libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmThread.h"
  9. #include <sys/socket.h>
  10. #include <netinet/in.h>
  11. #include <arpa/inet.h>
  12. #include <fcntl.h>
  13. #include <unistd.h> // close
  14. #include "cmUdpPort.h"
  15. #define cmUdp_SYS_ERR (-1)
  16. #define cmUdp_NULL_SOCK (-1)
  17. enum
  18. {
  19. kIsConnectedUdpFl = 0x01,
  20. kIsBlockingUdpFl = 0x02,
  21. kQueueingUdpFl = 0x04
  22. };
  23. typedef struct
  24. {
  25. cmErr_t err;
  26. int sockH;
  27. cmUdpCallback_t cbFunc;
  28. void* cbArg;
  29. unsigned timeOutMs;
  30. unsigned flags;
  31. cmThreadH_t thH;
  32. cmTs1p1cH_t qH;
  33. unsigned recvBufByteCnt;
  34. char* tempBuf;
  35. unsigned timeOutCnt;
  36. unsigned recvCnt;
  37. unsigned queCbCnt;
  38. unsigned errCnt;
  39. struct sockaddr_in sockaddr;
  40. cmChar_t ntopBuf[ INET_ADDRSTRLEN+1 ]; // use INET6_ADDRSTRLEN for IPv6
  41. cmChar_t hnameBuf[ HOST_NAME_MAX+1 ];
  42. } cmUdp_t;
  43. cmUdpH_t cmUdpNullHandle = cmSTATIC_NULL_HANDLE;
  44. #define _cmUdpClear_errno() errno = 0
  45. cmUdp_t* _cmUdpHandleToPtr( cmUdpH_t h )
  46. {
  47. cmUdp_t* p = (cmUdp_t*)h.h;
  48. assert(p != NULL);
  49. return p;
  50. }
  51. cmUdpRC_t _cmUdpFinal( cmUdp_t* p )
  52. {
  53. cmUdpRC_t rc = kOkUdpRC;
  54. if( cmThreadIsValid(p->thH) )
  55. if( cmThreadDestroy(&p->thH) != kOkThRC )
  56. return cmErrMsg(&p->err,kThreadFailUdpRC,"Listener thread destroy failed.");
  57. if( cmTs1p1cIsValid(p->qH) )
  58. if( cmTs1p1cDestroy(&p->qH) != kOkThRC )
  59. cmErrMsg(&p->err,kQueueFailUdpRC,"Receive data queue destroy failed.");
  60. cmMemPtrFree(&p->tempBuf);
  61. // close the socket
  62. if( p->sockH != cmUdp_NULL_SOCK )
  63. {
  64. _cmUdpClear_errno();
  65. if( close(p->sockH) != 0 )
  66. cmErrSysMsg(&p->err,kSockCloseFailUdpRC,errno,"The socket close failed." );
  67. p->sockH = cmUdp_NULL_SOCK;
  68. }
  69. return rc;
  70. }
  71. cmUdpRC_t _cmUdpFree( cmUdp_t* p )
  72. {
  73. cmUdpRC_t rc;
  74. if((rc = _cmUdpFinal(p)) != kOkUdpRC )
  75. return rc;
  76. cmMemFree(p);
  77. return rc;
  78. }
  79. cmUdpRC_t _cmUdpInitAddr( cmUdp_t* p, const char* addrStr, cmUdpPort_t portNumber, struct sockaddr_in* retAddrPtr )
  80. {
  81. memset(retAddrPtr,0,sizeof(struct sockaddr_in));
  82. if( addrStr == NULL )
  83. retAddrPtr->sin_addr.s_addr = htonl(INADDR_ANY);
  84. else
  85. {
  86. _cmUdpClear_errno();
  87. if(inet_pton(AF_INET,addrStr,&retAddrPtr->sin_addr) == 0 )
  88. //if(( retAddrPtr->sin_addr.s_addr = inet_addr(addrStr)) == INADDR_NONE )
