libcm is a C development framework with an emphasis on audio signal processing applications.
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

cmRtSys.c 44KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmFloatTypes.h"
  4. #include "cmRpt.h"
  5. #include "cmErr.h"
  6. #include "cmCtx.h"
  7. #include "cmMem.h"
  8. #include "cmMallocDebug.h"
  9. #include "cmAudioPort.h"
  10. #include "cmAudioNrtDev.h"
  11. #include "cmAudioPortFile.h"
  12. #include "cmApBuf.h"
  13. #include "cmJson.h"
  14. #include "cmThread.h"
  15. #include "cmUdpPort.h"
  16. #include "cmUdpNet.h"
  17. #include "cmRtSysMsg.h"
  18. #include "cmRtSys.h"
  19. #include "cmMidi.h"
  20. #include "cmMidiPort.h"
  21. #include "cmMath.h"
  22. typedef enum
  23. {
  24. kNoCmdId,
  25. kEnableCbCmdId,
  26. kDisableCbCmdId
  27. } kRtCmdId_t;
  28. cmRtSysH_t cmRtSysNullHandle = { NULL };
  29. struct cmRt_str;
  30. typedef struct
  31. {
  32. struct cmRt_str* p; // pointer to the audio system instance which owns this sub-system
  33. cmRtSysSubSys_t ss; // sub-system configuration record
  34. cmRtSysCtx_t ctx; // DSP context
  35. cmRtSysStatus_t status; // current runtime status of this sub-system
  36. cmThreadH_t threadH; // audio system thread
  37. cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue
  38. cmThreadMutexH_t engMutexH; // thread mutex and condition variable
  39. cmUdpNetH_t netH;
  40. bool runFl; // false during finalization otherwise true
  41. bool statusFl; // true if regular status notifications should be sent
  42. bool syncInputFl;
  43. kRtCmdId_t cmdId; // written by app thread, read by rt thread
  44. unsigned cbEnableFl; // written by rt thread, read by app thread
  45. double* iMeterArray; //
  46. double* oMeterArray; //
  47. unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples
  48. unsigned statusUpdateSmpIdx; // state update phase
  49. } _cmRtCfg_t;
  50. typedef struct cmRt_str
  51. {
  52. cmErr_t err;
  53. _cmRtCfg_t* ssArray;
  54. unsigned ssCnt;
  55. unsigned waitRtSubIdx; // index of the next sub-system to try with cmRtSysIsMsgWaiting().
  56. cmTsMp1cH_t dthQueH;
  57. bool initFl; // true if the audio system is initialized
  58. } cmRt_t;
  59. cmRt_t* _cmRtHandleToPtr( cmRtSysH_t h )
  60. {
  61. cmRt_t* p = (cmRt_t*)h.h;
  62. assert(p != NULL);
  63. return p;
  64. }
  65. cmRtRC_t _cmRtError( cmRt_t* p, cmRtRC_t rc, const char* fmt, ... )
  66. {
  67. va_list vl;
  68. va_start(vl,fmt);
  69. cmErrVMsg(&p->err,rc,fmt,vl);
  70. va_end(vl);
  71. return rc;
  72. }
  73. // Wrapper function to put msgs into thread safe queues and handle related errors.
  74. cmRtRC_t _cmRtEnqueueMsg( cmRt_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel )
  75. {
  76. cmRtRC_t rc = kOkRtRC;
  77. switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) )
  78. {
  79. case kOkThRC:
  80. break;
  81. case kBufFullThRC:
  82. {
  83. unsigned i;
  84. unsigned byteCnt = 0;
  85. for(i=0; i<segCnt; ++i)
  86. byteCnt += msgCntArray[i];
  87. rc = _cmRtError(p,kMsgEnqueueFailRtRC,"The %s queue was unable to load a msg containing %i bytes. The queue is currently allocated %i bytes and has %i bytes available.",queueLabel,byteCnt,cmTsMp1cAllocByteCount(qH),cmTsMp1cAvailByteCount(qH));
  88. }
  89. break;
  90. default:
  91. rc = _cmRtError(p,kMsgEnqueueFailRtRC,"A %s msg. enqueue failed.",queueLabel);
  92. }
  93. return rc;
  94. }
  95. // This is the function pointed to by ctx->dspToHostFunc.
  96. // It is called by the DSP proces to pass msgs to the host.
  97. // therefore it is always called from inside of _cmRtDspExecCallback().
  98. cmRtRC_t _cmRtDspToHostMsgCallback(struct cmRtSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  99. {
  100. cmRt_t* p = (cmRt_t*)ctx->reserved;
  101. assert( ctx->rtSubIdx < p->ssCnt );
  102. return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  103. }
  104. cmRtRC_t _cmRtSysDspToHostSegMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  105. {
  106. return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  107. }
  108. cmRtRC_t cmRtSysDspToHostSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  109. {
  110. cmRt_t* p = _cmRtHandleToPtr(h);
  111. return _cmRtSysDspToHostSegMsg(p,msgDataPtrArray,msgByteCntArray,msgSegCnt);
  112. }
  113. cmRtRC_t cmRtSysDspToHost( cmRtSysH_t h, const void* msgDataPtr, unsigned msgByteCnt)
  114. {
  115. const void* msgDataArray[] = { msgDataPtr };
  116. unsigned msgByteCntArray[] = { msgByteCnt };
  117. return cmRtSysDspToHostSegMsg(h,msgDataArray,msgByteCntArray,1);
  118. }
  119. cmRtRC_t _cmRtParseNonSubSysMsg( cmRt_t* p, const void* msg, unsigned msgByteCnt )
  120. {
  121. cmRtRC_t rc = kOkRtRC;
  122. cmRtSysMstr_t* m = (cmRtSysMstr_t*)msg;
  123. /*
  124. unsigned devIdx = cmRtSysUiInstIdToDevIndex(h->instId);
  125. unsigned chIdx = cmRtSysUiInstIdToChIndex(h->instId);
  126. unsigned inFl = cmRtSysUiInstIdToInFlag(h->instId);
  127. unsigned ctlId = cmRtSysUiInstIdToCtlId(h->instId);
  128. */
  129. // if the valuu associated with this msg is a mtx then set
  130. // its mtx data area pointer to just after the msg header.
