123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254 |
- #ifdef cmVectOpsRICode_h
-
- VECT_OP_TYPE* VECT_OP_FUNC(Col)( VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
- {
- assert(ci<cn);
- return m + (ci*rn);
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Row)( VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
- {
- assert(ri<rn);
- return m + ri;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(ElePtr)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
- {
- assert(ri<rn && ci<cn);
- return m + (ci*rn) + ri;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(Ele)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
- { return *VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn); }
-
- void VECT_OP_FUNC(Set)( VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn, VECT_OP_TYPE v )
- { *(VECT_OP_FUNC(ElePtr)(m,ri,ci,rn,cn)) = v; }
-
- const VECT_OP_TYPE* VECT_OP_FUNC(CCol)( const VECT_OP_TYPE* m, unsigned ci, unsigned rn, unsigned cn )
- {
- assert(ci<cn);
- return m + (ci*rn);
- }
-
- const VECT_OP_TYPE* VECT_OP_FUNC(CRow)( const VECT_OP_TYPE* m, unsigned ri, unsigned rn, unsigned cn )
- {
- assert(ri<rn);
- return m + ri;
- }
-
- const VECT_OP_TYPE* VECT_OP_FUNC(CElePtr)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
- {
- assert(ri<rn && ci<cn);
- return m + (ci*rn) + ri;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(CEle)( const VECT_OP_TYPE* m, unsigned ri, unsigned ci, unsigned rn, unsigned cn )
- { return *VECT_OP_FUNC(CElePtr)(m,ri,ci,rn,cn); }
-
-
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Fill)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE value )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
-
- if( value == 0 )
- memset(dbp,0,(dep-dbp)*sizeof(VECT_OP_TYPE));
- else
- {
- while( dbp < dep )
- *dbp++ = value;
- }
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Zero)( VECT_OP_TYPE* dbp, unsigned dn )
- {
- memset( dbp, 0, sizeof(VECT_OP_TYPE)*dn);
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Move)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
- {
- memmove(bp,sp,sizeof(VECT_OP_TYPE)*bn);
- return bp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Copy)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* sp )
- {
- memcpy(bp,sp,sizeof(VECT_OP_TYPE)*bn);
- return bp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyN)( VECT_OP_TYPE* bp, unsigned bn, unsigned d_stride, const VECT_OP_TYPE* sp, unsigned s_stride )
- {
- VECT_OP_TYPE* dbp = bp;
- const VECT_OP_TYPE* ep = bp + (bn*d_stride);
- for(; bp < ep; bp += d_stride, sp += s_stride )
- *bp = *sp;
-
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyU)( VECT_OP_TYPE* bp, unsigned bn, const unsigned* sp )
- {
- VECT_OP_TYPE* dbp = bp;
- const VECT_OP_TYPE* ep = bp + bn;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ = (VECT_OP_TYPE)*sp++;
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyI)( VECT_OP_TYPE* dbp, unsigned dn, const int* sp )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dp < dep )
- *dp++ = (VECT_OP_TYPE)*sp++;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyF)( VECT_OP_TYPE* dbp, unsigned dn, const float* sp )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dp < dep )
- *dp++ = (VECT_OP_TYPE)*sp++;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyD)( VECT_OP_TYPE* dbp, unsigned dn, const double* sp )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dp < dep )
- *dp++ = (VECT_OP_TYPE)*sp++;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyS)( VECT_OP_TYPE* dbp, unsigned dn, const cmSample_t* sp )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dp < dep )
- *dp++ = (VECT_OP_TYPE)*sp++;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyR)( VECT_OP_TYPE* dbp, unsigned dn, const cmReal_t* sp )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dp < dep )
- *dp++ = (VECT_OP_TYPE)*sp++;