  89. return cmErrSysMsg(&p->err,kPtoNFailUdpRC,errno, "The network address string '%s' could not be converted to a netword address structure.",cmStringNullGuard(addrStr) );
  90. }
  91. //retAddrPtr->sin_len = sizeof(struct sockaddr_in);
  92. retAddrPtr->sin_family = AF_INET;
  93. retAddrPtr->sin_port = htons(portNumber);
  94. return kOkUdpRC;
  95. }
  96. cmUdpRC_t _cmUdpConnect( cmUdp_t* p, const char* remoteAddr, cmUdpPort_t remotePort )
  97. {
  98. struct sockaddr_in addr;
  99. cmUdpRC_t rc;
  100. // create the remote address
  101. if((rc = _cmUdpInitAddr(p, remoteAddr, remotePort, &addr )) != kOkUdpRC )
  102. return rc;
  103. _cmUdpClear_errno();
  104. // ... and connect this socket to the remote address/port
  105. if( connect(p->sockH, (struct sockaddr*)&addr, sizeof(addr)) == cmUdp_SYS_ERR )
  106. return cmErrSysMsg(&p->err,kSockConnectFailUdpRC, errno, "Socket connect failed." );
  107. p->flags = cmSetFlag(p->flags,kIsConnectedUdpFl);
  108. return rc;
  109. }
  110. cmUdpRC_t cmUdpAlloc( cmCtx_t* ctx, cmUdpH_t* hp )
  111. {
  112. cmUdpRC_t rc;
  113. if((rc = cmUdpFree(hp)) != kOkUdpRC )
  114. return rc;
  115. cmUdp_t* p = cmMemAllocZ(cmUdp_t,1);
  116. cmErrSetup(&p->err,&ctx->rpt,"UDP Port");
  117. p->sockH = cmUdp_NULL_SOCK;
  118. hp->h = p;
  119. return rc;
  120. }
  121. cmUdpRC_t cmUdpFree( cmUdpH_t* hp )
  122. {
  123. cmUdpRC_t rc = kOkUdpRC;
  124. if( hp == NULL || cmUdpIsValid(*hp)==false)
  125. return rc;
  126. cmUdp_t* p = _cmUdpHandleToPtr(*hp);
  127. if((rc = _cmUdpFree(p)) != kOkUdpRC )
  128. return rc;
  129. hp->h = NULL;
  130. return rc;
  131. }
  132. cmUdpRC_t cmUdpInit(
  133. cmUdpH_t h,
  134. cmUdpPort_t port,
  135. unsigned flags,
  136. cmUdpCallback_t cbFunc,
  137. void* cbArg,
  138. const char* remoteAddr,
  139. cmUdpPort_t remotePort,
  140. unsigned recvBufByteCnt,
  141. unsigned timeOutMs )
  142. {
  143. cmUdpRC_t rc;
  144. cmUdp_t* p = _cmUdpHandleToPtr(h);
  145. if((rc = _cmUdpFinal(p)) != kOkUdpRC )
  146. return rc;
  147. _cmUdpClear_errno();
  148. // get a handle to the socket
  149. if(( p->sockH = socket( AF_INET, SOCK_DGRAM, IPPROTO_UDP ) ) == cmUdp_SYS_ERR )
  150. return cmErrSysMsg(&p->err, kSockCreateFailUdpRC, errno, "Socket create failed." );
  151. // create the local address
  152. if((rc = _cmUdpInitAddr(p, NULL, port, &p->sockaddr )) != kOkUdpRC )
  153. goto errLabel;
  154. // bind the socket to a local address/port
  155. if( (bind( p->sockH, (struct sockaddr*)&p->sockaddr, sizeof(p->sockaddr))) == cmUdp_SYS_ERR )
  156. {
  157. rc = cmErrSysMsg(&p->err,kSockBindFailUdpRC,errno,"Socket bind failed." );
  158. goto errLabel;
  159. }
