libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmVectOpsTemplateCode.h 80KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. #ifdef cmVectOpsTemplateCode_h
  4. VECT_OP_TYPE* VECT_OP_FUNC(CumSum)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  5. {
  6. VECT_OP_TYPE* dep = dbp + dn;
  7. VECT_OP_TYPE* rp = dbp;
  8. VECT_OP_TYPE sum = 0;
  9. while( dbp < dep )
  10. {
  11. sum += *sbp++;
  12. *dbp++ = sum;
  13. }
  14. return rp;
  15. }
  16. bool VECT_OP_FUNC(Equal)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  17. {
  18. const VECT_OP_TYPE* ep = s0p + sn;
  19. while( s0p < ep )
  20. if( *s0p++ != *s1p++ )
  21. return false;
  22. return true;
  23. }
  24. VECT_OP_TYPE* VECT_OP_FUNC(LinSpace)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE base, VECT_OP_TYPE limit )
  25. {
  26. unsigned i = 0;
  27. for(; i<dn; ++i)
  28. dbp[i] = base + i*(limit-base)/(dn-1);
  29. return dbp;
  30. }
  31. void VECT_OP_FUNC(VPrint)( cmRpt_t* rpt, const char* fmt, ... )
  32. {
  33. va_list vl;
  34. va_start(vl,fmt);
  35. if( rpt != NULL )
  36. cmRptVPrintf(rpt,fmt,vl);
  37. else
  38. vprintf(fmt,vl);
  39. va_end(vl);
  40. }
  41. void VECT_OP_FUNC(Printf)( cmRpt_t* rpt, unsigned rowCnt, unsigned colCnt, const VECT_OP_TYPE* sbp, int fieldWidth, int decPlCnt, const char* fmt, unsigned flags )
  42. {
  43. unsigned cci;
  44. unsigned outColCnt = 10;
  45. if( fieldWidth < 0 )
  46. fieldWidth = 10;
  47. if( decPlCnt < 0 )
  48. decPlCnt = 4;
  49. if( outColCnt == -1 )
  50. outColCnt = colCnt;
  51. for(cci=0; cci<colCnt; cci+=outColCnt)
  52. {
  53. unsigned ci0 = cci;
  54. unsigned cn = cci + outColCnt;
  55. unsigned ri;
  56. if(cn > colCnt)
  57. cn = colCnt;
  58. if( colCnt > outColCnt )
  59. {
  60. if( cmIsFlag(flags,cmPrintMatlabLabelsFl) )
  61. VECT_OP_FUNC(VPrint)(rpt,"Columns:%i to %i\n",ci0,cn-1);
  62. else
  63. if( cmIsFlag(flags,cmPrintShortLabelsFl) )
  64. VECT_OP_FUNC(VPrint)(rpt,"%3i: ",ci0);
  65. }
  66. if( rowCnt > 1 )
  67. VECT_OP_FUNC(VPrint)(rpt,"\n");
  68. for(ri=0; ri<rowCnt; ++ri)
  69. {
  70. unsigned ci;
  71. for(ci=ci0; ci<cn; ++ci )
  72. VECT_OP_FUNC(VPrint)(rpt,fmt,fieldWidth,decPlCnt,sbp[ (ci*rowCnt) + ri ]);
  73. if( cn > 0 )
  74. VECT_OP_FUNC(VPrint)(rpt,"\n");
  75. }
  76. }
  77. }
  78. void VECT_OP_FUNC(Print)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
  79. { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl); }
  80. void VECT_OP_FUNC(PrintE)( cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* sbp )
  81. { VECT_OP_FUNC(Printf)(rpt,rn,cn,sbp,cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl); }
  82. void VECT_OP_FUNC(PrintLf)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp, unsigned fieldWidth, unsigned decPlCnt, const char* fmt )
  83. {
  84. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  85. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, fieldWidth, decPlCnt,fmt,cmPrintShortLabelsFl );
  86. }
