libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #include "cmPrefix.h"
  4. #include "cmGlobal.h"
  5. #include "cmRpt.h"
  6. #include "cmErr.h"
  7. #include "cmCtx.h"
  8. #include "cmMem.h"
  9. #include "cmMallocDebug.h"
  10. #include "cmLinkedHeap.h"
  11. #include "cmThread.h"
  12. #include "cmTime.h"
  13. #include "cmMidi.h"
  14. #include "cmMidiPort.h"
  15. #include <alsa/asoundlib.h>
  16. typedef struct
  17. {
  18. bool inputFl; // true if this an input port
  19. char* nameStr; // string label of this device
  20. unsigned alsa_type; // ALSA type flags from snd_seq_port_info_get_type()
  21. unsigned alsa_cap; // ALSA capability flags from snd_seq_port_info_get_capability()
  22. snd_seq_addr_t alsa_addr; // ALSA client/port address for this port
  23. cmMpParserH_t parserH; // interface to the client callback function for this port
  24. } cmMpPort_t;
  25. // MIDI devices
  26. typedef struct
  27. {
  28. char* nameStr; // string label for this device
  29. unsigned iPortCnt; // input ports on this device
  30. cmMpPort_t* iPortArray;
  31. unsigned oPortCnt; // output ports on this device
  32. cmMpPort_t* oPortArray;
  33. unsigned char clientId; // ALSA client id (all ports on this device use use this client id in their address)
  34. } cmMpDev_t;
  35. typedef struct
  36. {
  37. cmErr_t err; // error object
  38. cmLHeapH_t lH; // linked heap used for all internal memory
  39. unsigned devCnt; // MIDI devices attached to this computer
  40. cmMpDev_t* devArray;
  41. cmMpCallback_t cbFunc; // MIDI input application callback
  42. void* cbDataPtr;
  43. snd_seq_t* h; // ALSA system sequencer handle
  44. snd_seq_addr_t alsa_addr; // ALSA client/port address representing the application
  45. int alsa_queue; // ALSA device queue
  46. cmThreadH_t thH; // MIDI input listening thread
  47. int alsa_fdCnt; // MIDI input driver file descriptor array
  48. struct pollfd* alsa_fd;
  49. cmMpDev_t* prvRcvDev; // the last device and port to rcv MIDI
  50. cmMpPort_t* prvRcvPort;
  51. unsigned prvTimeMicroSecs; // time of last recognized event in microseconds
  52. unsigned eventCnt; // count of recognized events
  53. cmTimeSpec_t baseTimeStamp;
  54. } cmMpRoot_t;
  55. cmMpRoot_t* _cmMpRoot = NULL;
  56. cmMpRC_t _cmMpErrMsgV(cmErr_t* err, cmMpRC_t rc, int alsaRc, const cmChar_t* fmt, va_list vl )
  57. {
  58. if( alsaRc < 0 )
  59. cmErrMsg(err,kSysErrMpRC,"ALSA Error:%i %s",alsaRc,snd_strerror(alsaRc));
  60. return cmErrVMsg(err,rc,fmt,vl);
  61. }
  62. cmMpRC_t _cmMpErrMsg(cmErr_t* err, cmMpRC_t rc, int alsaRc, const cmChar_t* fmt, ... )
  63. {
  64. va_list vl;
  65. va_start(vl,fmt);
  66. rc = _cmMpErrMsgV(err,rc,alsaRc,fmt,vl);
  67. va_end(vl);
  68. return rc;
  69. }
  70. unsigned _cmMpGetPortCnt( snd_seq_t* h, snd_seq_port_info_t* pip, bool inputFl )
  71. {
  72. unsigned i = 0;
  73. snd_seq_port_info_set_port(pip,-1);
  74. while( snd_seq_query_next_port(h,pip) == 0)
  75. if( cmIsFlag(snd_seq_port_info_get_capability(pip),inputFl?SND_SEQ_PORT_CAP_READ:SND_SEQ_PORT_CAP_WRITE) )
  76. ++i;
  77. return i;
  78. }
  79. cmMpDev_t* _cmMpClientIdToDev( int clientId )
  80. {
  81. cmMpRoot_t* p = _cmMpRoot;
  82. unsigned i;
  83. for(i=0; i<p->devCnt; ++i)
  84. if( p->devArray[i].clientId == clientId )
  85. return p->devArray + i;
  86. return NULL;
  87. }
  88. cmMpPort_t* _cmMpInPortIdToPort( cmMpDev_t* dev, int portId )
  89. {
  90. unsigned i;