  131. //if( cmDsvIsMtx(&h->value) )
  132. // h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t);
  133. unsigned flags = m->inFl ? kInApFl : kOutApFl;
  134. switch( m->ctlId )
  135. {
  136. case kSliderUiRtId: // slider
  137. cmApBufSetGain(m->devIdx,m->chIdx, flags, m->value);
  138. break;
  139. case kMeterUiRtId: // meter
  140. break;
  141. case kMuteUiRtId: // mute
  142. flags += m->value == 0 ? kEnableApFl : 0;
  143. cmApBufEnableChannel(m->devIdx,m->chIdx,flags);
  144. break;
  145. case kToneUiRtId: // tone
  146. flags += m->value > 0 ? kEnableApFl : 0;
  147. cmApBufEnableTone(m->devIdx,m->chIdx,flags);
  148. break;
  149. case kPassUiRtId: // pass
  150. flags += m->value > 0 ? kEnableApFl : 0;
  151. cmApBufEnablePass(m->devIdx,m->chIdx,flags);
  152. break;
  153. default:
  154. { assert(0); }
  155. }
  156. return rc;
  157. }
  158. // Process a UI msg sent from the host to the audio system
  159. cmRtRC_t _cmRtHandleNonSubSysMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt )
  160. {
  161. cmRtRC_t rc = kOkRtRC;
  162. // if the message is contained in a single segment it can be dispatched immediately ...
  163. if( msgSegCnt == 1 )
  164. rc = _cmRtParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]);
  165. else
  166. {
  167. // ... otherwise deserialize the message into contiguous memory ....
  168. unsigned byteCnt = 0;
  169. unsigned i;
  170. for(i=0; i<msgSegCnt; ++i)
  171. byteCnt += msgByteCntArray[i];
  172. char buf[ byteCnt ];
  173. char* b = buf;
  174. for(i=0; i<msgSegCnt; ++i)
  175. {
  176. memcpy(b, msgDataPtrArray[i], msgByteCntArray[i] );
  177. b += msgByteCntArray[i];
  178. }
  179. // ... and then dispatch it
  180. rc = _cmRtParseNonSubSysMsg(p,buf,byteCnt);
  181. }
  182. return rc;
  183. }
  184. cmRtRC_t _cmRtSendStateStatusToHost( _cmRtCfg_t* cp )
  185. {
  186. cmRtRC_t rc = kOkRtRC;
  187. cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  188. cp->status.hdr.selId = kStatusSelRtId;
  189. cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt );
  190. cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt );
  191. unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt;
  192. unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt;
  193. const void* msgDataPtrArray[] = { &cp->status, cp->iMeterArray, cp->oMeterArray };
  194. unsigned msgByteCntArray[] = { sizeof(cp->status), iMeterByteCnt, oMeterByteCnt };
  195. unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  196. _cmRtSysDspToHostSegMsg(cp->p,msgDataPtrArray,msgByteCntArray, segCnt );
  197. return rc;
  198. }
  199. // The DSP execution callback happens through this function.
  200. // This function is only called from inside _cmRtThreadCallback()
  201. // with the engine mutex locked.
  202. void _cmRtDspExecCallback( _cmRtCfg_t* cp )
  203. {
  204. // Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers.
  205. // Notes:
  206. // 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[].
  207. // 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[].
  208. // 3) All samples returned in oChArray[] buffers will be set to zero.
  209. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt );
  210. // call the application provided DSP process
  211. if( cp->cbEnableFl )
  212. {
  213. cp->ctx.audioRateFl = true;
  214. cp->ss.cbFunc( &cp->ctx, 0, NULL );
  215. cp->ctx.audioRateFl = false;
  216. }
  217. // Notice client callback enable/disable
  218. // requests from the client thread
  219. switch( cp->cmdId )
  220. {
  221. case kNoCmdId:
  222. break;
  223. case kDisableCbCmdId:
  224. if( cp->cbEnableFl )
  225. cmThUIntDecr(&cp->cbEnableFl,1);
  226. break;
  227. case kEnableCbCmdId:
  228. if( cp->cbEnableFl==0)
  229. cmThUIntIncr(&cp->cbEnableFl,1);
  230. break;
  231. }
  232. // advance the audio buffer
  233. cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
  234. cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
  235. // handle periodic status messages to the host
  236. if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt )
  237. {
  238. cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt;
  239. if( cp->statusFl )
  240. _cmRtSendStateStatusToHost(cp);
  241. }
  242. }
  243. // Returns true if audio buffer is has waiting incoming samples and
  244. // available outgoing space.
  245. bool _cmRtBufIsReady( const _cmRtCfg_t* cp )
  246. {
  247. // if there neither the input or output device is valid
  248. if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx )
  249. return false;
  250. bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl);
  251. bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl);
  252. bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl;
  253. bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl;
  254. //printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl);
  255. return iFl && oFl;
  256. }
  257. // This is only called with _cmRtRecd.engMutexH locked
  258. cmRtRC_t _cmRtDeliverMsgsWithLock( _cmRtCfg_t* cp )
  259. {
  260. int i;
  261. cmRtRC_t rc = kOkThRC;
  262. // as long as their may be a msg wating in the incoming msg queue
  263. for(i=0; rc == kOkThRC; ++i)
  264. {
  265. // if a msg is waiting transmit it via cfg->cbFunc()
  266. if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC)
  267. ++cp->status.msgCbCnt;
  268. }
  269. return rc;
  270. }
  271. // This is the main audio system loop (and thread callback function).
  272. // It blocks by waiting on a cond. var (which simultaneously unlocks a mutex).
  273. // With the mutex unlocked messages can pass directly to the DSP process
  274. // via calls to cmRtDeliverMsg().
  275. // When the audio buffers need to be serviced the audio device callback
  276. // signals the cond. var. which results in this thread waking up (and
  277. // simultaneously locking the mutex) as soon as the mutex is available.