  160. // if a remote addr was given connect this socket to it
  161. if( remoteAddr != NULL )
  162. if((rc = _cmUdpConnect(p,remoteAddr,remotePort)) != kOkUdpRC )
  163. goto errLabel;
  164. // if this socket should block
  165. if( cmIsFlag(flags,kBlockingUdpFl) )
  166. {
  167. struct timeval timeOut;
  168. // set the socket time out
  169. timeOut.tv_sec = timeOutMs/1000;
  170. timeOut.tv_usec = (timeOutMs - (timeOut.tv_sec * 1000)) * 1000;
  171. if( setsockopt( p->sockH, SOL_SOCKET, SO_RCVTIMEO, &timeOut, sizeof(timeOut) ) == cmUdp_SYS_ERR )
  172. {
  173. rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to set the socket timeout failed." );
  174. goto errLabel;
  175. }
  176. p->flags = cmSetFlag(p->flags,kIsBlockingUdpFl);
  177. }
  178. else
  179. {
  180. int opts;
  181. // get the socket options flags
  182. if( (opts = fcntl(p->sockH,F_GETFL)) < 0 )
  183. {
  184. rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to get the socket options flags failed." );
  185. goto errLabel;
  186. }
  187. opts = (opts | O_NONBLOCK);
  188. // set the socket options flags
  189. if(fcntl(p->sockH,F_SETFL,opts) < 0)
  190. {
  191. rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to set the socket to non-blocking failed." );
  192. goto errLabel;
  193. }
  194. }
  195. // if broadcast option was requested.
  196. if( cmIsFlag(flags,kBroadcastUdpFl) )
  197. {
  198. int bcastFl = 1;
  199. if( setsockopt( p->sockH, SOL_SOCKET, SO_BROADCAST, &bcastFl, sizeof(bcastFl) ) == cmUdp_SYS_ERR )
  200. {
  201. rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to set the socket broadcast attribute failed." );
  202. goto errLabel;
  203. }
  204. }
  205. if( recvBufByteCnt != 0 )
  206. p->tempBuf = cmMemAlloc(char,recvBufByteCnt );
  207. p->timeOutMs = timeOutMs;
  208. p->cbFunc = cbFunc;
  209. p->cbArg = cbArg;
  210. p->recvBufByteCnt = recvBufByteCnt;
  211. p->timeOutCnt = 0;
  212. p->recvCnt = 0;
  213. p->queCbCnt = 0;
  214. p->errCnt = 0;
  215. if( cmIsFlag(flags,kNoQueueUdpFl) == false )
  216. p->flags = cmSetFlag(p->flags,kQueueingUdpFl);
  217. errLabel:
  218. if( rc != kOkUdpRC )
  219. _cmUdpFree(p);
  220. return rc;
  221. }
  222. cmUdpRC_t cmUdpFinal( cmUdpH_t h )
  223. {
  224. cmUdp_t* p = _cmUdpHandleToPtr(h);
  225. return _cmUdpFinal(p);
  226. }
  227. bool cmUdpIsValid( cmUdpH_t h )
  228. { return h.h != NULL; }
  229. const struct sockaddr_in* cmUdpLocalAddr( cmUdpH_t h )
  230. {
  231. cmUdp_t* p = _cmUdpHandleToPtr(h);
  232. return &p->sockaddr;
  233. }
  234. cmUdpRC_t cmUdpConnect( cmUdpH_t h, const char* remoteAddr, cmUdpPort_t remotePort )