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(CopyStride)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, unsigned srcStride )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- for(; dp < dep; sp += srcStride )
- *dp++ = *sp;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Shrink)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
- {
- assert( s <= t && t <= (s+sn) );
- assert( s <= (t+tn) && (t+tn) <= (s+sn));
- //VECT_OP_FUNC(Move)(s,sn - ((t - s) + tn),t+tn);
- VECT_OP_FUNC(Move)((VECT_OP_TYPE*)t,(sn - ((t+tn)-s)) + 1,t+tn);
- return s;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Expand)( VECT_OP_TYPE* s, unsigned sn, const VECT_OP_TYPE* t, unsigned tn )
- {
- assert( s <= t && t <= s+sn );
- unsigned i = t - s;
- s = cmMemResizeP(VECT_OP_TYPE,s,sn+tn);
- t = s + i;
- assert( t + tn + sn - i == s + sn + tn );
- VECT_OP_FUNC(Move)(((VECT_OP_TYPE*)t)+tn,sn-i,t);
- return s;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Replace)(VECT_OP_TYPE* s, unsigned* sn, const VECT_OP_TYPE* t, unsigned tn, const VECT_OP_TYPE* u, unsigned un )
- {
- // if s is empty and t[tn] is empty
- if( s == NULL && tn == 0 )
- {
- if( un == 0 )
- return s;
-
- s = cmMemAllocZ(VECT_OP_TYPE,un);
- VECT_OP_FUNC(Copy)(s,un,u);
-
- if( sn != NULL )
- *sn = un;
-
- return s;
- }
-
-
- assert( s!=NULL && t != NULL );
- assert( (u!=NULL && un>0) || (u==NULL && un==0) );
-
- if( (tn==0 && un==0) || (t==NULL && u==NULL))
- return s;
-
- // if the area to replace is greater than the area to insert ...
- if( tn > un )
- {
- VECT_OP_FUNC(Shrink)(s,*sn,t+un,tn-un); // ... then shrink the buffer
- *sn -= tn-un;
- }
- else
- // if the area to insert is greater than the area to replace ...
- if( un > tn )
- {
- unsigned offs = t - s;
- s = VECT_OP_FUNC(Expand)(s,*sn,t+tn,un-tn); // ... then expand the buffer
- t = s + offs;
- *sn += un-tn;
- }
-
- assert(t+un <= s+(*sn));
-
- if( u!=NULL )
- VECT_OP_FUNC(Copy)((VECT_OP_TYPE*)t,un,u);
-
- return s;
- }
-
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Rotate)( VECT_OP_TYPE* v, unsigned n, int i )
- {
- int c, j;
-
- if(v == NULL || n <= 0)
- return NULL;
-
- if(i < 0 || i >= n)
- {
- i %= n;
- if (i < 0)
- i += n;
- }
-
- if(i == 0)
- return 0;
-
- c = 0;
- for(j = 0; c < n; j++)
- {
- int t = j, k = j + i;
-
- VECT_OP_TYPE tmp = v[j];
- c++;
-
- while( k != j )
- {
- v[t] = v[k];
- t = k;
- k += i;
-
- if( k >= n )
- k -= n;
-
- c++;
- }
- v[t] = tmp;
- }
-
- return v;
-
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(RotateM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sbp, int rShiftCnt, int cShiftCnt )
- {
- int j;
-
- while( rShiftCnt < 0 )
- rShiftCnt += drn;
-
- while( cShiftCnt < 0 )
- cShiftCnt += dcn;
-
- int m = rShiftCnt % drn;
- int n = cShiftCnt % dcn;
-
-
- for(j=0; j<dcn; ++j,++n)
- {
- if(n==dcn)
- n = 0;
-
- // cnt from dst position to end of column
- unsigned cn = drn - m;
-
- // copy from top of src col to bottom of dst column
- VECT_OP_FUNC(Copy)(dbp + (n*drn) + m, cn, sbp );
- sbp+=cn;
-
-
- if( cn < drn )
- {
- // copy from bottom of src col to top of dst column
- VECT_OP_FUNC(Copy)(dbp + (n*drn), drn-cn, sbp );
- sbp += drn-cn;
- }
-
- }
- return dbp;
-
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Shift)( VECT_OP_TYPE* dbp, unsigned dn, int shiftCnt, VECT_OP_TYPE fillValue )
- {
- VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* rp = dbp;
- unsigned n = dep - dbp;
-
- if( shiftCnt == 0 )
- return dbp;
-
- if( abs(shiftCnt) >= n )
- return VECT_OP_FUNC(Fill)(dbp,dn,fillValue);
-
- if( shiftCnt > 0 )
- {
- const VECT_OP_TYPE* sbp = dep - (shiftCnt+1);
- const VECT_OP_TYPE* sep = dbp;
- VECT_OP_TYPE* dp = dbp + (n-1);
-
- while( sbp >= sep )
- *dp-- = *sbp--;
-
- while(dbp <= dp )
- *dbp++ = fillValue;
-
- }
- else
- {
- const VECT_OP_TYPE* sbp = dbp + abs(shiftCnt);
- while( sbp < dep )
- *dbp++ = *sbp++;
-
- while(dbp<dep)
- *dbp++ = fillValue;
- }
-
- return rp;
-