  278. bool _cmRtThreadCallback(void* arg)
  279. {
  280. cmRtRC_t rc;
  281. _cmRtCfg_t* cp = (_cmRtCfg_t*)arg;
  282. // lock the cmRtSys mutex
  283. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkRtRC )
  284. {
  285. _cmRtError(cp->p,rc,"The cmRtSys thread mutex lock failed.");
  286. return false;
  287. }
  288. // runFl is always set except during finalization
  289. while( cp->runFl )
  290. {
  291. // if the buffer is NOT ready or the cmRtSys is disabled
  292. if(_cmRtBufIsReady(cp) == false || cp->cbEnableFl==false )
  293. {
  294. // block on the cond var and unlock the mutex
  295. if( cmThreadMutexWaitOnCondVar(cp->engMutexH,false) != kOkRtRC )
  296. {
  297. cmThreadMutexUnlock(cp->engMutexH);
  298. _cmRtError(cp->p,rc,"The cmRtSys cond. var. wait failed.");
  299. return false;
  300. }
  301. //
  302. // the cond var was signaled and the mutex is now locked
  303. //
  304. ++cp->status.wakeupCnt;
  305. }
  306. // be sure we are still enabled and the buffer is still ready
  307. if( 1 /*cp->runFl*/ )
  308. {
  309. while( cp->runFl && _cmRtBufIsReady(cp) )
  310. {
  311. ++cp->status.audioCbCnt;
  312. // calling this function results in callbacks to cmAudDsp.c:_cmAdUdpNetCallback()
  313. // which in turn calls cmRtSysDeliverMsg() which queues any incoming messages
  314. // which are then transferred to the DSP processes by the the call to
  315. // _cmRtDeliverMsgWithLock() below.
  316. cmUdpNetReceive(cp->netH,NULL);
  317. // if there are msgs waiting to be sent to the DSP process send them.
  318. if( cp->cbEnableFl )
  319. if( cmTsMp1cMsgWaiting(cp->htdQueueH) )
  320. _cmRtDeliverMsgsWithLock(cp);
  321. // make the cmRtSys callback
  322. _cmRtDspExecCallback( cp );
  323. // update the signal time
  324. cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle;
  325. }
  326. }
  327. }
  328. // unlock the mutex
  329. cmThreadMutexUnlock(cp->engMutexH);
  330. return true;
  331. }
  332. void _cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl )
  333. {
  334. static unsigned rtPhase = 0;
  335. //fill output with noise
  336. unsigned i = 0,j =0, k = 0, phs = 0;
  337. for(; i<outPktCnt; ++i)
  338. {
  339. cmApAudioPacket_t* a = outPktArray + i;
  340. cmApSample_t* dp = (cmApSample_t*)a->audioBytesPtr;
  341. phs = a->audioFramesCnt;
  342. if( sineFl )
  343. {
  344. for(j=0; j<a->audioFramesCnt; ++j)
  345. {
  346. cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * rtPhase + j ));
  347. for(k=0; k<a->chCnt; ++k,++dp)
  348. *dp = v;
  349. }
  350. }
  351. else
  352. {
  353. for(j=0; j<a->audioFramesCnt*a->chCnt; ++j,++dp)
  354. *dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2);
  355. }
  356. }
  357. rtPhase += phs;
  358. }
  359. // This is the audio port callback function.
  360. //
  361. // _cmRtSysAudioUpdate() assumes that at most two audio device threads
  362. // (input and output) may call it. cmApBufUpdate() is safe under these conditions
  363. // since the input and output buffers are updated separately.
  364. // p->syncInputFl is used to allow either the input or output thread to signal
  365. // the condition variable. This flag is necessary to prevent both threads from simultaneously
  366. // attempting to signal the condition variable (which will lock the system).
  367. //
  368. // If more than two audio device threads call the function then this function is not safe.
  369. void _cmRtSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  370. {
  371. _cmRtCfg_t* cp = (_cmRtCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr);
  372. ++cp->status.updateCnt;
  373. if( cp->runFl )
  374. {
  375. // transfer incoming/outgoing samples from/to the audio device
  376. cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt);
  377. // generate a test signal
  378. //_cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl );
  379. //return;
  380. bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0);
  381. //printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt);
  382. // if the input/output buffer contain samples to be processed then signal the condition variable
  383. // - this will cause the audio system thread to unblock and the used defined DSP process will be called.
  384. if( testBufFl && _cmRtBufIsReady(cp) )
  385. {
  386. if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC )
  387. _cmRtError(cp->p,kMutexErrRtRC,"CmRtSys signal cond. var. failed.");
  388. }
  389. }
  390. }
  391. // Called when MIDI messages arrive from external MIDI ports.