  235. {
  236. cmUdp_t* p = _cmUdpHandleToPtr(h);
  237. return _cmUdpConnect(p,remoteAddr,remotePort);
  238. }
  239. cmUdpRC_t cmUdpSend( cmUdpH_t h, const char* data, unsigned dataByteCnt )
  240. {
  241. cmUdp_t* p = _cmUdpHandleToPtr(h);
  242. _cmUdpClear_errno();
  243. if( cmIsFlag(p->flags,kIsConnectedUdpFl) == false )
  244. return cmErrMsg(&p->err,kNotConnectedUdpRC,"cmUdpSend() only works with connected sockets.");
  245. if( send( p->sockH, data, dataByteCnt, 0 ) == cmUdp_SYS_ERR )
  246. return cmErrSysMsg(&p->err,kSockSendFailUdpRC,errno,"Send failed.");
  247. return kOkUdpRC;
  248. }
  249. cmUdpRC_t cmUdpSendTo( cmUdpH_t h, const char* data, unsigned dataByteCnt, const struct sockaddr_in* remoteAddr )
  250. {
  251. cmUdp_t* p = _cmUdpHandleToPtr(h);
  252. _cmUdpClear_errno();
  253. if( sendto(p->sockH, data, dataByteCnt, 0, (struct sockaddr*)remoteAddr, sizeof(*remoteAddr)) == cmUdp_SYS_ERR )
  254. return cmErrSysMsg(&p->err,kSockSendFailUdpRC,errno,"SendTo failed.");
  255. return kOkUdpRC;
  256. }
  257. cmUdpRC_t cmUdpSend2( cmUdpH_t h, const char* data, unsigned dataByteCnt, const char* remoteAddr, cmUdpPort_t remotePort )
  258. {
  259. cmUdpRC_t rc;
  260. cmUdp_t* p = _cmUdpHandleToPtr(h);
  261. struct sockaddr_in addr;
  262. if((rc = _cmUdpInitAddr(p,remoteAddr,remotePort,&addr)) != kOkUdpRC )
  263. return rc;
  264. return cmUdpSendTo( h, data, dataByteCnt, &addr );
  265. }
  266. cmUdpRC_t cmUdpRecv( cmUdpH_t h, char* data, unsigned dataByteCnt, struct sockaddr_in* fromAddr, unsigned* recvByteCntPtr )
  267. {
  268. cmUdp_t* p = _cmUdpHandleToPtr(h);
  269. cmUdpRC_t rc = kOkUdpRC;
  270. ssize_t retVal = 0;
  271. socklen_t sizeOfRemoteAddr = fromAddr==NULL ? 0 : sizeof(struct sockaddr_in);
  272. _cmUdpClear_errno();
  273. if( recvByteCntPtr != NULL )
  274. *recvByteCntPtr = 0;
  275. if((retVal = recvfrom(p->sockH, data, dataByteCnt, 0, (struct sockaddr*)fromAddr, &sizeOfRemoteAddr )) == cmUdp_SYS_ERR )
  276. return cmErrSysMsg(&p->err,kSockRecvFailUdpRC,errno,"recvFrom() failed.");
  277. if( recvByteCntPtr != NULL )
  278. *recvByteCntPtr = retVal;
  279. return rc;
  280. }
  281. bool _cmUdpThreadCb(void* param)
  282. {
  283. cmUdp_t* p = (cmUdp_t*)param;
  284. fd_set rdSet;
  285. struct timeval timeOut;
  286. // setup the select() call
  287. FD_ZERO(&rdSet);
  288. FD_SET(p->sockH, &rdSet );
  289. timeOut.tv_sec = p->timeOutMs/1000;
  290. timeOut.tv_usec = (p->timeOutMs - (timeOut.tv_sec * 1000)) * 1000;
  291. // NOTE; select() takes the highest socket value plus one of all the sockets in all the sets.