  91. for(i=0; i<dev->iPortCnt; ++i)
  92. if( dev->iPortArray[i].alsa_addr.port == portId )
  93. return dev->iPortArray + i;
  94. return NULL;
  95. }
  96. void _cmMpSplit14Bits( unsigned v, cmMidiByte_t* d0, cmMidiByte_t* d1 )
  97. {
  98. *d0 = (v & 0x3f80) >> 7;
  99. *d1 = v & 0x7f;
  100. }
  101. cmMpRC_t cmMpPoll()
  102. {
  103. cmMpRC_t rc = kOkMpRC;
  104. cmMpRoot_t* p = _cmMpRoot;
  105. int timeOutMs = 50;
  106. snd_seq_event_t *ev;
  107. if (poll(p->alsa_fd, p->alsa_fdCnt, timeOutMs) > 0)
  108. {
  109. int rc = 1;
  110. do
  111. {
  112. rc = snd_seq_event_input(p->h,&ev);
  113. // if no input
  114. if( rc == -EAGAIN )
  115. break;
  116. // if input buffer overrun
  117. if( rc == -ENOSPC )
  118. break;
  119. // get the device this event arrived from
  120. if( p->prvRcvDev==NULL || p->prvRcvDev->clientId != ev->source.client )
  121. p->prvRcvDev = _cmMpClientIdToDev(ev->source.client);
  122. // get the port this event arrived from
  123. if( p->prvRcvDev != NULL && (p->prvRcvPort==NULL || p->prvRcvPort->alsa_addr.port != ev->source.port) )
  124. p->prvRcvPort = _cmMpInPortIdToPort(p->prvRcvDev,ev->source.port);
  125. if( p->prvRcvDev == NULL || p->prvRcvPort == NULL )
  126. continue;
  127. //printf("%i %x\n",ev->type,ev->type);
  128. //printf("dev:%i port:%i ch:%i %i\n",ev->source.client,ev->source.port,ev->data.note.channel,ev->data.note.note);
  129. unsigned microSecs1 = (ev->time.time.tv_sec * 1000000) + (ev->time.time.tv_nsec/1000);
  130. //unsigned deltaMicroSecs = p->prvTimeMicroSecs==0 ? 0 : microSecs1 - p->prvTimeMicroSecs;
  131. cmMidiByte_t d0 = 0xff;
  132. cmMidiByte_t d1 = 0xff;
  133. cmMidiByte_t status = 0;
  134. switch(ev->type)
  135. {
  136. //
  137. // MIDI Channel Messages
  138. //
  139. case SND_SEQ_EVENT_NOTEON:
  140. status = kNoteOnMdId;
  141. d0 = ev->data.note.note;
  142. d1 = ev->data.note.velocity;
  143. //printf("%s (%i : %i) (%i)\n", snd_seq_ev_is_abstime(ev)?"abs":"rel",ev->time.time.tv_sec,ev->time.time.tv_nsec, deltaMicroSecs/1000);
  144. break;
  145. case SND_SEQ_EVENT_NOTEOFF:
  146. status = kNoteOffMdId;
  147. d0 = ev->data.note.note;
  148. d1 = ev->data.note.velocity;
  149. break;
  150. case SND_SEQ_EVENT_KEYPRESS:
  151. status = kPolyPresMdId;
  152. d0 = ev->data.note.note;
  153. d1 = ev->data.note.velocity;
  154. break;
  155. case SND_SEQ_EVENT_PGMCHANGE:
  156. status = kPgmMdId;
  157. d0 = ev->data.control.param;
  158. d1 = 0xff;
  159. break;
  160. case SND_SEQ_EVENT_CHANPRESS:
  161. status = kChPresMdId;
  162. d0 = ev->data.control.param;
  163. d1 = 0xff;
  164. break;
  165. case SND_SEQ_EVENT_CONTROLLER:
  166. status = kCtlMdId;
  167. d0 = ev->data.control.param;
  168. d1 = ev->data.control.value;
  169. break;
  170. case SND_SEQ_EVENT_PITCHBEND:
  171. _cmMpSplit14Bits(ev->data.control.value + 8192, &d0, &d1 );
  172. status = kPbendMdId;
  173. break;
  174. //
  175. // MIDI System Common Messages
  176. //
  177. case SND_SEQ_EVENT_QFRAME:
  178. status = kSysComMtcMdId;
  179. d0 = ev->data.control.value;
  180. break;
  181. case SND_SEQ_EVENT_SONGPOS:
  182. _cmMpSplit14Bits(ev->data.control.value, &d0, &d1 );
  183. status = kSysComSppMdId;
  184. break;
  185. case SND_SEQ_EVENT_SONGSEL:
  186. status = kSysComSelMdId;
  187. d0 = ev->data.control.value;
  188. break;
  189. case SND_SEQ_EVENT_TUNE_REQUEST:
  190. status = kSysComTuneMdId;
  191. break;
  192. //
  193. // MIDI System Real-time Messages
