[i] > dp[i] )
  735. dp[i] = sp[i];
  736. return dp;
  737. }
  738. unsigned* VECT_OP_FUNC(MinIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
  739. {
  740. unsigned i = 0;
  741. for(i=0; i<scn; ++i)
  742. dp[i] = VECT_OP_FUNC(MinIndex)(sp + (i*srn), srn, 1 );
  743. return dp;
  744. }
  745. unsigned* VECT_OP_FUNC(MaxIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
  746. {
  747. unsigned i = 0;
  748. for(i=0; i<scn; ++i)
  749. dp[i] = VECT_OP_FUNC(MaxIndex)(sp + (i*srn), srn, 1 );
  750. return dp;
  751. }
  752. VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn )
  753. {
  754. unsigned n[sn];
  755. VECT_OP_TYPE v[sn];
  756. unsigned i,j,k = 0;
  757. unsigned n0 = 0; // idx of most freq occurring ele
  758. unsigned n1 = -1; // idx of 2nd most freq occurring ele
  759. for(i=0; i<sn; ++i)
  760. {
  761. // find sp[i] in v[]
  762. for(j=0; j<k; ++j)
  763. if( sp[i] == v[j] )
  764. {
  765. ++n[j];
  766. break;
  767. }
  768. // sp[i] was not found in v[]
  769. if( k == j )
  770. {
  771. v[j] = sp[i];
  772. n[j] = 1;
  773. ++k;
  774. }
  775. // n[j] holds frq of sp[i]
  776. // do nothing if j is already most freq
  777. if( j != n0 )
  778. {
  779. // if j is new most freq
  780. if( n[j] > n[n0] )
  781. {
  782. n1 = n0;
  783. n0 = j;
  784. }
  785. else
  786. // if j is 2nd most freq
  787. if( (n1==-1) || (n[j] > n[n1]) )
  788. n1 = j;
  789. }
  790. // if diff between two most freq is greater than remaining ele's
  791. if( (n1!=-1) && (n[n0]-n[n1]) >= (sn-i) )
  792. break;
  793. }
  794. // if there are no ele's with same count
  795. if( n[n0] > n[n1] )
  796. return v[n0];
  797. // break tie between ele's with same count be returning min value
  798. // (this is the same as Matlab tie break criteria)
  799. j = 0;
  800. for(i=1; i<k; ++i)
  801. if( (n[i] > n[j]) || (n[i] == n[j] && v[i] < v[j]) )
  802. j=i;
  803. return v[j];
  804. }
  805. VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn )
  806. {
  807. unsigned i;
  808. for(i=0; i<dn; ++i)
  809. if( dbp[i]<0 )
  810. dbp[i] = -dbp[i];
  811. return dbp;
  812. }
  813. VECT_OP_TYPE* VECT_OP_FUNC(HalfWaveRectify)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  814. {
  815. VECT_OP_TYPE* dp = dbp;
  816. VECT_OP_TYPE* ep = dbp + dn;
  817. for(; dp < ep; ++dp,++sp )
  818. *dp = *sp < 0 ? 0 : *sp;
  819. return dbp;
  820. }
  821. bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  822. {
  823. const VECT_OP_TYPE* ep = s0p + sn;
  824. for(; s0p < ep; ++s0p,++s1p )
  825. if( *s0p != *s1p )
  826. return false;
  827. return true;
  828. }
  829. bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps )
  830. {
  831. const VECT_OP_TYPE* ep = s0p + sn;
  832. for(; s0p < ep; ++s0p,++s1p )
  833. {
  834. if( !cmIsClose(*s0p,*s1p,eps) )
  835. return false;
  836. }
  837. return true;
  838. }
  839. unsigned VECT_OP_FUNC(Find)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
  840. {
  841. const VECT_OP_TYPE* sbp = sp;
  842. const VECT_OP_TYPE* ep = sp + sn;
  843. while( sp<ep )
  844. if( *sp++ == key )
  845. break;
  846. if( sp==ep )
  847. return cmInvalidIdx;
  848. return (sp-1) - sbp;
  849. }
  850. unsigned VECT_OP_FUNC(Count)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
  851. {
  852. unsigned cnt = 0;
  853. const VECT_OP_TYPE* ep = sp + sn;
  854. while( sp<ep )
  855. if( *sp++ == key )
  856. ++cnt;
  857. return cnt;
  858. }
  859. VECT_OP_TYPE* VECT_OP_FUNC(ReplaceLte)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE lteKeyVal, VECT_OP_TYPE replaceVal )
  860. {
  861. VECT_OP_TYPE* rp = dp;
  862. const VECT_OP_TYPE* ep = dp + dn;
  863. for(; dp < ep; ++sp )
  864. *dp++ = *sp <= lteKeyVal ? replaceVal : *sp;
  865. return rp;
  866. }
  867. void VECT_OP_FUNC(FnThresh)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride, VECT_OP_TYPE (*fnPtr)(const VECT_OP_TYPE*, unsigned) )
  868. {
  869. int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
  870. int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
  871. int i,j;
  872. i0 = -i0;
  873. if( fnPtr == NULL )
  874. fnPtr = &(VECT_OP_FUNC(Median));
  875. for(i=0; i<xN; ++i,++i0,++i1)
  876. {
  877. j = (i*yStride);
  878. if( i0 < 0 )
  879. if( i1 >= xN )
  880. yV[j] = (*fnPtr)(xV,xN);
  881. else
  882. yV[j] = (*fnPtr)(xV,i1+1);
  883. else if( i1 >= xN )
  884. yV[j] = (*fnPtr)(xV+i0,xN-i0);
  885. else
  886. yV[j] = (*fnPtr)(xV+i0,wndN);
  887. }
  888. }
  889. void VECT_OP_FUNC(MedianFilt)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride )
  890. {
  891. int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
  892. int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
  893. int i,j;
  894. VECT_OP_TYPE tV[ wndN ];
  895. i0 = -i0;
  896. VECT_OP_FUNC(Fill)(tV,wndN,0);
  897. for(i=0; i<xN; ++i,++i0,++i1)
  898. {
  899. j = (i*yStride);
  900. // note that the position of the zero padding in tV[]
  901. // does not matter because the median calcluation does
  902. // not make any assumptions about the order of the argument
  903. // vector.