  87. void VECT_OP_FUNC(PrintL)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
  88. {
  89. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  90. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*f ",cmPrintShortLabelsFl );
  91. }
  92. void VECT_OP_FUNC(PrintLE)( const char* label, cmRpt_t* rpt, unsigned rn, unsigned cn, const VECT_OP_TYPE* dbp )
  93. {
  94. VECT_OP_FUNC(VPrint)( rpt, "%s\n", label );
  95. VECT_OP_FUNC(Printf)( rpt, rn, cn, dbp, cmDefaultFieldWidth,cmDefaultDecPlCnt,"%*.*e ",cmPrintShortLabelsFl );
  96. }
  97. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityVV)(VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  98. {
  99. VECT_OP_TYPE sum = VECT_OP_FUNC(Sum)(sbp,dn);
  100. if( sum == 0 )
  101. sum = 1;
  102. return VECT_OP_FUNC(DivVVS)(dbp,dn,sbp,sum);
  103. }
  104. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbability)(VECT_OP_TYPE* dbp, unsigned dn)
  105. { return VECT_OP_FUNC(NormalizeProbabilityVV)(dbp,dn,dbp); }
  106. VECT_OP_TYPE* VECT_OP_FUNC(NormalizeProbabilityN)(VECT_OP_TYPE* dbp, unsigned dn, unsigned stride)
  107. {
  108. VECT_OP_TYPE sum = VECT_OP_FUNC(SumN)(dbp,dn,stride);
  109. if( sum == 0 )
  110. return dbp;
  111. VECT_OP_TYPE* dp = dbp;
  112. VECT_OP_TYPE* ep = dp + (dn*stride);
  113. for(; dp < ep; dp+=stride )
  114. *dp /= sum;
  115. return dbp;
  116. }
  117. VECT_OP_TYPE* VECT_OP_FUNC(StandardizeRows)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
  118. {
  119. bool uFl = false;
  120. bool sFl = false;
  121. unsigned i;
  122. if( uV == NULL )
  123. {
  124. uV = cmMemAllocZ(VECT_OP_TYPE,drn);
  125. uFl = true;
  126. }
  127. if( sdV == NULL )
  128. {
  129. sdV = cmMemAllocZ(VECT_OP_TYPE,drn);
  130. sFl = true;
  131. }
  132. VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 1 );
  133. VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 1 );
  134. for(i=0; i<dcn; ++i)
  135. {
  136. VECT_OP_FUNC(SubVV)(dbp + i * drn, drn, uV );
  137. VECT_OP_FUNC(DivVV)(dbp + i * drn, drn, sdV );
  138. }
  139. if(uFl)
  140. cmMemFree(uV);
  141. if(sFl)
  142. cmMemFree(sdV);
  143. return dbp;
  144. }
  145. VECT_OP_TYPE* VECT_OP_FUNC(StandardizeCols)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE* uV, VECT_OP_TYPE* sdV )
  146. {
  147. bool uFl = false;
  148. bool sFl = false;
  149. unsigned i;
  150. if( uV == NULL )
  151. {
  152. uV = cmMemAllocZ(VECT_OP_TYPE,dcn);
  153. uFl = true;
  154. }
  155. if( sdV == NULL )
  156. {
  157. sdV = cmMemAllocZ(VECT_OP_TYPE,dcn);
  158. sFl = true;
  159. }
  160. VECT_OP_FUNC(MeanM)(uV, dbp, drn, dcn, 0 );
  161. VECT_OP_FUNC(VarianceM)(sdV, dbp, drn, dcn, uV, 0 );
  162. for(i=0; i<drn; ++i)
  163. {
  164. VECT_OP_FUNC(SubVVNN)(dbp + i, dcn, drn, uV, 1 );
  165. VECT_OP_FUNC(DivVVNN)(dbp + i, dcn, drn, sdV, 1 );
  166. }
  167. if(uFl)
  168. cmMemFree(uV);
  169. if(sFl)
  170. cmMemFree(sdV);
  171. return dbp;
  172. }
  173. unsigned VECT_OP_FUNC(NormToMax)( VECT_OP_TYPE* dp, unsigned dn )
  174. {