  194. //
  195. case SND_SEQ_EVENT_CLOCK: status = kSysRtClockMdId; break;
  196. case SND_SEQ_EVENT_START: status = kSysRtStartMdId; break;
  197. case SND_SEQ_EVENT_CONTINUE: status = kSysRtContMdId; break;
  198. case SND_SEQ_EVENT_STOP: status = kSysRtStopMdId; break;
  199. case SND_SEQ_EVENT_SENSING: status = kSysRtSenseMdId; break;
  200. case SND_SEQ_EVENT_RESET: status = kSysRtResetMdId; break;
  201. }
  202. if( status != 0 )
  203. {
  204. cmMidiByte_t ch = ev->data.note.channel;
  205. cmTimeSpec_t ts;
  206. ts.tv_sec = p->baseTimeStamp.tv_sec + ev->time.time.tv_sec;
  207. ts.tv_nsec = p->baseTimeStamp.tv_nsec + ev->time.time.tv_nsec;
  208. if( ts.tv_nsec > 1000000000 )
  209. {
  210. ts.tv_nsec -= 1000000000;
  211. ts.tv_sec += 1;
  212. }
  213. //printf("MIDI: %ld %ld : 0x%x %i %i\n",ts.tv_sec,ts.tv_nsec,status,d0,d1);
  214. cmMpParserMidiTriple(p->prvRcvPort->parserH, &ts, status | ch, d0, d1 );
  215. p->prvTimeMicroSecs = microSecs1;
  216. p->eventCnt += 1;
  217. }
  218. }while( snd_seq_event_input_pending(p->h,0));
  219. cmMpParserTransmit(p->prvRcvPort->parserH);
  220. }
  221. return rc;
  222. }
  223. bool _cmMpThreadFunc(void* param)
  224. {
  225. cmMpPoll();
  226. return true;
  227. }
  228. cmMpRC_t _cmMpAllocStruct( cmMpRoot_t* p, const cmChar_t* appNameStr, cmMpCallback_t cbFunc, void* cbDataPtr, unsigned parserBufByteCnt, cmRpt_t* rpt )
  229. {
  230. cmMpRC_t rc = kOkMpRC;
  231. snd_seq_client_info_t* cip = NULL;
  232. snd_seq_port_info_t* pip = NULL;
  233. snd_seq_port_subscribe_t *subs = NULL;
  234. unsigned i,j,k,arc;
  235. // alloc the subscription recd on the stack
  236. snd_seq_port_subscribe_alloca(&subs);
  237. // alloc the client recd
  238. if((arc = snd_seq_client_info_malloc(&cip)) < 0 )
  239. {
  240. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA seq client info allocation failed.");
  241. goto errLabel;
  242. }
  243. // alloc the port recd
  244. if((arc = snd_seq_port_info_malloc(&pip)) < 0 )
  245. {
  246. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA seq port info allocation failed.");
  247. goto errLabel;
  248. }
  249. if((p->alsa_queue = snd_seq_alloc_queue(p->h)) < 0 )
  250. {
  251. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,p->alsa_queue,"ALSA queue allocation failed.");
  252. goto errLabel;
  253. }
  254. // Set arbitrary tempo (mm=100) and resolution (240) (FROM RtMidi.cpp)
  255. /*
  256. snd_seq_queue_tempo_t *qtempo;
  257. snd_seq_queue_tempo_alloca(&qtempo);
  258. snd_seq_queue_tempo_set_tempo(qtempo, 600000);
  259. snd_seq_queue_tempo_set_ppq(qtempo, 240);
  260. snd_seq_set_queue_tempo(p->h, p->alsa_queue, qtempo);
  261. snd_seq_drain_output(p->h);
  262. */
  263. // setup the client port
  264. snd_seq_set_client_name(p->h,appNameStr);
  265. snd_seq_port_info_set_client(pip, p->alsa_addr.client = snd_seq_client_id(p->h) );
  266. snd_seq_port_info_set_name(pip,cmStringNullGuard(appNameStr));
  267. snd_seq_port_info_set_capability(pip,SND_SEQ_PORT_CAP_READ | SND_SEQ_PORT_CAP_WRITE | SND_SEQ_PORT_CAP_DUPLEX | SND_SEQ_PORT_CAP_SUBS_READ | SND_SEQ_PORT_CAP_SUBS_WRITE );
  268. snd_seq_port_info_set_type(pip, SND_SEQ_PORT_TYPE_SOFTWARE | SND_SEQ_PORT_TYPE_APPLICATION | SND_SEQ_PORT_TYPE_MIDI_GENERIC );
  269. snd_seq_port_info_set_midi_channels(pip, 16);
  270. // cfg for real-time time stamping
  271. snd_seq_port_info_set_timestamping(pip, 1);