  392. void _cmRtSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt )
  393. {
  394. unsigned i;
  395. for(i=0; i<pktCnt; ++i)
  396. {
  397. const cmMidiPacket_t* pkt = pktArray + i;
  398. _cmRtCfg_t* cp = (_cmRtCfg_t*)(pkt->cbDataPtr);
  399. if( !cp->runFl )
  400. continue;
  401. cmRtSysH_t asH;
  402. asH.h = cp->p;
  403. cmRtSysMidi_t m;
  404. m.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  405. m.hdr.selId = kMidiMsgArraySelRtId;
  406. m.devIdx = pkt->devIdx;
  407. m.portIdx = pkt->portIdx;
  408. m.msgCnt = pkt->msgCnt;
  409. /*
  410. unsigned selId = kMidiMsgArraySelRtId;
  411. const void* msgPtrArray[] = { &cp->ctx.rtSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray };
  412. unsigned msgByteCntArray[] = { sizeof(cp->ctx.rtSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) };
  413. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  414. */
  415. const void* msgPtrArray[] = { &m, pkt->msgArray };
  416. unsigned msgByteCntArray[] = { sizeof(m), pkt->msgCnt*sizeof(cmMidiMsg) };
  417. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  418. cmRtSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId);
  419. }
  420. }
  421. cmRtRC_t cmRtSysAllocate( cmRtSysH_t* hp, cmRpt_t* rpt, const cmRtSysCfg_t* cfg )
  422. {
  423. cmRtRC_t rc;
  424. if((rc = cmRtSysFree(hp)) != kOkRtRC )
  425. return rc;
  426. cmRt_t* p = cmMemAllocZ( cmRt_t, 1 );
  427. cmErrSetup(&p->err,rpt,"Audio System");
  428. hp->h = p;
  429. if( cfg != NULL )
  430. if((rc = cmRtSysInitialize( *hp, cfg )) != kOkRtRC )
  431. cmRtSysFree(hp);
  432. return rc;
  433. }
  434. cmRtRC_t cmRtSysFree( cmRtSysH_t* hp )
  435. {
  436. cmRtRC_t rc;
  437. if( hp == NULL || hp->h == NULL )
  438. return kOkRtRC;
  439. if((rc = cmRtSysFinalize(*hp)) != kOkRtRC )
  440. return rc;
  441. cmRt_t* p = _cmRtHandleToPtr(*hp);
  442. cmMemFree(p);
  443. hp->h = NULL;
  444. return rc;
  445. }
  446. cmRtRC_t _cmRtSysEnable( cmRt_t* p, bool enableFl )
  447. {
  448. cmRtRC_t rc = kOkRtRC;
  449. unsigned i;
  450. unsigned n;
  451. unsigned tickMs = 20;
  452. unsigned timeOutMs = 10000;
  453. for(i=0; i<p->ssCnt; ++i)
  454. {
  455. _cmRtCfg_t* cp = p->ssArray + i;
  456. if( enableFl )
  457. {
  458. cp->cmdId = kNoCmdId;
  459. cmThUIntIncr(&cp->cmdId,kEnableCbCmdId);
  460. for(n=0; n<timeOutMs && cp->cbEnableFl==false; n+=tickMs )
  461. cmSleepMs(tickMs);
  462. cmThUIntDecr(&cp->cmdId,kEnableCbCmdId);
  463. }
  464. else
  465. {
  466. cp->cmdId = kNoCmdId;
  467. cmThUIntIncr(&cp->cmdId,kDisableCbCmdId);
  468. // wait for the rt thread to return from a client callbacks
  469. for(n=0; n<timeOutMs && cp->cbEnableFl; n+=tickMs )
  470. cmSleepMs(tickMs);
  471. cmThUIntDecr(&cp->cmdId,kDisableCbCmdId);
  472. }
  473. if( n >= timeOutMs )
  474. rc = cmErrMsg(&p->err,kTimeOutErrRtRC,"RT System %s timed out after %i milliseconds.",enableFl?"enable":"disable",timeOutMs);
  475. }
  476. return rc;
  477. }
  478. cmRtRC_t _cmRtSysFinalize( cmRt_t* p )
  479. {
  480. cmRtRC_t rc = kOkRtRC;
  481. unsigned i;
  482. // mark the audio system as NOT initialized
  483. p->initFl = false;
  484. // be sure all audio callbacks are disabled before continuing.
  485. if((rc = _cmRtSysEnable(p,false)) != kOkRtRC )
  486. return _cmRtError(p,rc,"Audio system finalize failed because device halting failed.");
  487. // stop the audio devices
  488. for(i=0; i<p->ssCnt; ++i)
  489. {
  490. _cmRtCfg_t* cp = p->ssArray + i;
  491. // stop the input device
  492. if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkRtRC )
  493. return _cmRtError(p,kAudioDevStopFailRtRC,"The audio input device stop failed.");
  494. // stop the output device
  495. if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkRtRC )
  496. return _cmRtError(p,kAudioDevStopFailRtRC,"The audio output device stop failed.");
  497. }
  498. for(i=0; i<p->ssCnt; ++i)
  499. {
  500. _cmRtCfg_t* cp = p->ssArray + i;
  501. if( cmThreadIsValid( cp->threadH ))
  502. {
  503. // inform the thread that it should exit
  504. cp->runFl = false;
  505. cp->statusFl = false;
  506. // signal the cond var to cause the thread to run
  507. if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC )
  508. _cmRtError(p,kMutexErrRtRC,"Finalize signal cond. var. failed.");
  509. // wait to take control of the mutex - this will occur when the thread function exits
  510. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC )
  511. _cmRtError(p,kMutexErrRtRC,"Finalize lock failed.");
  512. // unlock the mutex because it is no longer needed and must be unlocked to be destroyed
  513. if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC )
  514. _cmRtError(p,kMutexErrRtRC,"Finalize unlock failed.");
  515. // destroy the thread
  516. if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC )
  517. _cmRtError(p,kThreadErrRtRC,"Thread destroy failed.");
  518. }
  519. // destroy the mutex
  520. if( cmThreadMutexIsValid(cp->engMutexH) )
  521. if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC )
  522. _cmRtError(p,kMutexErrRtRC,"Mutex destroy failed.");
  523. // remove the MIDI callback
  524. if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmRtSysMidiCallback, cp) )
  525. if( cmMpRemoveCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
  526. _cmRtError(p,kMidiSysFailRtRC,"MIDI callback removal failed.");
  527. // destroy the host-to-dsp msg queue
  528. if( cmTsMp1cIsValid(cp->htdQueueH ) )
  529. if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC )
  530. _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue destroy failed.");
  531. // destroy the dsp-to-host msg queue
  532. if( cmTsMp1cIsValid(p->dthQueH) )
  533. if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC )
  534. _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue destroy failed.");
  535. cmMemPtrFree(&cp->ctx.iChArray);
  536. cmMemPtrFree(&cp->ctx.oChArray);
  537. cp->ctx.iChCnt = 0;
  538. cp->ctx.oChCnt = 0;
  539. cmMemPtrFree(&cp->iMeterArray);
  540. cmMemPtrFree(&cp->oMeterArray);
  541. cp->status.iMeterCnt = 0;
  542. cp->status.oMeterCnt = 0;
  543. }
  544. cmMemPtrFree(&p->ssArray);
  545. p->ssCnt = 0;
  546. return rc;
  547. }
  548. // A given device may be used as an input device exactly once and an output device exactly once.
  549. // When the input to a given device is used by one sub-system and the output is used by another
  550. // then both sub-systems must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle.