  175. unsigned i = VECT_OP_FUNC(MaxIndex)(dp,dn,1);
  176. if( i != cmInvalidIdx )
  177. {
  178. VECT_OP_TYPE v = dp[i];
  179. VECT_OP_FUNC(DivVS)(dp,dn,v);
  180. }
  181. return i;
  182. }
  183. unsigned VECT_OP_FUNC(NormToAbsMax)( VECT_OP_TYPE* dp, unsigned dn, VECT_OP_TYPE fact )
  184. {
  185. if( dn == 0 )
  186. return cmInvalidIdx;
  187. unsigned i = 0;
  188. unsigned mi = 0;
  189. VECT_OP_TYPE mx = cmAbs(dp[0]);
  190. for(i=1; i<dn; ++i)
  191. if( cmAbs(dp[i])>mx )
  192. {
  193. mi = i;
  194. mx = cmAbs(dp[i]);
  195. }
  196. VECT_OP_FUNC(MultVS)(dp,dn,fact/mx);
  197. return mi;
  198. }
  199. VECT_OP_TYPE VECT_OP_FUNC(Mean)( const VECT_OP_TYPE* bp, unsigned n )
  200. { return VECT_OP_FUNC(Sum)(bp,n)/n; }
  201. VECT_OP_TYPE VECT_OP_FUNC(MeanN)( const VECT_OP_TYPE* bp, unsigned n, unsigned stride )
  202. { return VECT_OP_FUNC(SumN)(bp,n,stride)/n; }
  203. VECT_OP_TYPE* VECT_OP_FUNC(MeanM)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim )
  204. {
  205. unsigned i;
  206. unsigned cn = dim == 0 ? scn : srn;
  207. unsigned rn = dim == 0 ? srn : scn;
  208. unsigned inc = dim == 0 ? srn : 1;
  209. unsigned stride = dim == 0 ? 1 : srn;
  210. unsigned d0 = 0;
  211. for(i=0; i<cn; ++i, d0+=inc)
  212. dp[i] = VECT_OP_FUNC(MeanN)(sp + d0, rn, stride );
  213. return dp;
  214. }
  215. VECT_OP_TYPE* VECT_OP_FUNC(MeanM2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, unsigned dim, unsigned cnt )
  216. {
  217. unsigned i;
  218. unsigned cn = dim == 0 ? scn : srn;
  219. unsigned rn = dim == 0 ? srn : scn;
  220. unsigned inc = dim == 0 ? srn : 1;
  221. unsigned stride = dim == 0 ? 1 : srn;
  222. unsigned d0 = 0;
  223. for(i=0; i<cn; ++i, d0+=inc)
  224. dp[i] = VECT_OP_FUNC(MeanN)(sp + d0, cmMin(rn,cnt), stride );
  225. return dp;
  226. }
  227. VECT_OP_TYPE* VECT_OP_FUNC(Mean2)( VECT_OP_TYPE* dp, const VECT_OP_TYPE* (*srcFuncPtr)(void* arg, unsigned idx ), unsigned D, unsigned N, void* argPtr )
  228. {
  229. unsigned i,n;
  230. const VECT_OP_TYPE* sp;
  231. VECT_OP_FUNC(Zero)(dp,D);
  232. if( N > 1 )
  233. {
  234. n = 0;
  235. for(i=0; i<N; ++i)
  236. if((sp = srcFuncPtr(argPtr,i)) != NULL )
  237. {
  238. VECT_OP_FUNC(AddVV)(dp,D,sp);
  239. ++n;
  240. }
  241. VECT_OP_FUNC(DivVS)(dp,D,n);
  242. }
  243. return dp;
  244. }
  245. VECT_OP_TYPE VECT_OP_FUNC(Variance)( const VECT_OP_TYPE* sp, unsigned sn, const VECT_OP_TYPE* avgPtr )
  246. { return VECT_OP_FUNC(VarianceN)(sp,sn,1,avgPtr); }
  247. VECT_OP_TYPE VECT_OP_FUNC(VarianceN)( const VECT_OP_TYPE* sp, unsigned sn, unsigned stride, const VECT_OP_TYPE* meanPtr )
  248. {
  249. VECT_OP_TYPE mean = 0;
  250. if( sn <= 1 )
  251. return 0;
  252. if( meanPtr == NULL )
  253. mean = VECT_OP_FUNC(MeanN)( sp, sn, stride );
  254. else
  255. mean = *meanPtr;
  256. const VECT_OP_TYPE* ep = sp + (sn*stride);
  257. VECT_OP_TYPE sum = 0;
  258. for(; sp < ep; sp += stride )
  259. sum += (*sp-mean) * (*sp-mean);
  260. return sum / (sn-1);
  261. }