  272. snd_seq_port_info_set_timestamp_real(pip, 1);
  273. snd_seq_port_info_set_timestamp_queue(pip, p->alsa_queue);
  274. // create the client port
  275. if((p->alsa_addr.port = snd_seq_create_port(p->h,pip)) < 0 )
  276. {
  277. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,p->alsa_addr.port,"ALSA client port creation failed.");
  278. goto errLabel;
  279. }
  280. p->devCnt = 0;
  281. // determine the count of devices
  282. snd_seq_client_info_set_client(cip, -1);
  283. while( snd_seq_query_next_client(p->h,cip) == 0)
  284. p->devCnt += 1;
  285. // allocate the device array
  286. p->devArray = cmLhAllocZ(p->lH,cmMpDev_t,p->devCnt);
  287. // fill in each device record
  288. snd_seq_client_info_set_client(cip, -1);
  289. for(i=0; snd_seq_query_next_client(p->h,cip)==0; ++i)
  290. {
  291. assert(i<p->devCnt);
  292. int client = snd_seq_client_info_get_client(cip);
  293. const char* name = snd_seq_client_info_get_name(cip);
  294. // initalize the device record
  295. p->devArray[i].nameStr = cmLhAllocStr(p->lH,cmStringNullGuard(name));
  296. p->devArray[i].iPortCnt = 0;
  297. p->devArray[i].oPortCnt = 0;
  298. p->devArray[i].iPortArray = NULL;
  299. p->devArray[i].oPortArray = NULL;
  300. p->devArray[i].clientId = client;
  301. snd_seq_port_info_set_client(pip,client);
  302. snd_seq_port_info_set_port(pip,-1);
  303. // determine the count of in/out ports on this device
  304. while( snd_seq_query_next_port(p->h,pip) == 0 )
  305. {
  306. unsigned caps = snd_seq_port_info_get_capability(pip);
  307. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_READ) )
  308. p->devArray[i].iPortCnt += 1;
  309. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_WRITE) )
  310. p->devArray[i].oPortCnt += 1;
  311. }
  312. // allocate the device port arrays
  313. if( p->devArray[i].iPortCnt > 0 )
  314. p->devArray[i].iPortArray = cmLhAllocZ(p->lH,cmMpPort_t,p->devArray[i].iPortCnt);
  315. if( p->devArray[i].oPortCnt > 0 )
  316. p->devArray[i].oPortArray = cmLhAllocZ(p->lH,cmMpPort_t,p->devArray[i].oPortCnt);
  317. snd_seq_port_info_set_client(pip,client); // set the ports client id
  318. snd_seq_port_info_set_port(pip,-1);
  319. // fill in the port information
  320. for(j=0,k=0; snd_seq_query_next_port(p->h,pip) == 0; )
  321. {
  322. const char* port = snd_seq_port_info_get_name(pip);
  323. unsigned type = snd_seq_port_info_get_type(pip);
  324. unsigned caps = snd_seq_port_info_get_capability(pip);
  325. snd_seq_addr_t addr = *snd_seq_port_info_get_addr(pip);
  326. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_READ) )
  327. {
  328. assert(j<p->devArray[i].iPortCnt);
  329. p->devArray[i].iPortArray[j].inputFl = true;
  330. p->devArray[i].iPortArray[j].nameStr = cmLhAllocStr(p->lH,cmStringNullGuard(port));
  331. p->devArray[i].iPortArray[j].alsa_type = type;
  332. p->devArray[i].iPortArray[j].alsa_cap = caps;
  333. p->devArray[i].iPortArray[j].alsa_addr = addr;
  334. p->devArray[i].iPortArray[j].parserH = cmMpParserCreate(i, j, cbFunc, cbDataPtr, parserBufByteCnt, rpt );
  335. // port->app
  336. snd_seq_port_subscribe_set_sender(subs, &addr);
  337. snd_seq_port_subscribe_set_dest(subs, &p->alsa_addr);
  338. snd_seq_port_subscribe_set_queue(subs, 1);
  339. snd_seq_port_subscribe_set_time_update(subs, 1);
  340. snd_seq_port_subscribe_set_time_real(subs, 1);
  341. if((arc = snd_seq_subscribe_port(p->h, subs)) < 0)