  551. cmRtRC_t _cmRtSysValidate( cmErr_t* err, const cmRtSysCfg_t* cfg )
  552. {
  553. unsigned i,j,k;
  554. for(i=0; i<2; ++i)
  555. {
  556. // examine input devices - then output devices
  557. bool inputFl = i==0;
  558. bool outputFl = !inputFl;
  559. for(j=0; j<cfg->ssCnt; ++j)
  560. {
  561. cmRtSysArgs_t* s0 = &cfg->ssArray[j].args;
  562. unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx;
  563. for(k=0; k<cfg->ssCnt && devIdx != cmInvalidIdx; ++k)
  564. if( k != j )
  565. {
  566. cmRtSysArgs_t* s1 = &cfg->ssArray[k].args;
  567. // if the device was used as input or output multple times then signal an error
  568. if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) )
  569. return cmErrMsg(err,kInvalidArgRtRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output");
  570. // if this device is being used by another subsystem ...
  571. if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) )
  572. {
  573. // ... then some of its buffer spec's must match
  574. if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle )
  575. return cmErrMsg(err,kInvalidArgRtRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx);
  576. }
  577. }
  578. }
  579. }
  580. return kOkRtRC;
  581. }
  582. cmRtRC_t cmRtSysInitialize( cmRtSysH_t h, const cmRtSysCfg_t* cfg )
  583. {
  584. cmRtRC_t rc;
  585. unsigned i;
  586. cmRt_t* p = _cmRtHandleToPtr(h);
  587. // validate the device setup
  588. if((rc =_cmRtSysValidate(&p->err, cfg )) != kOkRtRC )
  589. return rc;
  590. // always finalize before iniitalize
  591. if((rc = cmRtSysFinalize(h)) != kOkRtRC )
  592. return rc;
  593. p->ssArray = cmMemAllocZ( _cmRtCfg_t, cfg->ssCnt );
  594. p->ssCnt = cfg->ssCnt;
  595. for(i=0; i<p->ssCnt; ++i)
  596. {
  597. _cmRtCfg_t* cp = p->ssArray + i;
  598. const cmRtSysSubSys_t* ss = cfg->ssArray + i;
  599. cp->p = p;
  600. cp->ss = *ss; // copy the cfg into the internal audio system state
  601. cp->runFl = false;
  602. cp->statusFl = false;
  603. cp->ctx.reserved = p;
  604. cp->ctx.rtSubIdx = i;
  605. cp->ctx.ss = &cp->ss;
  606. cp->ctx.begSmpIdx = 0;
  607. cp->ctx.dspToHostFunc = _cmRtDspToHostMsgCallback;
  608. // validate the input device index
  609. if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() )
  610. {
  611. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio input device index %i is invalid.",ss->args.inDevIdx);
  612. goto errLabel;
  613. }
  614. // validate the output device index
  615. if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() )
  616. {
  617. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio output device index %i is invalid.",ss->args.outDevIdx);
  618. goto errLabel;
  619. }
  620. // setup the input device
  621. if( ss->args.inDevIdx != cmInvalidIdx )
  622. if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
  623. {
  624. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio input device setup failed.");
  625. goto errLabel;
  626. }
  627. // setup the output device
  628. if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx )
  629. if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
  630. {
  631. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio output device setup failed.");
  632. goto errLabel;
  633. }
  634. // setup the input device buffer
  635. if( ss->args.inDevIdx != cmInvalidIdx )
  636. if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC )
  637. {
  638. rc = _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer input setup failed.");
  639. goto errLabel;
  640. }
  641. cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl );
  642. cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl );
  643. // setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmRtDspExecCallback()
  644. if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 )
  645. cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt );
  646. // setup the output device buffer
  647. if( ss->args.outDevIdx != ss->args.inDevIdx )
  648. if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC )
  649. return _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer ouput device setup failed.");
  650. // setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmRtDspExecCallback()
  651. if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 )
  652. cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt );
  653. // determine the sync source
  654. cp->syncInputFl = ss->args.syncInputFl;
  655. // if sync'ing to an unavailable device then sync to the available device
  656. if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 )
  657. cp->syncInputFl = false;
  658. if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 )
  659. cp->syncInputFl = true;
  660. // setup the status record
  661. cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  662. cp->status.iDevIdx = ss->args.inDevIdx;
  663. cp->status.oDevIdx = ss->args.outDevIdx;
  664. cp->status.iMeterCnt = cp->ctx.iChCnt;
  665. cp->status.oMeterCnt = cp->ctx.oChCnt;
  666. cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt );
  667. cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt );
  668. cp->netH = cfg->netH;
  669. // create the audio System thread
  670. if((rc = cmThreadCreate( &cp->threadH, _cmRtThreadCallback, cp, ss->args.rpt )) != kOkThRC )
  671. {
  672. rc = _cmRtError(p,kThreadErrRtRC,"Thread create failed.");
  673. goto errLabel;
  674. }
  675. // create the audio System mutex
  676. if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC )
  677. {
  678. rc = _cmRtError(p,kMutexErrRtRC,"Thread mutex create failed.");
  679. goto errLabel;
  680. }
  681. // create the host-to-dsp thread safe msg queue
  682. if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC )
  683. {
  684. rc = _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue create failed.");
  685. goto errLabel;
  686. }