  262. VECT_OP_TYPE* VECT_OP_FUNC(VarianceM)(VECT_OP_TYPE* dp, const VECT_OP_TYPE* sp, unsigned srn, unsigned scn, const VECT_OP_TYPE* avgPtr, unsigned dim )
  263. {
  264. unsigned i;
  265. unsigned cn = dim == 0 ? scn : srn;
  266. unsigned rn = dim == 0 ? srn : scn;
  267. unsigned inc = dim == 0 ? srn : 1;
  268. unsigned stride = dim == 0 ? 1 : srn;
  269. unsigned d0 = 0;
  270. for(i=0; i<cn; ++i, d0+=inc)
  271. dp[i] = VECT_OP_FUNC(VarianceN)(sp + d0, rn, stride, avgPtr==NULL ? NULL : avgPtr+i );
  272. return dp;
  273. }
  274. void VECT_OP_FUNC(GaussCovariance)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* xM, unsigned xN, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
  275. {
  276. unsigned i,j,k,n = 0;
  277. VECT_OP_TYPE tV[ D ];
  278. VECT_OP_FUNC(Fill)(yM,D*D,0);
  279. // if the mean was not given - then calculate it
  280. if( uV == NULL )
  281. {
  282. VECT_OP_FUNC(Fill)(tV,D,0);
  283. // sum each row of xM[] into uM[]
  284. for(i=0; i<D; ++i)
  285. {
  286. n = 0;
  287. for(j=0; j<xN; ++j)
  288. if( selIdxV==NULL || selIdxV[j]==selKey )
  289. {
  290. tV[i] += xM[ (j*D) + i ];
  291. ++n;
  292. }
  293. }
  294. // form an average from the sum in tV[]
  295. VECT_OP_FUNC(DivVS)(tV,D,n);
  296. uV = tV;
  297. }
  298. for(i=0; i<D; ++i)
  299. for(j=i; j<D; ++j)
  300. {
  301. n = 0;
  302. for(k=0; k<xN; ++k)
  303. if( selIdxV==NULL || selIdxV[k]==selKey)
  304. {
  305. unsigned yi = (i*D)+j;
  306. yM[ yi ] += ((xM[ (k*D)+j ]-uV[j]) * (xM[ (k*D) + i ]-uV[i]));
  307. if( i != j )
  308. yM[ (j*D)+i ] = yM[ yi ];
  309. ++n;
  310. }
  311. }
  312. if( n>1 )
  313. VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
  314. }
  315. void VECT_OP_FUNC(GaussCovariance2)(VECT_OP_TYPE* yM, unsigned D, const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned idx), unsigned xN, void* userPtr, const VECT_OP_TYPE* uV, const unsigned* selIdxV, unsigned selKey )
  316. {
  317. unsigned i,j,k = 0,n=0;
  318. VECT_OP_TYPE tV[ D ];
  319. const VECT_OP_TYPE* sp;
  320. VECT_OP_FUNC(Fill)(yM,D*D,0);
  321. // if the mean was not given - then calculate it
  322. if( uV == NULL )
  323. {
  324. VECT_OP_FUNC(Fill)(tV,D,0);
  325. n = 0;
  326. // sum each row of xM[] into uM[]
  327. for(i=0; i<xN; ++i)
  328. if( (selIdxV==NULL || selIdxV[i]==selKey) && ((sp=srcFunc(userPtr,i))!=NULL) )
  329. {
  330. VECT_OP_FUNC(AddVV)(tV,D,sp);
  331. ++n;
  332. }
  333. // form an average from the sum in tV[]
  334. VECT_OP_FUNC(DivVS)(tV,D,n);
  335. uV = tV;
  336. }
  337. for(i=0; i<xN; ++i)
  338. if( selIdxV==NULL || selIdxV[i]==selKey )
  339. {
  340. // get a pointer to the ith data point
  341. const VECT_OP_TYPE* sV = srcFunc(userPtr,i);
  342. // note: this algorithm works because when a data point element (scalar)
  343. // is multiplied by another data point element those two elements
  344. // are always part of the same data point (vector). Two elements
  345. // from different data points are never multiplied.