  342. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"Input port to app. subscription failed on port '%s'.",cmStringNullGuard(port));
  343. ++j;
  344. }
  345. if( cmIsFlag(caps,SND_SEQ_PORT_CAP_WRITE) )
  346. {
  347. assert(k<p->devArray[i].oPortCnt);
  348. p->devArray[i].oPortArray[k].inputFl = false;
  349. p->devArray[i].oPortArray[k].nameStr = cmLhAllocStr(p->lH,cmStringNullGuard(port));
  350. p->devArray[i].oPortArray[k].alsa_type = type;
  351. p->devArray[i].oPortArray[k].alsa_cap = caps;
  352. p->devArray[i].oPortArray[k].alsa_addr = addr;
  353. // app->port connection
  354. snd_seq_port_subscribe_set_sender(subs, &p->alsa_addr);
  355. snd_seq_port_subscribe_set_dest( subs, &addr);
  356. if((arc = snd_seq_subscribe_port(p->h, subs)) < 0 )
  357. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"App to output port subscription failed on port '%s'.",cmStringNullGuard(port));
  358. ++k;
  359. }
  360. }
  361. }
  362. errLabel:
  363. if( pip != NULL)
  364. snd_seq_port_info_free(pip);
  365. if( cip != NULL )
  366. snd_seq_client_info_free(cip);
  367. return rc;
  368. }
  369. cmMpRC_t cmMpInitialize( cmCtx_t* ctx, cmMpCallback_t cbFunc, void* cbArg, unsigned parserBufByteCnt, const char* appNameStr )
  370. {
  371. cmMpRC_t rc = kOkMpRC;
  372. int arc = 0;
  373. cmMpRoot_t* p = NULL;
  374. if((rc = cmMpFinalize()) != kOkMpRC )
  375. return rc;
  376. // allocate the global root object
  377. _cmMpRoot = p = cmMemAllocZ(cmMpRoot_t,1);
  378. p->h = NULL;
  379. p->alsa_queue = -1;
  380. cmErrSetup(&p->err,&ctx->rpt,"MIDI Port");
  381. // setup the local linked heap manager
  382. if(cmLHeapIsValid(p->lH = cmLHeapCreate(2048,ctx)) == false )
  383. {
  384. rc = _cmMpErrMsg(&p->err,kLHeapErrMpRC,0,"Linked heap initialization failed.");
  385. goto errLabel;
  386. }
  387. // create the listening thread
  388. if( cmThreadCreate( &p->thH, _cmMpThreadFunc, NULL, &ctx->rpt) != kOkThRC )
  389. {
  390. rc = _cmMpErrMsg(&p->err,kThreadErrMpRC,0,"Thread initialization failed.");
  391. goto errLabel;
  392. }
  393. // initialize the ALSA sequencer
  394. if((arc = snd_seq_open(&p->h, "default", SND_SEQ_OPEN_DUPLEX, SND_SEQ_NONBLOCK )) < 0 )
  395. {
  396. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA Sequencer open failed.");
  397. goto errLabel;
  398. }
  399. // setup the device and port structures
  400. if((rc = _cmMpAllocStruct(p,appNameStr,cbFunc,cbArg,parserBufByteCnt,&ctx->rpt)) != kOkMpRC )
  401. goto errLabel;
  402. // allocate the file descriptors used for polling
  403. p->alsa_fdCnt = snd_seq_poll_descriptors_count(p->h, POLLIN);
  404. p->alsa_fd = cmMemAllocZ(struct pollfd,p->alsa_fdCnt);
  405. snd_seq_poll_descriptors(p->h, p->alsa_fd, p->alsa_fdCnt, POLLIN);
  406. p->cbFunc = cbFunc;
  407. p->cbDataPtr = cbArg;
  408. // start the sequencer queue
  409. if((arc = snd_seq_start_queue(p->h, p->alsa_queue, NULL)) < 0 )
  410. {
  411. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA queue start failed.");
  412. goto errLabel;
  413. }
  414. // send any pending commands to the driver
  415. snd_seq_drain_output(p->h);
  416. // all time stamps will be an offset from this time stamp
  417. clock_gettime(CLOCK_MONOTONIC,&p->baseTimeStamp);
  418. if( cmThreadPause(p->thH,0) != kOkThRC )
  419. rc = _cmMpErrMsg(&p->err,kThreadErrMpRC,0,"Thread start failed.");
  420. errLabel:
  421. if( rc != kOkMpRC )
  422. cmMpFinalize();
  423. return rc;
  424. }
  425. cmMpRC_t cmMpFinalize()