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Flip)( VECT_OP_TYPE* dbp, unsigned dn)
- {
- VECT_OP_TYPE* p0 = dbp;
- VECT_OP_TYPE* p1 = dbp + dn - 1;
-
- while( p0 < p1 )
- {
- VECT_OP_TYPE t = *p0;
- *p0++ = *p1;
- *p1-- = t;
- }
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(SubVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
- {
- const VECT_OP_TYPE* ep = bp + n;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ -= v;
- return bp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(SubVV)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v )
- {
- const VECT_OP_TYPE* ep = bp + n;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ -= *v++;
- return bp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(SubVVS)( VECT_OP_TYPE* bp, unsigned n, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* ep = bp + n;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ = *v++ - s;
- return bp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(SubVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
- {
- const VECT_OP_TYPE* ep = dp + (dn*dnn);
- VECT_OP_TYPE* dbp = dp;
- for(; dp < ep; dp+=dnn, v+=n )
- *dp -= *v;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(SubVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = *sb0p++ - *sb1p++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(SubVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = s0 - *sb1p++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AddVS)( VECT_OP_TYPE* bp, unsigned n, VECT_OP_TYPE v )
- {
- const VECT_OP_TYPE* ep = bp + n;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ += v;
- return bp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AddVV)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v )
- {
- const VECT_OP_TYPE* ep = bp + bn;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ += *v++;
- return bp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AddVVS)( VECT_OP_TYPE* bp, unsigned bn, const VECT_OP_TYPE* v, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* ep = bp + bn;
- VECT_OP_TYPE* dp = bp;
- while( dp < ep )
- *dp++ = *v++ + s;
- return bp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AddVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
- {
- const VECT_OP_TYPE* ep = dp + (dn*dnn);
- VECT_OP_TYPE* dbp = dp;
- for(; dp < ep; v+=n, dp+=dnn )
- *dp += *v;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(AddVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = *sb0p++ + *sb1p++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = *sb0p++ * *sb1p++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ *= *sbp++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
- {
- const VECT_OP_TYPE* ep = dp + (dn*dnn);
- VECT_OP_TYPE* dbp = dp;
- for(; dp < ep; v+=n, dp+=dnn )
- *dp *= *v;
- return dbp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ *= s;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = *sbp++ * s;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultVaVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ += *sbp++ * s;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MultSumVVS)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ += *sbp++ * s;
- return dp;
- }
-
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, VECT_OP_TYPE s1 )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = *sb0p++ / s1;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ /= *sb0p++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = *sb0p++ / *sb1p++;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVVNN)(VECT_OP_TYPE* dp, unsigned dn, unsigned dnn, const VECT_OP_TYPE* v, unsigned n )
- {
- const VECT_OP_TYPE* ep = dp + (dn*dnn);
- VECT_OP_TYPE* dbp = dp;
- for(; dp < ep; v+=n, dp+=dnn )
- *dp /= *v;
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE s )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ /= s;
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVSV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE s0, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- while( dbp < dep )