  346. if( sV != NULL )
  347. for(j=0; j<D; ++j)
  348. for(k=j; k<D; ++k)
  349. yM[j + k*D] += (sV[j]-uV[j]) * (sV[k]-uV[k]);
  350. }
  351. if( n > 1 )
  352. VECT_OP_FUNC(DivVS)( yM, D*D, n-1 );
  353. // fill in the lower triangle
  354. for(j=0; j<D; ++j)
  355. for(k=j; k<D; ++k)
  356. yM[k + j*D] = yM[j + k*D];
  357. }
  358. bool VECT_OP_FUNC(IsNormal)( const VECT_OP_TYPE* sp, unsigned sn )
  359. {
  360. const VECT_OP_TYPE* ep = sp + sn;
  361. for(; sp<ep; ++sp)
  362. if( !isnormal(*sp) )
  363. return false;
  364. return true;
  365. }
  366. bool VECT_OP_FUNC(IsNormalZ)(const VECT_OP_TYPE* sp, unsigned sn )
  367. {
  368. const VECT_OP_TYPE* ep = sp + sn;
  369. for(; sp<ep; ++sp)
  370. if( (*sp != 0) && (!isnormal(*sp)) )
  371. return false;
  372. return true;
  373. }
  374. unsigned VECT_OP_FUNC(FindNonNormal)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
  375. {
  376. const VECT_OP_TYPE* sp = sbp;
  377. const VECT_OP_TYPE* ep = sp + dn;
  378. unsigned n = 0;
  379. for(; sp<ep; ++sp)
  380. if( !isnormal(*sp) )
  381. dp[n++] = sp - sbp;
  382. return n;
  383. }
  384. unsigned VECT_OP_FUNC(FindNonNormalZ)( unsigned* dp, unsigned dn, const VECT_OP_TYPE* sbp )
  385. {
  386. const VECT_OP_TYPE* sp = sbp;
  387. const VECT_OP_TYPE* ep = sp + dn;
  388. unsigned n = 0;
  389. for(; sp<ep; ++sp)
  390. if( (*sp!=0) && (!isnormal(*sp)) )
  391. dp[n++] = sp - sbp;
  392. return n;
  393. }
  394. unsigned VECT_OP_FUNC(ZeroCrossCount)( const VECT_OP_TYPE* bp, unsigned bn, VECT_OP_TYPE* delaySmpPtr)
  395. {
  396. unsigned n = delaySmpPtr != NULL ? ((*delaySmpPtr >= 0) != (*bp >= 0)) : 0 ;
  397. const VECT_OP_TYPE* ep = bp + bn;
  398. for(; bp<ep-1; ++bp)
  399. if( (*bp >= 0) != (*(bp+1) >= 0) )
  400. ++n;
  401. if( delaySmpPtr != NULL )
  402. *delaySmpPtr = *bp;
  403. return n;
  404. }
  405. VECT_OP_TYPE VECT_OP_FUNC(SquaredSum)( const VECT_OP_TYPE* bp, unsigned bn )
  406. {
  407. VECT_OP_TYPE sum = 0;
  408. const VECT_OP_TYPE* ep = bp + bn;
  409. for(; bp < ep; ++bp )
  410. sum += *bp * *bp;
  411. return sum;
  412. }
  413. VECT_OP_TYPE VECT_OP_FUNC(RMS)( const VECT_OP_TYPE* bp, unsigned bn, unsigned wndSmpCnt )
  414. {
  415. const VECT_OP_TYPE* ep = bp + bn;
  416. if( bn==0 )
  417. return 0;
  418. assert( bn <= wndSmpCnt );
  419. double sum = 0;
  420. for(; bp < ep; ++bp )
  421. sum += *bp * *bp;
  422. return (VECT_OP_TYPE)sqrt(sum/wndSmpCnt);
  423. }
  424. VECT_OP_TYPE* VECT_OP_FUNC(RmsV)( VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* sp, unsigned sn, unsigned wndSmpCnt, unsigned hopSmpCnt )
  425. {
  426. const VECT_OP_TYPE* dep = dp + dn;
  427. const VECT_OP_TYPE* sep = sp + sn;
  428. VECT_OP_TYPE* rp = dp;
  429. for(; dp<dep && sp<sep; sp+=hopSmpCnt)
  430. *dp++ = VECT_OP_FUNC(RMS)( sp, cmMin(wndSmpCnt,sep-sp), wndSmpCnt );
  431. VECT_OP_FUNC(Zero)(dp,dep-dp);
  432. return rp;
  433. }
  434. VECT_OP_TYPE VECT_OP_FUNC(EuclidNorm)( const VECT_OP_TYPE* sp, unsigned sn )
  435. { return (VECT_OP_TYPE)sqrt( VECT_OP_FUNC(MultSumVV)(sp,sp,sn)); }