  426. {
  427. cmMpRC_t rc = kOkMpRC;
  428. cmMpRoot_t* p = _cmMpRoot;
  429. if( _cmMpRoot != NULL )
  430. {
  431. int arc;
  432. // stop the thread first
  433. if( cmThreadDestroy(&p->thH) != kOkThRC )
  434. {
  435. rc = _cmMpErrMsg(&p->err,kThreadErrMpRC,0,"Thread destroy failed.");
  436. goto errLabel;
  437. }
  438. // stop the queue
  439. if( p->h != NULL )
  440. if((arc = snd_seq_stop_queue(p->h,p->alsa_queue, NULL)) < 0 )
  441. {
  442. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA queue stop failed.");
  443. goto errLabel;
  444. }
  445. // release the alsa queue
  446. if( p->alsa_queue != -1 )
  447. {
  448. if((arc = snd_seq_free_queue(p->h,p->alsa_queue)) < 0 )
  449. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA queue release failed.");
  450. else
  451. p->alsa_queue = -1;
  452. }
  453. // release the alsa system handle
  454. if( p->h != NULL )
  455. {
  456. if( (arc = snd_seq_close(p->h)) < 0 )
  457. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"ALSA sequencer close failed.");
  458. else
  459. p->h = NULL;
  460. }
  461. // release each parser
  462. unsigned i,j;
  463. for(i=0; i<p->devCnt; ++i)
  464. for(j=0; j<p->devArray[i].iPortCnt; ++j)
  465. cmMpParserDestroy(&p->devArray[i].iPortArray[j].parserH);
  466. cmLHeapDestroy(&p->lH);
  467. cmMemFree(p->alsa_fd);
  468. cmMemPtrFree(&_cmMpRoot);
  469. }
  470. errLabel:
  471. return rc;
  472. }
  473. bool cmMpIsInitialized()
  474. { return _cmMpRoot!=NULL; }
  475. unsigned cmMpDeviceCount()
  476. { return _cmMpRoot==NULL ? 0 : _cmMpRoot->devCnt; }
  477. const char* cmMpDeviceName( unsigned devIdx )
  478. {
  479. if( _cmMpRoot==NULL || devIdx>=_cmMpRoot->devCnt)
  480. return NULL;
  481. return _cmMpRoot->devArray[devIdx].nameStr;
  482. }
  483. unsigned cmMpDevicePortCount( unsigned devIdx, unsigned flags )
  484. {
  485. if( _cmMpRoot==NULL || devIdx>=_cmMpRoot->devCnt)
  486. return 0;
  487. if( cmIsFlag(flags,kInMpFl) )
  488. return _cmMpRoot->devArray[devIdx].iPortCnt;
  489. return _cmMpRoot->devArray[devIdx].oPortCnt;
  490. }
  491. const char* cmMpDevicePortName( unsigned devIdx, unsigned flags, unsigned portIdx )
  492. {
  493. if( _cmMpRoot==NULL || devIdx>=_cmMpRoot->devCnt)
  494. return 0;
  495. if( cmIsFlag(flags,kInMpFl) )
  496. {
  497. if( portIdx >= _cmMpRoot->devArray[devIdx].iPortCnt )
  498. return 0;
  499. return _cmMpRoot->devArray[devIdx].iPortArray[portIdx].nameStr;
  500. }
  501. if( portIdx >= _cmMpRoot->devArray[devIdx].oPortCnt )
  502. return 0;
  503. return _cmMpRoot->devArray[devIdx].oPortArray[portIdx].nameStr;
  504. }
  505. cmMpRC_t cmMpDeviceSend( unsigned devIdx, unsigned portIdx, cmMidiByte_t status, cmMidiByte_t d0, cmMidiByte_t d1 )
  506. {
  507. cmMpRC_t rc = kOkMpRC;
  508. snd_seq_event_t ev;
  509. int arc;
  510. cmMpRoot_t* p = _cmMpRoot;
  511. assert( p!=NULL && devIdx < p->devCnt && portIdx < p->devArray[devIdx].oPortCnt );
  512. cmMpPort_t* port = p->devArray[devIdx].oPortArray + portIdx;
  513. snd_seq_ev_clear(&ev);
  514. snd_seq_ev_set_source(&ev, p->alsa_addr.port);
  515. //snd_seq_ev_set_subs(&ev);
  516. snd_seq_ev_set_dest(&ev, port->alsa_addr.client, port->alsa_addr.port);
  517. snd_seq_ev_set_direct(&ev);
  518. snd_seq_ev_set_fixed(&ev);
  519. switch( status & 0xf0 )
  520. {
  521. case kNoteOffMdId:
  522. ev.type = SND_SEQ_EVENT_NOTEOFF;
  523. ev.data.note.note = d0;
  524. ev.data.note.velocity = d1;