- *dbp++ = s0 / *sb1p++;
- return dp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- for(; dbp < dep; ++sb0p )
- if( *sb0p == 0 )
- *dbp++ = 0;
- else
- *dbp++ /= *sb0p;
-
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivVVVZ)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sb0p, const VECT_OP_TYPE* sb1p )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- VECT_OP_TYPE* dp = dbp;
- for(; dbp < dep; ++sb0p,++sb1p )
- if( *sb1p == 0 )
- *dbp++ = 0;
- else
- *dbp++ = *sb0p / *sb1p;
-
- return dp;
- }
-
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(DivMS)( VECT_OP_TYPE* dp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* sp )
- {
- unsigned i;
- for(i=0; i<dcn; ++i)
- VECT_OP_FUNC(DivVS)( dp + i*drn, drn, sp[i] );
- return dp;
- }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(Sum)( const VECT_OP_TYPE* bp, unsigned n )
- {
- const VECT_OP_TYPE* ep = bp + n;
- VECT_OP_TYPE s = 0;
- while( bp < ep )
- s += *bp++;
-
- return s;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(SumN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
- {
- const VECT_OP_TYPE* ep = bp + (n*stride);
- VECT_OP_TYPE s = 0;
- for(; bp < ep; bp += stride )
- s += *bp;
-
- return s;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(SumM)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
- {
- unsigned i;
- for(i=0; i<scn; ++i)
- dp[i] = VECT_OP_FUNC(Sum)(sp + (i*srn), srn );
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(SumMN)(const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, VECT_OP_TYPE* dp )
- {
- unsigned i;
- for(i=0; i<srn; ++i)
- dp[i] = VECT_OP_FUNC(SumN)(sp + i, scn, srn );
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Abs)( VECT_OP_TYPE* dbp, unsigned dn )
- {
- unsigned i;
- for(i=0; i<dn; ++i)
- if( dbp[i]<0 )
- dbp[i] = -dbp[i];
-
- return dbp;
- }
-
- // mi is a target value - it holds the number of elements in ap[an] which must be be less than the median value.
- // If the initial array contains an even number of values then the median value is formed by averaging the two center values.
- // In this case *evenFlPtr is set and used to indicate that the center-upper value must be found during undwinding.
- VECT_OP_TYPE VECT_OP_FUNC(MedianSearch)( unsigned mi, const VECT_OP_TYPE* ap, unsigned an, bool* evenFlPtr )
- {
- VECT_OP_TYPE x = ap[0]; // pick a random value as a potential median value
-
- VECT_OP_TYPE a1[ an ]; // values below x
- VECT_OP_TYPE a3[ an ]; // values above x
- unsigned a1n = 0;
- unsigned a2n = 0; // values equal to x
- unsigned a3n = 0;
-
-
- const VECT_OP_TYPE* abp = ap;
- const VECT_OP_TYPE* aep = abp + an;
-
-
- for(; abp < aep; ++abp )
- {
- if( *abp < x )
- a1[a1n++] = *abp;
- else
- {
- if( *abp > x )
- a3[a3n++] = *abp;
- else
- ++a2n;
- }
- }
-
- //printf("%i : %i %i %i\n",mi,a1n,a2n,a3n);
-
- // there are more values below x (mi remains the target split point)
- if( a1n > mi )
- {
- x = VECT_OP_FUNC(MedianSearch)(mi,a1,a1n,evenFlPtr);
- }
- else
- {
- // the target was located
- if( a1n+a2n >= mi )
- {
-
- // if a1n alone matches mi then the max value in a1[] holds the median value otherwise x is the median
- if(a1n>=1 && a1n==mi)
- {
- VECT_OP_TYPE mv = VECT_OP_FUNC(Max)(a1,a1n,1);
- x = *evenFlPtr ? (mv+x)/2 : mv;
- *evenFlPtr = false;
- }
-
- // if the evenFl is set then the closest value above the median (x) must be located
- if( *evenFlPtr )
- {
- // if the next greater value is in a2[]
- if( a2n > 1 && (a1n+a2n) > mi )
- *evenFlPtr = false;
- else
- // if the next greater value is in a3[]
- if( a3n > 1 )
- {
- x = (x + VECT_OP_FUNC(Min)(a3,a3n,1))/2;
- *evenFlPtr = false;
- }
- }
-
- // no need for unwind processing - all the possibilities at this level have been exhausted
- return x;
- }
- else
- {
- // There are more values above x - the median must therefore be in a3[].