  687. // create the dsp-to-host thread safe msg queue
  688. if( cmTsMp1cIsValid( p->dthQueH ) == false )
  689. {
  690. if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, cfg->clientCbFunc, cfg->clientCbData, ss->args.rpt )) != kOkThRC )
  691. {
  692. rc = _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue create failed.");
  693. goto errLabel;
  694. }
  695. }
  696. //cp->dthQueueH = p->dthQueH;
  697. // install an external MIDI port callback handler for incoming MIDI messages
  698. if( cmMpIsInitialized() )
  699. if( cmMpInstallCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
  700. {
  701. rc = _cmRtError(p,kMidiSysFailRtRC,"MIDI system callback installation failed.");
  702. goto errLabel;
  703. }
  704. // setup the sub-system status notification
  705. cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 );
  706. cp->statusUpdateSmpIdx = 0;
  707. cp->runFl = true;
  708. // start the audio System thread
  709. if( cmThreadPause( cp->threadH, 0 ) != kOkThRC )
  710. {
  711. rc = _cmRtError(p,kThreadErrRtRC,"Thread start failed.");
  712. goto errLabel;
  713. }
  714. }
  715. //_cmRtHostInitNotify(p);
  716. for(i=0; i<p->ssCnt; ++i)
  717. {
  718. _cmRtCfg_t* cp = p->ssArray + i;
  719. // start the input device
  720. if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkRtRC )
  721. return _cmRtError(p,kAudioDevStartFailRtRC,"The audio input device start failed.");
  722. // start the output device
  723. if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkRtRC )
  724. return _cmRtError(p,kAudioDevStartFailRtRC,"The audio ouput device start failed.");
  725. }
  726. p->initFl = true;
  727. errLabel:
  728. if( rc != kOkRtRC )
  729. _cmRtSysFinalize(p);
  730. return rc;
  731. }
  732. cmRtRC_t cmRtSysFinalize(cmRtSysH_t h )
  733. {
  734. cmRtRC_t rc = kOkRtRC;
  735. if( cmRtSysHandleIsValid(h) == false )
  736. return rc;
  737. cmRt_t* p = _cmRtHandleToPtr(h);
  738. rc = _cmRtSysFinalize(p);
  739. h.h = NULL;
  740. return rc;
  741. }
  742. bool cmRtSysIsInitialized( cmRtSysH_t h )
  743. {
  744. cmRt_t* p = _cmRtHandleToPtr(h);
  745. return p->initFl;
  746. }
  747. cmRtRC_t _cmRtSysVerifyInit( cmRt_t* p, bool errFl )
  748. {
  749. if( p->initFl == false )
  750. {
  751. // if the last msg generated was also a not init msg then don't
  752. // generate another message - just return the error
  753. if( errFl )
  754. if( cmErrLastRC(&p->err) != kNotInitRtRC )
  755. cmErrMsg(&p->err,kNotInitRtRC,"The audio system is not initialized.");
  756. return kNotInitRtRC;
  757. }
  758. return kOkRtRC;
  759. }
  760. bool cmRtSysIsEnabled( cmRtSysH_t h )
  761. {
  762. if( cmRtSysIsInitialized(h) == false )
  763. return false;
  764. cmRt_t* p = _cmRtHandleToPtr(h);
  765. unsigned i;
  766. for(i=0; i<p->ssCnt; ++i)
  767. if( p->ssArray[i].cbEnableFl )
  768. return true;
  769. return false;
  770. }
  771. cmRtRC_t cmRtSysEnable( cmRtSysH_t h, bool enableFl )
  772. {
  773. cmRt_t* p = _cmRtHandleToPtr(h);
  774. return _cmRtSysEnable(p,enableFl);
  775. }
  776. cmRtRC_t cmRtSysDeliverSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId )
  777. {
  778. cmRt_t* p = _cmRtHandleToPtr(h);
  779. cmRtRC_t rc;
  780. // the system must be initialized to use this function
  781. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  782. return rc;
  783. if( msgSegCnt == 0 )
  784. return kOkRtRC;
  785. // BUG BUG BUG - there is no reason that both the rtSubIdx and the selId must
  786. // be in the first segment but it would be nice.
  787. assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) );
  788. // The audio sub-system index is always the first field of the msg
  789. // and the msg selector id is always the second field
  790. unsigned* array = (unsigned*)msgDataPtrArray[0];
  791. unsigned rtSubIdx = array[0];
  792. unsigned selId = array[1];
  793. if( selId == kUiMstrSelRtId )
  794. return _cmRtHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt );
  795. if( selId == kNetSyncSelRtId )
  796. {
  797. assert( msgSegCnt==1);
  798. assert( rtSubIdx < p->ssCnt );
  799. p->ssArray[rtSubIdx].ctx.srcNetNodeId = srcNetNodeId;
  800. p->ssArray[rtSubIdx].ss.cbFunc(&p->ssArray[rtSubIdx].ctx,msgByteCntArray[0],msgDataPtrArray[0]);
  801. return kOkRtRC;
  802. }
  803. return _cmRtEnqueueMsg(p,p->ssArray[rtSubIdx].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP");
  804. }
  805. cmRtRC_t cmRtSysDeliverMsg( cmRtSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  806. {
  807. const void* msgDataPtrArray[] = { msgPtr };
  808. unsigned msgByteCntArray[] = { msgByteCnt };
  809. return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId);
  810. }
  811. cmRtRC_t cmRtSysDeliverIdMsg( cmRtSysH_t h, unsigned rtSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  812. {
  813. cmRtRC_t rc;
  814. cmRt_t* p = _cmRtHandleToPtr(h);
  815. // the system must be initialized to use this function
  816. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  817. return rc;
  818. const void* msgDataPtrArray[] = { &rtSubIdx, &id, msgPtr };
  819. unsigned msgByteCntArray[] = { sizeof(rtSubIdx), sizeof(id), msgByteCnt };
  820. return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId);
  821. }
  822. unsigned cmRtSysIsMsgWaiting( cmRtSysH_t h )
  823. {
  824. cmRtRC_t rc;
  825. cmRt_t* p = _cmRtHandleToPtr(h);
  826. // the system must be initialized to use this function
  827. if((rc = _cmRtSysVerifyInit(p,false)) != kOkRtRC )
  828. return 0;
  829. unsigned n = 0;
  830. unsigned retByteCnt;
  831. for(n=0; n < p->ssCnt; ++n )
  832. {
  833. if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 )
  834. return retByteCnt;
  835. p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
  836. }
  837. return 0;
  838. }
  839. cmRtRC_t cmRtSysReceiveMsg( cmRtSysH_t h, void* msgDataPtr, unsigned msgByteCnt )
  840. {