  904. if( i0 < 0 )
  905. {
  906. VECT_OP_FUNC(Copy)(tV,wndN+i0,xV);
  907. VECT_OP_FUNC(Fill)(tV+wndN+i0,labs(i0),0);
  908. //VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
  909. yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
  910. continue;
  911. }
  912. if( i1 >= xN )
  913. {
  914. VECT_OP_FUNC(Copy)(tV,wndN-(i1-xN+1),xV+i0);
  915. VECT_OP_FUNC(Fill)(tV+wndN-(i1-xN+1),i1-xN+1,0);
  916. //VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
  917. yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
  918. continue;
  919. }
  920. //VECT_OP_FUNC(Print)(NULL,1,wndN,xV+i0,-1,-1);
  921. yV[j] = VECT_OP_FUNC(Median)(xV+i0,wndN);
  922. }
  923. }
  924. unsigned* VECT_OP_FUNC(LevEditDistAllocMtx)(unsigned maxN)
  925. {
  926. maxN += 1;
  927. unsigned* m = cmMemAllocZ(unsigned,maxN*maxN);
  928. unsigned* p = m;
  929. unsigned i;
  930. // initialize the comparison matrix with the default costs in the
  931. // first row and column
  932. // (Note that this matrix is not oriented in column major order like most 'cm' matrices.)
  933. for(i=0; i<maxN; ++i)
  934. {
  935. p[i] = i; // 0th row
  936. p[ i * maxN ] = i; // 0th col
  937. }
  938. return m;
  939. }
  940. double VECT_OP_FUNC(LevEditDist)(unsigned mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, unsigned maxN )
  941. {
  942. mtxMaxN += 1;
  943. assert( n0 < mtxMaxN && n1 < mtxMaxN );
  944. int v = 0;
  945. unsigned i;
  946. // Note that m[maxN,maxN] is not oriented in column major order like most 'cm' matrices.
  947. for(i=1; i<n0+1; ++i)
  948. {
  949. unsigned ii = i * mtxMaxN; // current row
  950. unsigned i_1 = ii - mtxMaxN; // previous row
  951. unsigned j;
  952. for( j=1; j<n1+1; ++j)
  953. {
  954. int cost = s0[i-1] == s1[j-1] ? 0 : 1;
  955. //m[i][j] = min( m[i-1][j] + 1, min( m[i][j-1] + 1, m[i-1][j-1] + cost ) );
  956. m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
  957. }
  958. }
  959. return (double) v / maxN;
  960. }
  961. double VECT_OP_FUNC(LevEditDistWithCostThresh)( int mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, double maxCost, unsigned maxN )
  962. {
  963. mtxMaxN += 1;
  964. int v = 0;
  965. maxCost = cmMin(1.0,cmMax(0.0,maxCost));
  966. int iMaxCost = ceil( maxCost * maxN );
  967. assert( iMaxCost > 0 && maxCost > 0 );
  968. // If the two strings are different lengths and the min possible distance is
  969. // greater than the threshold then return the threshold as the cost.
  970. // (Note: For strings of different length the min possible distance is the
  971. // difference in length between the two strings).
  972. if( abs(n0-n1) > iMaxCost )
  973. return maxCost;
  974. int i;
  975. // for each row in the matrix ...
  976. for(i=1; i<n0+1; ++i)
  977. {
  978. int ii = i * mtxMaxN; // current row
  979. int i_1 = ii - mtxMaxN; // previous row
  980. // Limit the row to (2*iMaxCost)+1 diagnal strip.
  981. // This strip is based on the idea that the best case can be precomputed for
  982. // all matrix elements in advance - where the best case for position i,j is:
  983. // abs(i-j). This can be justified based on the idea that the least possible
  984. // distance between two strings of length i and j is abs(i-1). The minimum least
  985. // possible distance is therefore found on the matrix diagnal and grows as the
  986. // distance from the diagnal increases.
  987. int ji = cmMax( 1, i - iMaxCost );
  988. int jn = cmMin(iMaxCost + i, n1) + 1;
  989. int j;
  990. // fill in (max cost + 1) as the value in the column before the starting column
  991. // (it will be referred to during the first computation in this row)
  992. if( ji >= 2 )
  993. m[ ii + (ji-1) ] = iMaxCost + 1;
  994. // for each column in the diagnal stripe - beginning with the leftmost column.
  995. for( j=ji; j<jn; ++j)
  996. {
  997. int cost = s0[i-1] == s1[j-1] ? 0 : 1;
  998. m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
  999. }
  1000. // fill in (max cost + 1) in the column following the last column
  1001. // (it will be referred to during computation of the following row)
  1002. if( j < n1+1 )
  1003. m[ii + j] = iMaxCost + 1;
  1004. }
  1005. assert( v >= 0 );
  1006. return cmMin( maxCost , (double) v / maxN);
  1007. }
  1008. #endif