- // Reset mi cmcounting for the fact that we know that there are
- // a1n+a2n values below the lowest value in a3.
- x = VECT_OP_FUNC(MedianSearch)(mi - (a1n+a2n), a3, a3n, evenFlPtr );
- }
- }
-
- if( *evenFlPtr )
- {
-
- // find the first value greater than x
- while( ap < aep && *ap <= x )
- ++ap;
-
- if( ap < aep )
- {
-
- VECT_OP_TYPE v = *ap++;
-
- // find the nearest value greater than x
- for(; ap < aep; ++ap )
- if( *ap > x && ((*ap - x) < (v-x)))
- v = *ap;
-
-
- x = (v + x)/2;
- *evenFlPtr = false;
- }
- }
- return x;
- }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(Median)( const VECT_OP_TYPE* bp, unsigned n )
- {
- bool evenFl = cmIsEvenU(n);
- unsigned medIdx = evenFl ? n/2 : (n+1)/2;
- return VECT_OP_FUNC(MedianSearch)( medIdx, bp, n, &evenFl );
- }
-
-
- unsigned VECT_OP_FUNC(MinIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
- {
- const VECT_OP_TYPE* ep = bp + (n*stride);
- if( bp >= ep )
- return cmInvalidIdx;
-
- const VECT_OP_TYPE* p = bp;
- const VECT_OP_TYPE* mp = bp;
-
- bp+=stride;
-
- for(; bp < ep; bp+=stride )
- if( *bp < *mp )
- mp = bp;
-
- return (mp - p)/stride;
- }
-
- unsigned VECT_OP_FUNC(MaxIndex)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
- {
- const VECT_OP_TYPE* ep = bp + (n*stride);
-
- if( bp >= ep )
- return cmInvalidIdx;
-
- const VECT_OP_TYPE* p = bp;
- const VECT_OP_TYPE* mp = bp;
-
- bp+=stride;
-
- for(; bp < ep; bp+=stride )
- if( *bp > *mp )
- mp = bp;
-
- return (mp - p)/stride;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(Min)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
- {
- unsigned i;
-
- if((i = VECT_OP_FUNC(MinIndex)(bp,n,stride)) == cmInvalidIdx )
- {
- assert(0);
- return 0;
- }
- return bp[i*stride];
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(Max)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
- {
- unsigned i;
-
-
- if((i = VECT_OP_FUNC(MaxIndex)(bp,n,stride)) == cmInvalidIdx )
- {
- assert(0);
- return 0;
- }
- return bp[i*stride];
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MinVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
- {
- unsigned i;
- for(i=0; i<dn; ++i)
- if( sp[i] < dp[i] )
- dp[i] = sp[i];
- return dp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(MaxVV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp )
- {
- unsigned i;
- for(i=0; i<dn; ++i)
- if( sp[i] > dp[i] )
- dp[i] = sp[i];
-
- return dp;
- }
-
- unsigned* VECT_OP_FUNC(MinIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
- {
- unsigned i = 0;
- for(i=0; i<scn; ++i)
- dp[i] = VECT_OP_FUNC(MinIndex)(sp + (i*srn), srn, 1 );
- return dp;
- }
-
- unsigned* VECT_OP_FUNC(MaxIndexM)( unsigned* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
- {
- unsigned i = 0;
- for(i=0; i<scn; ++i)
- dp[i] = VECT_OP_FUNC(MaxIndex)(sp + (i*srn), srn, 1 );
- return dp;
- }
-
- bool VECT_OP_FUNC(IsEqual)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
- {
- const VECT_OP_TYPE* ep = s0p + sn;