  292. switch( select(p->sockH+1,&rdSet,NULL,NULL,&timeOut) )
  293. {
  294. case -1: // error
  295. if( errno != EINTR )
  296. cmErrSysMsg(&p->err,kSockSelectFailUdpRC,errno,"Select failed.");
  297. ++p->errCnt;
  298. break;
  299. case 0: // select() timed out
  300. ++p->timeOutCnt;
  301. break;
  302. case 1: // (> 0) count of ready descripters
  303. if( FD_ISSET(p->sockH,&rdSet) )
  304. {
  305. struct sockaddr_in remoteAddr;
  306. socklen_t addrByteCnt = sizeof(remoteAddr);
  307. ssize_t retByteCnt;
  308. _cmUdpClear_errno();
  309. ++p->recvCnt;
  310. // recv the incoming msg into p->tempBuf[]
  311. if(( retByteCnt = recvfrom( p->sockH, p->tempBuf, p->recvBufByteCnt, 0, (struct sockaddr*)&remoteAddr, &addrByteCnt )) == cmUdp_SYS_ERR )
  312. cmErrSysMsg(&p->err,kSockRecvFailUdpRC,errno,"recvfrom() failed.");
  313. else
  314. {
  315. // check for overflow
  316. if( retByteCnt == p->recvBufByteCnt )
  317. cmErrMsg(&p->err,kRecvBufOverflowUdpRC,"The receive buffer requires more than %i bytes.",p->recvBufByteCnt);
  318. else
  319. {
  320. // if queueing is enabled
  321. if( cmIsFlag(p->flags,kQueueingUdpFl ) )
  322. {
  323. // enqueue the msg - with the source address appended after the data
  324. const void* msgPtrArray[] = { p->tempBuf, &remoteAddr, p->tempBuf };
  325. unsigned msgByteCntArray[] = { retByteCnt, sizeof(remoteAddr) };
  326. if( cmTs1p1cEnqueueSegMsg( p->qH, msgPtrArray, msgByteCntArray, 2 ) != kOkThRC )
  327. cmErrMsg(&p->err,kQueueFailUdpRC,"A received msg containing %i bytes was not queued.",retByteCnt);
  328. }
  329. else // if queueing is not enabled - transmit the data directly via the callback
  330. if( p->cbFunc != NULL )
  331. {
  332. p->cbFunc(p->cbArg,p->tempBuf,retByteCnt,&remoteAddr);
  333. }
  334. }
  335. }
  336. }
  337. break;
  338. default:
  339. { assert(0); }
  340. } // switch
  341. return true;
  342. }
  343. cmRC_t _cmUdpQueueCb(void* userCbPtr, unsigned msgByteCnt, const void* msgDataPtr )
  344. {
  345. cmUdp_t* p = (cmUdp_t*)userCbPtr;
  346. if( p->cbFunc != NULL )
  347. {
  348. struct sockaddr_in addr;
  349. assert( msgByteCnt >= sizeof(addr));
  350. const char* dataPtr = (const char*)msgDataPtr;
  351. // the address of the data source is apppended to the data bytes.
  352. const char* addrPtr = dataPtr + msgByteCnt - sizeof(addr);
  353. memcpy(&addr,addrPtr,sizeof(addr));
  354. // make the receive callback
  355. p->cbFunc(p->cbArg,dataPtr,msgByteCnt-sizeof(addr),&addr);
  356. ++p->queCbCnt;
  357. }
  358. return cmOkRC;
  359. }
  360. cmUdpRC_t cmUdpEnableListen( cmUdpH_t h, bool enableFl )
  361. {
  362. cmUdp_t* p = _cmUdpHandleToPtr(h);
  363. if( cmThreadIsValid(p->thH) == false && enableFl == true)
  364. {
  365. if(cmThreadCreate(&p->thH,_cmUdpThreadCb,p,p->err.rpt) != kOkThRC )
  366. return cmErrMsg(&p->err,kThreadFailUdpRC,"Listener thread create failed.");
  367. if(cmTs1p1cCreate(&p->qH,p->recvBufByteCnt,_cmUdpQueueCb,p,p->err.rpt) != kOkThRC )
  368. return cmErrMsg(&p->err,kQueueFailUdpRC,"Listener data queue create failed.");
  369. }
  370. if( cmThreadIsValid(p->thH) )
  371. if( cmThreadPause( p->thH, enableFl ? 0 : kPauseThFl ) != kOkThRC )
  372. return cmErrMsg(&p->err,kThreadFailUdpRC,"The listener thread failed to %s.", enableFl ? "pause" : "un-pause" );