  841. cmRtRC_t rc;
  842. cmRt_t* p = _cmRtHandleToPtr(h);
  843. // the system must be initialized to use this function
  844. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  845. return rc;
  846. //switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitRtSubIdx].dthQueueH,msgDataPtr,msgByteCnt) )
  847. switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) )
  848. {
  849. case kOkThRC:
  850. p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
  851. return kOkRtRC;
  852. case kBufTooSmallThRC:
  853. return kBufTooSmallRtRC;
  854. case kBufEmptyThRC:
  855. return kNoMsgWaitingRtRC;
  856. }
  857. return _cmRtError(p,kTsQueueErrRtRC,"A deque operation failed on the DSP-to-Host message queue.");
  858. }
  859. void cmRtSysStatus( cmRtSysH_t h, unsigned rtSubIdx, cmRtSysStatus_t* statusPtr )
  860. {
  861. cmRt_t* p = _cmRtHandleToPtr(h);
  862. // the system must be initialized to use this function
  863. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  864. return;
  865. if( rtSubIdx < p->ssCnt )
  866. *statusPtr = p->ssArray[rtSubIdx].status;
  867. }
  868. void cmRtSysStatusNotifyEnable( cmRtSysH_t h, unsigned rtSubIdx, bool enableFl )
  869. {
  870. cmRt_t* p = _cmRtHandleToPtr(h);
  871. // the system must be initialized to use this function
  872. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  873. return;
  874. unsigned i = rtSubIdx == cmInvalidIdx ? 0 : rtSubIdx;
  875. unsigned n = rtSubIdx == cmInvalidIdx ? p->ssCnt : rtSubIdx+1;
  876. for(; i<n; ++i)
  877. p->ssArray[i].statusFl = enableFl;
  878. }
  879. bool cmRtSysHandleIsValid( cmRtSysH_t h )
  880. { return h.h != NULL; }
  881. cmRtSysCtx_t* cmRtSysContext( cmRtSysH_t h, unsigned rtSubIdx )
  882. {
  883. cmRt_t* p = _cmRtHandleToPtr(h);
  884. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  885. return NULL;
  886. return &p->ssArray[rtSubIdx].ctx;
  887. }
  888. unsigned cmRtSysSubSystemCount( cmRtSysH_t h )
  889. {
  890. cmRt_t* p = _cmRtHandleToPtr(h);
  891. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  892. return 0;
  893. return p->ssCnt;
  894. }
  895. //===========================================================================================================================
  896. //
  897. // cmRtTest()
  898. //
  899. /// [cmRtSysTest]
  900. typedef struct
  901. {
  902. double hz; // current synth frq
  903. long phs; // current synth phase
  904. double srate; // audio sample rate
  905. unsigned cbCnt; // DSP cycle count
  906. bool synthFl; // true=synth false=pass through
  907. } _cmRtTestCbRecd;
  908. typedef struct
  909. {
  910. unsigned rtSubIdx; // rtSubIdx must always be the first field in the msg
  911. unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host
  912. double hz;
  913. unsigned uint;
  914. } _cmRtTestMsg;
  915. long _cmRtSynthSine( _cmRtTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt )
  916. {
  917. long ph = 0;
  918. unsigned i;
  919. for(i=0; i<chCnt; ++i)
  920. {
  921. unsigned j;
  922. cmApSample_t* op = p + i;
  923. ph = r->phs;
  924. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  925. *op = (cmApSample_t)(0.9 * sin( 2.0 * M_PI * r->hz * ph / r->srate ));
  926. }
  927. return ph;
  928. }
  929. unsigned _cmRtTestChIdx = 0;
  930. cmRC_t _cmRtTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr )
  931. {
  932. cmRC_t rc = cmOkRC;
  933. cmRtSysCtx_t* ctx = (cmRtSysCtx_t*)cbPtr;
  934. cmRtSysSubSys_t* ss = ctx->ss;
  935. _cmRtTestCbRecd* r = (_cmRtTestCbRecd*)ss->cbDataPtr;
  936. // update the calback counter
  937. ++r->cbCnt;
  938. // if this is an audio update request
  939. if( msgByteCnt == 0 )
  940. {
  941. unsigned i;
  942. if( r->synthFl )
  943. {
  944. long phs = 0;
  945. if(0)
  946. {
  947. for(i=0; i<ctx->oChCnt; ++i)
  948. if( ctx->oChArray[i] != NULL )
  949. phs = _cmRtSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle );
  950. }
  951. else
  952. {
  953. if( _cmRtTestChIdx < ctx->oChCnt )
  954. phs = _cmRtSynthSine(r, ctx->oChArray[_cmRtTestChIdx], 1, ss->args.dspFramesPerCycle );
  955. }
  956. r->phs = phs;
  957. }
  958. else
  959. {
  960. // BUG BUG BUG - this assumes that the input and output channels are the same.
  961. unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt);
  962. for(i=0; i<chCnt; ++i)
  963. memcpy(ctx->oChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle);
  964. }
  965. }
  966. else // ... otherwise it is a msg for the DSP process from the host
  967. {
  968. _cmRtTestMsg* msg = (_cmRtTestMsg*)msgDataPtr;
  969. msg->rtSubIdx = ctx->rtSubIdx;
  970. switch(msg->id)
  971. {
  972. case 0:
  973. r->hz = msg->hz;
  974. break;
  975. case 1:
  976. msg->uint = r->cbCnt;
  977. msgByteCnt = sizeof(_cmRtTestMsg);
  978. rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1);
  979. break;
  980. }
  981. }
  982. return rc;
  983. }
  984. // print the usage message for cmAudioPortTest.c
  985. void _cmRtPrintUsage( cmRpt_t* rpt )
  986. {
  987. char msg[] =
  988. "cmRtSysTest() command switches:\n"
  989. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -m <msgqsize> -d <dspsize> -t -p -h \n"
  990. "\n"
  991. "-r <srate> = sample rate (48000)\n"
  992. "-c <chcnt> = audio channels (2)\n"
  993. "-b <bufcnt> = count of buffers (3)\n"
  994. "-f <frmcnt> = count of samples per buffer (512)\n"
  995. "-i <idevidx> = input device index (0)\n"
  996. "-o <odevidx> = output device index (2)\n"
  997. "-m <msgqsize> = message queue byte count (1024)\n"
  998. "-d <dspsize> = samples per DSP frame (64)\n"
  999. "-s = true: sync to input port false: sync to output port\n"
  1000. "-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n"
  1001. "-p = report but don't start audio devices\n"
  1002. "-h = print this usage message\n";
  1003. cmRptPrintf(rpt,"%s",msg);
  1004. }
  1005. // Get a command line option.