- for(; s0p < ep; ++s0p,++s1p )
- if( *s0p != *s1p )
- return false;
- return true;
- }
-
- bool VECT_OP_FUNC(IsClose)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn, double eps )
- {
- const VECT_OP_TYPE* ep = s0p + sn;
- for(; s0p < ep; ++s0p,++s1p )
- {
- if( !cmIsClose(*s0p,*s1p,eps) )
- return false;
- }
- return true;
- }
-
-
- VECT_OP_TYPE VECT_OP_FUNC(Mode)( const VECT_OP_TYPE* sp, unsigned sn )
- {
- unsigned n[sn];
- VECT_OP_TYPE v[sn];
- unsigned i,j,k = 0;
- unsigned n0 = 0; // idx of most freq occurring ele
- unsigned n1 = -1; // idx of 2nd most freq occurring ele
-
- for(i=0; i<sn; ++i)
- {
- // find sp[i] in v[]
- for(j=0; j<k; ++j)
- if( sp[i] == v[j] )
- {
- ++n[j];
- break;
- }
-
- // sp[i] was not found in v[]
- if( k == j )
- {
- v[j] = sp[i];
- n[j] = 1;
- ++k;
- }
-
- // n[j] holds frq of sp[i]
-
- // do nothing if j is already most freq
- if( j != n0 )
- {
- // if j is new most freq
- if( n[j] > n[n0] )
- {
- n1 = n0;
- n0 = j;
- }
- else
- // if j is 2nd most freq
- if( (n1==-1) || (n[j] > n[n1]) )
- n1 = j;
- }
-
- // if diff between two most freq is greater than remaining ele's
- if( (n1!=-1) && (n[n0]-n[n1]) >= (sn-i) )
- break;
-
- }
-
-
- // if there are no ele's with same count
- if( n[n0] > n[n1] )
- return v[n0];
-
- // break tie between ele's with same count be returning min value
- // (this is the same as Matlab tie break criteria)
- j = 0;
- for(i=1; i<k; ++i)
- if( (n[i] > n[j]) || (n[i] == n[j] && v[i] < v[j]) )
- j=i;
-
- return v[j];
- }
-
- unsigned VECT_OP_FUNC(Find)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
- {
- const VECT_OP_TYPE* sbp = sp;
- const VECT_OP_TYPE* ep = sp + sn;
- while( sp<ep )
- if( *sp++ == key )
- break;
-
- if( sp==ep )
- return cmInvalidIdx;
-
- return (sp-1) - sbp;
- }
-
- unsigned VECT_OP_FUNC(Count)( const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE key )
- {
- unsigned cnt = 0;
- const VECT_OP_TYPE* ep = sp + sn;
- while( sp<ep )
- if( *sp++ == key )
- ++cnt;
-
- return cnt;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(ReplaceLte)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE lteKeyVal, VECT_OP_TYPE replaceVal )
- {
- VECT_OP_TYPE* rp = dp;
- const VECT_OP_TYPE* ep = dp + dn;
-
- for(; dp < ep; ++sp )
- *dp++ = *sp <= lteKeyVal ? replaceVal : *sp;
-
-
-
- return rp;
- }
-
- VECT_OP_TYPE* VECT_OP_FUNC(Diag)( VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
- {
- unsigned i,j;
- for(i=0,j=0; i<n && j<n; ++i,++j)
- dbp[ (i*n) + j ] = sbp[i];
-
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(DiagZ)(VECT_OP_TYPE* dbp, unsigned n, const VECT_OP_TYPE* sbp )
- {
- VECT_OP_FUNC(Fill)(dbp,n*n,0);
- return VECT_OP_FUNC(Diag)(dbp,n,sbp);
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Identity)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
- {
- unsigned i,j;
- for(i=0,j=0; i<cn && j<rn; ++i,++j)
- dbp[ (i*rn) + j ] = 1;
-
- return dbp;