  525. break;
  526. case kNoteOnMdId:
  527. ev.type = SND_SEQ_EVENT_NOTEON;
  528. ev.data.note.note = d0;
  529. ev.data.note.velocity = d1;
  530. break;
  531. case kPolyPresMdId:
  532. ev.type = SND_SEQ_EVENT_KEYPRESS ;
  533. ev.data.note.note = d0;
  534. ev.data.note.velocity = d1;
  535. break;
  536. case kCtlMdId:
  537. ev.type = SND_SEQ_EVENT_CONTROLLER;
  538. ev.data.control.param = d0;
  539. ev.data.control.value = d1;
  540. break;
  541. case kPgmMdId:
  542. ev.type = SND_SEQ_EVENT_PGMCHANGE;
  543. ev.data.control.param = d0;
  544. ev.data.control.value = d1;
  545. break;
  546. case kChPresMdId:
  547. ev.type = SND_SEQ_EVENT_CHANPRESS;
  548. ev.data.control.param = d0;
  549. ev.data.control.value = d1;
  550. break;
  551. case kPbendMdId:
  552. {
  553. int val = d0;
  554. val <<= 7;
  555. val += d1;
  556. val -= 8192;
  557. ev.type = SND_SEQ_EVENT_PITCHBEND;
  558. ev.data.control.param = 0;
  559. ev.data.control.value = val;
  560. }
  561. break;
  562. default:
  563. rc = _cmMpErrMsg(&p->err,kInvalidArgMpRC,0,"Cannot send an invalid MIDI status byte:0x%x.",status & 0xf0);
  564. goto errLabel;
  565. }
  566. ev.data.note.channel = status & 0x0f;
  567. if((arc = snd_seq_event_output(p->h, &ev)) < 0 )
  568. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"MIDI event output failed.");
  569. if((arc = snd_seq_drain_output(p->h)) < 0 )
  570. rc = _cmMpErrMsg(&p->err,kSysErrMpRC,arc,"MIDI event output drain failed.");
  571. errLabel:
  572. return rc;
  573. }
  574. cmMpRC_t cmMpDeviceSendData( unsigned devIdx, unsigned portIdx, const cmMidiByte_t* dataPtr, unsigned byteCnt )
  575. {
  576. cmMpRoot_t* p = _cmMpRoot;
  577. return cmErrMsg(&p->err,kNotImplMpRC,"cmMpDeviceSendData() has not yet been implemented for ALSA.");
  578. }
  579. cmMpRC_t cmMpInstallCallback( unsigned devIdx, unsigned portIdx, cmMpCallback_t cbFunc, void* cbDataPtr )
  580. {
  581. cmMpRC_t rc = kOkMpRC;
  582. unsigned di;
  583. unsigned dn = cmMpDeviceCount();
  584. cmMpRoot_t* p = _cmMpRoot;
  585. for(di=0; di<dn; ++di)
  586. if( di==devIdx || devIdx == -1 )
  587. {
  588. unsigned pi;
  589. unsigned pn = cmMpDevicePortCount(di,kInMpFl);
  590. for(pi=0; pi<pn; ++pi)
  591. if( pi==portIdx || portIdx == -1 )
  592. if( cmMpParserInstallCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) != kOkMpRC )
  593. goto errLabel;
  594. }
  595. errLabel:
  596. return rc;
  597. }
  598. cmMpRC_t cmMpRemoveCallback( unsigned devIdx, unsigned portIdx, cmMpCallback_t cbFunc, void* cbDataPtr )
  599. {
  600. cmMpRC_t rc = kOkMpRC;
  601. unsigned di;
  602. unsigned dn = cmMpDeviceCount();
  603. unsigned remCnt = 0;
  604. cmMpRoot_t* p = _cmMpRoot;
  605. for(di=0; di<dn; ++di)
  606. if( di==devIdx || devIdx == -1 )
  607. {
  608. unsigned pi;
  609. unsigned pn = cmMpDevicePortCount(di,kInMpFl);
  610. for(pi=0; pi<pn; ++pi)
  611. if( pi==portIdx || portIdx == -1 )
  612. if( cmMpParserHasCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) )
  613. {
  614. if( cmMpParserRemoveCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) != kOkMpRC )
  615. goto errLabel;
  616. else
  617. ++remCnt;
  618. }
  619. }
  620. if( remCnt == 0 && dn > 0 )
  621. rc = _cmMpErrMsg(&p->err,kCbNotFoundMpRC,0,"The callback was not found on any of the specified devices or ports.");
  622. errLabel:
  623. return rc;
  624. }
  625. bool cmMpUsesCallback( unsigned devIdx, unsigned portIdx, cmMpCallback_t cbFunc, void* cbDataPtr )