  1006. int _cmRtGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  1007. {
  1008. int i = 0;
  1009. for(; i<argc; ++i)
  1010. if( strcmp(label,argv[i]) == 0 )
  1011. {
  1012. if(boolFl)
  1013. return 1;
  1014. if( i == (argc-1) )
  1015. return defaultVal;
  1016. return atoi(argv[i+1]);
  1017. }
  1018. return defaultVal;
  1019. }
  1020. bool _cmRtGetBoolOpt( int argc, const char* argv[], const char* label, bool defaultVal )
  1021. { return _cmRtGetOpt(argc,argv,label,defaultVal?1:0,true)!=0; }
  1022. int _cmRtGetIntOpt( int argc, const char* argv[], const char* label, int defaultVal )
  1023. { return _cmRtGetOpt(argc,argv,label,defaultVal,false); }
  1024. void cmRtSysTest( cmRpt_t* rpt, int argc, const char* argv[] )
  1025. {
  1026. cmRtSysCfg_t cfg;
  1027. cmRtSysSubSys_t ss;
  1028. cmRtSysH_t h = cmRtSysNullHandle;
  1029. cmRtSysStatus_t status;
  1030. _cmRtTestCbRecd cbRecd = {1000.0,0,48000.0,0};
  1031. cfg.ssArray = &ss;
  1032. cfg.ssCnt = 1;
  1033. //cfg.afpArray= NULL;
  1034. //cfg.afpCnt = 0;
  1035. cfg.meterMs = 50;
  1036. if(_cmRtGetBoolOpt(argc,argv,"-h",false))
  1037. _cmRtPrintUsage(rpt);
  1038. cbRecd.srate = _cmRtGetIntOpt(argc,argv,"-r",48000);
  1039. cbRecd.synthFl = _cmRtGetBoolOpt(argc,argv,"-t",false)==false;
  1040. ss.args.rpt = rpt;
  1041. ss.args.inDevIdx = _cmRtGetIntOpt( argc,argv,"-i",0);
  1042. ss.args.outDevIdx = _cmRtGetIntOpt( argc,argv,"-o",2);
  1043. ss.args.syncInputFl = _cmRtGetBoolOpt(argc,argv,"-s",true);
  1044. ss.args.msgQueueByteCnt = _cmRtGetIntOpt( argc,argv,"-m",8192);
  1045. ss.args.devFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-f",512);
  1046. ss.args.dspFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-d",64);;
  1047. ss.args.audioBufCnt = _cmRtGetIntOpt( argc,argv,"-b",3);
  1048. ss.args.srate = cbRecd.srate;
  1049. ss.cbFunc = _cmRtTestCb; // set the DSP entry function
  1050. ss.cbDataPtr = &cbRecd; // set the DSP function argument record
  1051. cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl,
  1052. ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate);
  1053. if( cmApNrtAllocate(rpt) != kOkApRC )
  1054. goto errLabel;
  1055. if( cmApFileAllocate(rpt) != kOkApRC )
  1056. goto errLabel;
  1057. // initialize the audio device system
  1058. if( cmApInitialize(rpt) != kOkApRC )
  1059. goto errLabel;
  1060. cmApReport(rpt);
  1061. // initialize the audio buffer
  1062. if( cmApBufInitialize( cmApDeviceCount(), cfg.meterMs ) != kOkApRC )
  1063. goto errLabel;
  1064. // initialize the audio system
  1065. if( cmRtSysAllocate(&h,rpt,&cfg) != kOkRtRC )
  1066. goto errLabel;
  1067. // start the audio system
  1068. cmRtSysEnable(h,true);
  1069. char c = 0;
  1070. printf("q=quit a-g=note n=ch r=rqst s=status\n");
  1071. // simulate a host event loop
  1072. while(c != 'q')
  1073. {
  1074. _cmRtTestMsg msg = {0,0,0,0};
  1075. bool fl = true;
  1076. // wait here for a key press
  1077. c =(char)fgetc(stdin);
  1078. fflush(stdin);
  1079. switch(c)
  1080. {
  1081. case 'c': msg.hz = cmMidiToHz(60); break;
  1082. case 'd': msg.hz = cmMidiToHz(62); break;
  1083. case 'e': msg.hz = cmMidiToHz(64); break;
  1084. case 'f': msg.hz = cmMidiToHz(65); break;
  1085. case 'g': msg.hz = cmMidiToHz(67); break;
  1086. case 'a': msg.hz = cmMidiToHz(69); break;
  1087. case 'b': msg.hz = cmMidiToHz(71); break;
  1088. case 'r': msg.id = 1; break; // request DSP process to send a callback count
  1089. case 'n': ++_cmRtTestChIdx; printf("ch:%i\n",_cmRtTestChIdx); break;
  1090. case 's':
  1091. // report the audio system status
  1092. cmRtSysStatus(h,0,&status);
  1093. printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt);
  1094. //printf("%f \n",status.oMeterArray[0]);
  1095. fl = false;
  1096. break;
  1097. default:
  1098. fl=false;
  1099. }
  1100. if( fl )
  1101. {
  1102. // transmit a command to the DSP process
  1103. cmRtSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId);
  1104. }
  1105. // check if messages are waiting to be delivered from the DSP process
  1106. unsigned msgByteCnt;
  1107. if((msgByteCnt = cmRtSysIsMsgWaiting(h)) > 0 )
  1108. {
  1109. char buf[ msgByteCnt ];
  1110. // rcv a msg from the DSP process
  1111. if( cmRtSysReceiveMsg(h,buf,msgByteCnt) == kOkRtRC )
  1112. {
  1113. _cmRtTestMsg* msg = (_cmRtTestMsg*)buf;
  1114. switch(msg->id)
  1115. {
  1116. case 1:
  1117. printf("RCV: Callback count:%i\n",msg->uint);
  1118. break;
  1119. }
  1120. }
  1121. }
  1122. // report the audio buffer status
  1123. //cmApBufReport(ss.args.rpt);
  1124. }
  1125. // stop the audio system
  1126. cmRtSysEnable(h,false);
  1127. goto exitLabel;
  1128. errLabel:
  1129. printf("AUDIO SYSTEM TEST ERROR\n");
  1130. exitLabel:
  1131. cmRtSysFree(&h);
  1132. cmApFinalize();
  1133. cmApFileFree();
  1134. cmApNrtFree();
  1135. cmApBufFinalize();
  1136. }
  1137. /// [cmRtSysTest]