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(IdentityZ)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn )
- {
- VECT_OP_FUNC(Fill)(dbp,rn*cn,0);
- return VECT_OP_FUNC(Identity)(dbp,rn,cn);
- }
-
-
- VECT_OP_TYPE* VECT_OP_FUNC(Transpose)( VECT_OP_TYPE* dbp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn )
- {
- VECT_OP_TYPE* dp = dbp;
- const VECT_OP_TYPE* dep = dbp + (srn*scn);
-
- while( dbp < dep )
- {
- const VECT_OP_TYPE* sbp = sp++;
- const VECT_OP_TYPE* sep = sbp + (srn*scn);
-
- for(; sbp < sep; sbp+=srn )
- *dbp++ = *sbp;
- }
-
- return dp;
- }
-
- VECT_OP_TYPE VECT_OP_FUNC(Seq)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE beg, VECT_OP_TYPE incr )
- {
- const VECT_OP_TYPE* dep = dbp + dn;
- unsigned i = 0;
- for(; dbp<dep; ++i)
- *dbp++ = beg + (incr*i);
- return beg + (incr*i);
- }
-
-
- void VECT_OP_FUNC(FnThresh)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride, VECT_OP_TYPE (*fnPtr)(const VECT_OP_TYPE*, unsigned) )
- {
- int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
- int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
- int i,j;
-
- i0 = -i0;
-
- if( fnPtr == NULL )
- fnPtr = &(VECT_OP_FUNC(Median));
-
- for(i=0; i<xN; ++i,++i0,++i1)
- {
- j = (i*yStride);
- if( i0 < 0 )
- if( i1 >= xN )
- yV[j] = (*fnPtr)(xV,xN);
- else
- yV[j] = (*fnPtr)(xV,i1+1);
- else if( i1 >= xN )
- yV[j] = (*fnPtr)(xV+i0,xN-i0);
- else
- yV[j] = (*fnPtr)(xV+i0,wndN);
- }
- }
-
-
- void VECT_OP_FUNC(MedianFilt)( const VECT_OP_TYPE* xV, unsigned xN, unsigned wndN, VECT_OP_TYPE* yV, unsigned yStride )
- {
- int i0 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2;
- int i1 = cmIsOddU(wndN) ? (wndN-1)/2 : wndN/2 - 1;
- int i,j;
- VECT_OP_TYPE tV[ wndN ];
-
- i0 = -i0;
-
- VECT_OP_FUNC(Fill)(tV,wndN,0);
-
- for(i=0; i<xN; ++i,++i0,++i1)
- {
-
- j = (i*yStride);
-
- // note that the position of the zero padding in tV[]
- // does not matter because the median calcluation does
- // not make any assumptions about the order of the argument
- // vector.
-
- if( i0 < 0 )
- {
- VECT_OP_FUNC(Copy)(tV,wndN+i0,xV);
- VECT_OP_FUNC(Fill)(tV+wndN+i0,labs(i0),0);
- //VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
-
- yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
- continue;
- }
-
-
-
- if( i1 >= xN )
- {
- VECT_OP_FUNC(Copy)(tV,wndN-(i1-xN+1),xV+i0);
- VECT_OP_FUNC(Fill)(tV+wndN-(i1-xN+1),i1-xN+1,0);
- //VECT_OP_FUNC(Print)(NULL,1,wndN,tV,-1,-1);
-
- yV[j] = VECT_OP_FUNC(Median)(tV,wndN);
- continue;
- }
-
- //VECT_OP_FUNC(Print)(NULL,1,wndN,xV+i0,-1,-1);
- yV[j] = VECT_OP_FUNC(Median)(xV+i0,wndN);
-
- }
- }
-
- unsigned* VECT_OP_FUNC(LevEditDistAllocMtx)(unsigned maxN)
- {
- maxN += 1;
-
- unsigned* m = cmMemAllocZ(unsigned,maxN*maxN);
- unsigned* p = m;
- unsigned i;
-
- // initialize the comparison matrix with the default costs in the
- // first row and column
- // (Note that this matrix is not oriented in column major order like most 'cm' matrices.)