  626. {
  627. unsigned di;
  628. unsigned dn = cmMpDeviceCount();
  629. cmMpRoot_t* p = _cmMpRoot;
  630. for(di=0; di<dn; ++di)
  631. if( di==devIdx || devIdx == -1 )
  632. {
  633. unsigned pi;
  634. unsigned pn = cmMpDevicePortCount(di,kInMpFl);
  635. for(pi=0; pi<pn; ++pi)
  636. if( pi==portIdx || portIdx == -1 )
  637. if( cmMpParserHasCallback( p->devArray[di].iPortArray[pi].parserH, cbFunc, cbDataPtr ) )
  638. return true;
  639. }
  640. return false;
  641. }
  642. void _cmMpReportPort( cmRpt_t* rpt, const cmMpPort_t* port )
  643. {
  644. cmRptPrintf(rpt," client:%i port:%i %s caps:(",port->alsa_addr.client,port->alsa_addr.port,port->nameStr);
  645. if( port->alsa_cap & SND_SEQ_PORT_CAP_READ ) cmRptPrintf(rpt,"Read " );
  646. if( port->alsa_cap & SND_SEQ_PORT_CAP_WRITE ) cmRptPrintf(rpt,"Writ " );
  647. if( port->alsa_cap & SND_SEQ_PORT_CAP_SYNC_READ ) cmRptPrintf(rpt,"Syrd " );
  648. if( port->alsa_cap & SND_SEQ_PORT_CAP_SYNC_WRITE ) cmRptPrintf(rpt,"Sywr " );
  649. if( port->alsa_cap & SND_SEQ_PORT_CAP_DUPLEX ) cmRptPrintf(rpt,"Dupl " );
  650. if( port->alsa_cap & SND_SEQ_PORT_CAP_SUBS_READ ) cmRptPrintf(rpt,"Subr " );
  651. if( port->alsa_cap & SND_SEQ_PORT_CAP_SUBS_WRITE ) cmRptPrintf(rpt,"Subw " );
  652. if( port->alsa_cap & SND_SEQ_PORT_CAP_NO_EXPORT ) cmRptPrintf(rpt,"Nexp " );
  653. cmRptPrintf(rpt,") type:(");
  654. if( port->alsa_type & SND_SEQ_PORT_TYPE_SPECIFIC ) cmRptPrintf(rpt,"Spec ");
  655. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GENERIC) cmRptPrintf(rpt,"Gnrc ");
  656. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GM ) cmRptPrintf(rpt,"GM ");
  657. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GS ) cmRptPrintf(rpt,"GS ");
  658. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_XG ) cmRptPrintf(rpt,"XG ");
  659. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_MT32 ) cmRptPrintf(rpt,"MT32 ");
  660. if( port->alsa_type & SND_SEQ_PORT_TYPE_MIDI_GM2 ) cmRptPrintf(rpt,"GM2 ");
  661. if( port->alsa_type & SND_SEQ_PORT_TYPE_SYNTH ) cmRptPrintf(rpt,"Syn ");
  662. if( port->alsa_type & SND_SEQ_PORT_TYPE_DIRECT_SAMPLE) cmRptPrintf(rpt,"Dsmp ");
  663. if( port->alsa_type & SND_SEQ_PORT_TYPE_SAMPLE ) cmRptPrintf(rpt,"Samp ");
  664. if( port->alsa_type & SND_SEQ_PORT_TYPE_HARDWARE ) cmRptPrintf(rpt,"Hwar ");
  665. if( port->alsa_type & SND_SEQ_PORT_TYPE_SOFTWARE ) cmRptPrintf(rpt,"Soft ");
  666. if( port->alsa_type & SND_SEQ_PORT_TYPE_SYNTHESIZER ) cmRptPrintf(rpt,"Sizr ");
  667. if( port->alsa_type & SND_SEQ_PORT_TYPE_PORT ) cmRptPrintf(rpt,"Port ");
  668. if( port->alsa_type & SND_SEQ_PORT_TYPE_APPLICATION ) cmRptPrintf(rpt,"Appl ");
  669. cmRptPrintf(rpt,")\n");
  670. }
  671. void cmMpReport( cmRpt_t* rpt )
  672. {
  673. cmMpRoot_t* p = _cmMpRoot;
  674. unsigned i,j;
  675. cmRptPrintf(rpt,"Buffer size bytes in:%i out:%i\n",snd_seq_get_input_buffer_size(p->h),snd_seq_get_output_buffer_size(p->h));
  676. for(i=0; i<p->devCnt; ++i)
  677. {
  678. const cmMpDev_t* d = p->devArray + i;
  679. cmRptPrintf(rpt,"%i : Device: %s \n",i,cmStringNullGuard(d->nameStr));
  680. if(d->iPortCnt > 0 )
  681. cmRptPrintf(rpt," Input:\n");
  682. for(j=0; j<d->iPortCnt; ++j)
  683. _cmMpReportPort(rpt,d->iPortArray+j);
  684. if(d->oPortCnt > 0 )
  685. cmRptPrintf(rpt," Output:\n");
  686. for(j=0; j<d->oPortCnt; ++j)
  687. _cmMpReportPort(rpt,d->oPortArray+j);
  688. }
  689. }