  373. return kOkUdpRC;
  374. }
  375. bool cmUdpIsQueueEnabled( cmUdpH_t h )
  376. {
  377. cmUdp_t* p = _cmUdpHandleToPtr(h);
  378. return cmIsFlag(p->flags,kQueueingUdpFl);
  379. }
  380. void cmUdpQueueEnable( cmUdpH_t h, bool enableFl )
  381. {
  382. cmUdp_t* p = _cmUdpHandleToPtr(h);
  383. p->flags = cmSetFlag(p->flags,kQueueingUdpFl);
  384. }
  385. unsigned cmUdpAvailDataByteCount( cmUdpH_t h )
  386. {
  387. cmUdp_t* p = _cmUdpHandleToPtr(h);
  388. return cmTs1p1cIsValid(p->qH) ? cmTs1p1cDequeueMsgByteCount( p->qH ) : 0;
  389. }
  390. cmUdpRC_t cmUdpGetAvailData( cmUdpH_t h, char* data, unsigned* dataByteCntPtr, struct sockaddr_in* fromAddr )
  391. {
  392. cmUdp_t* p = _cmUdpHandleToPtr(h);
  393. unsigned availByteCnt;
  394. // if a received msg is queued
  395. if( (availByteCnt = cmTs1p1cAvailByteCount(p->qH)) > 0 )
  396. {
  397. // all msg's must have at least a source address
  398. assert( availByteCnt >= sizeof(*fromAddr) );
  399. // get the size of the return buffer (or 0 if there is no return buffer)
  400. unsigned dataByteCnt = (data != NULL && dataByteCntPtr != NULL) ? *dataByteCntPtr : 0;
  401. if( dataByteCnt == 0 )
  402. data = NULL;
  403. // dequeue the msg - if data==NULL then the data will be returned by
  404. // a call to the callback function provided in cmUdpAlloc().
  405. if( cmTs1p1cDequeueMsg(p->qH, data, dataByteCnt ) != kOkThRC )
  406. return cmErrMsg(&p->err,kQueueFailUdpRC,"Data dequeue failed.");
  407. // if a return buffer was given
  408. if( data != NULL )
  409. {
  410. assert( dataByteCntPtr != NULL );
  411. // the source address is appended to the end of the data
  412. const char* addrPtr = data + availByteCnt - sizeof(*fromAddr);
  413. // copy out the source address
  414. if( fromAddr != NULL )
  415. memcpy(fromAddr,addrPtr,sizeof(*fromAddr));
  416. // subtract the address size from the total msg size
  417. *dataByteCntPtr = availByteCnt - sizeof(*fromAddr);
  418. }
  419. }
  420. return kOkUdpRC;
  421. }
  422. void cmUdpReport( cmUdpH_t h, cmRpt_t* rpt )
  423. {
  424. cmUdp_t* p = _cmUdpHandleToPtr(h);
  425. cmRptPrintf(rpt,"time-out:%i recv:%i queue cb:%i\n",p->timeOutCnt,p->recvCnt,p->queCbCnt);
  426. }
  427. cmUdpRC_t cmUdpInitAddr( cmUdpH_t h, const char* addrStr, cmUdpPort_t portNumber, struct sockaddr_in* retAddrPtr )
  428. {
  429. cmUdp_t* p = _cmUdpHandleToPtr(h);
  430. return _cmUdpInitAddr(p,addrStr,portNumber,retAddrPtr);
  431. }
  432. const cmChar_t* cmUdpAddrToString( cmUdpH_t h, const struct sockaddr_in* addr )
  433. {
  434. cmUdp_t* p = _cmUdpHandleToPtr(h);
  435. _cmUdpClear_errno();
  436. if( inet_ntop(AF_INET, &(addr->sin_addr), p->ntopBuf, INET_ADDRSTRLEN) == NULL)
  437. {
  438. cmErrSysMsg(&p->err,kNtoPFailUdpRC,errno, "Network address to string conversion failed." );
  439. return NULL;
  440. }
  441. p->ntopBuf[INET_ADDRSTRLEN]=0;
  442. return p->ntopBuf;
  443. }
  444. const cmChar_t* cmUdpHostName( cmUdpH_t h )
  445. {
  446. cmUdp_t* p = _cmUdpHandleToPtr(h);
  447. _cmUdpClear_errno();
  448. if( gethostname(p->hnameBuf,HOST_NAME_MAX) != 0 )
  449. {
  450. cmErrSysMsg(&p->err,kHostNameFailUdpRC,errno, "gethostname() failed." );
  451. return NULL;
  452. }
  453. p->hnameBuf[HOST_NAME_MAX] = 0;
  454. return p->hnameBuf;
  455. }