- for(i=0; i<maxN; ++i)
- {
- p[i] = i; // 0th row
- p[ i * maxN ] = i; // 0th col
- }
-
- return m;
- }
-
- double VECT_OP_FUNC(LevEditDist)(unsigned mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, unsigned maxN )
- {
- mtxMaxN += 1;
-
- assert( n0 < mtxMaxN && n1 < mtxMaxN );
-
- int v = 0;
- unsigned i;
- // Note that m[maxN,maxN] is not oriented in column major order like most 'cm' matrices.
-
- for(i=1; i<n0+1; ++i)
- {
- unsigned ii = i * mtxMaxN; // current row
- unsigned i_1 = ii - mtxMaxN; // previous row
- unsigned j;
- for( j=1; j<n1+1; ++j)
- {
- int cost = s0[i-1] == s1[j-1] ? 0 : 1;
-
- //m[i][j] = min( m[i-1][j] + 1, min( m[i][j-1] + 1, m[i-1][j-1] + cost ) );
-
- m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
- }
- }
- return (double) v / maxN;
- }
-
-
- double VECT_OP_FUNC(LevEditDistWithCostThresh)( int mtxMaxN, unsigned* m, const VECT_OP_TYPE* s0, int n0, const VECT_OP_TYPE* s1, int n1, double maxCost, unsigned maxN )
- {
- mtxMaxN += 1;
-
- int v = 0;
-
- maxCost = cmMin(1.0,cmMax(0.0,maxCost));
-
- int iMaxCost = ceil( maxCost * maxN );
-
- assert( iMaxCost > 0 && maxCost > 0 );
-
- // If the two strings are different lengths and the min possible distance is
- // greater than the threshold then return the threshold as the cost.
- // (Note: For strings of different length the min possible distance is the
- // difference in length between the two strings).
- if( abs(n0-n1) > iMaxCost )
- return maxCost;
-
- int i;
- // for each row in the matrix ...
- for(i=1; i<n0+1; ++i)
- {
- int ii = i * mtxMaxN; // current row
- int i_1 = ii - mtxMaxN; // previous row
-
- // Limit the row to (2*iMaxCost)+1 diagnal strip.
- // This strip is based on the idea that the best case can be precomputed for
- // all matrix elements in advance - where the best case for position i,j is:
- // abs(i-j). This can be justified based on the idea that the least possible
- // distance between two strings of length i and j is abs(i-1). The minimum least
- // possible distance is therefore found on the matrix diagnal and grows as the
- // distance from the diagnal increases.
-
- int ji = cmMax( 1, i - iMaxCost );
- int jn = cmMin(iMaxCost + i, n1) + 1;
- int j;
-
- // fill in (max cost + 1) as the value in the column before the starting column
- // (it will be referred to during the first computation in this row)
- if( ji >= 2 )
- m[ ii + (ji-1) ] = iMaxCost + 1;
-
- // for each column in the diagnal stripe - beginning with the leftmost column.
- for( j=ji; j<jn; ++j)
- {
- int cost = s0[i-1] == s1[j-1] ? 0 : 1;
-
- m[ ii + j ] = v = cmMin( m[ i_1 + j] + 1, cmMin( m[ ii + j - 1] + 1, m[ i_1 + j - 1 ] + cost ) );
- }
-
- // fill in (max cost + 1) in the column following the last column
- // (it will be referred to during computation of the following row)
- if( j < n1+1 )
- m[ii + j] = iMaxCost + 1;
- }
-
- assert( v >= 0 );
-
-
- return cmMin( maxCost , (double) v / maxN);
- }
-
- #endif
|