  436. VECT_OP_TYPE VECT_OP_FUNC(AlphaNorm)(const VECT_OP_TYPE* sp, unsigned sn, VECT_OP_TYPE alpha )
  437. {
  438. double sum = 0;
  439. const VECT_OP_TYPE* bp = sp;
  440. const VECT_OP_TYPE* ep = sp + sn;
  441. while( bp < ep )
  442. sum += pow(fabs(*bp++),alpha);
  443. return (VECT_OP_TYPE)pow(sum/sn,1.0/alpha);
  444. }
  445. /*
  446. From:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/distitpf.html
  447. [nf1,p2]=size(pf1);
  448. p1=p2-1;
  449. nf2=size(pf2,1);
  450. nx= min(nf1,nf2);
  451. r = pf1(1:nx,:)./pf2(1:nx,:);
  452. q = r-log(r);
  453. s = sum( q(:,2:p1),2) + 0.5 * (q(:,1)+q(:,p2))
  454. d= s/p1-1;
  455. */
  456. VECT_OP_TYPE VECT_OP_FUNC(ItakuraDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  457. {
  458. VECT_OP_TYPE d = 0;
  459. VECT_OP_TYPE r[ sn ];
  460. VECT_OP_TYPE q[ sn ];
  461. // r = pf1(1:nx,:)./pf2(1:nx,:);
  462. VECT_OP_FUNC(DivVVV)(r,sn,s0p,s1p);
  463. //q=log(r);
  464. VECT_OP_FUNC(LogV)(q,sn,r);
  465. //r = r - q = r - log(r)
  466. VECT_OP_FUNC(SubVV)(r,sn,q);
  467. //r = r - sn = r - log(r) - 1
  468. VECT_OP_FUNC(SubVS)(r,sn,sn);
  469. // d = sum(r);
  470. d = VECT_OP_FUNC(Sum)(r,sn);
  471. return (VECT_OP_TYPE)(d / sn);
  472. //d = log( VECT_OP_FUNC(Sum)(r,sn) /sn );
  473. //d -= VECT_OP_FUNC(Sum)(q,sn)/sn;
  474. return d;
  475. }
  476. VECT_OP_TYPE VECT_OP_FUNC(CosineDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  477. {
  478. VECT_OP_TYPE d0 = VECT_OP_FUNC(EuclidNorm)(s0p,sn);
  479. VECT_OP_TYPE d1 = VECT_OP_FUNC(EuclidNorm)(s1p,sn);
  480. if( d0 == 0 )
  481. d0 = cmReal_MIN;
  482. if( d1 == 0 )
  483. d1 = cmReal_MIN;
  484. return (VECT_OP_TYPE)(VECT_OP_FUNC(MultSumVV)(s0p,s1p,sn) / (d0 * d1));
  485. }
  486. VECT_OP_TYPE VECT_OP_FUNC(EuclidDistance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  487. {
  488. double d = 0;
  489. const VECT_OP_TYPE* sep = s0p + sn;
  490. for(; s0p<sep; ++s0p,++s1p)
  491. d += (*s0p - *s1p) * (*s0p - *s1p);
  492. return (VECT_OP_TYPE)(sqrt(d));
  493. }
  494. VECT_OP_TYPE VECT_OP_FUNC(L1Distance)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  495. {
  496. double d = 0;
  497. const VECT_OP_TYPE* sep = s0p + sn;
  498. for(; s0p<sep; ++s0p,++s1p)
  499. d += (VECT_OP_TYPE)fabs(*s0p - *s1p);
  500. return d;
  501. }
  502. VECT_OP_TYPE VECT_OP_FUNC(MahalanobisDistance)( const VECT_OP_TYPE* x, unsigned D, const VECT_OP_TYPE* u, const VECT_OP_TYPE* invCovM )
  503. {
  504. VECT_OP_TYPE t[ D ];
  505. VECT_OP_TYPE d[ D ];
  506. // t[] = x[] - u[];
  507. VECT_OP_FUNC(SubVVV)(t,D,x,u);
  508. // d[1,D] = t[1,D] * covM[D,D]
  509. VECT_OP_FUNC(MultVVM)( d, D, t, D, invCovM );
  510. // d = sum(d[].*t[])
  511. VECT_OP_TYPE dist = VECT_OP_FUNC(MultSumVV)(d,t,D);
  512. return (VECT_OP_TYPE)sqrt(dist);
  513. }
  514. VECT_OP_TYPE VECT_OP_FUNC(KL_Distance)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
  515. {
  516. VECT_OP_TYPE v[ sn ];
  517. VECT_OP_FUNC(DivVVV)(v,sn,up,sp); // v = up ./ sp
  518. VECT_OP_FUNC(LogV)(v,sn,v); // v = log(v)
  519. VECT_OP_FUNC(MultVV)(v,sn,up); // v *= up;
  520. return VECT_OP_FUNC(Sum)(v,sn); // sum(v)
  521. }
  522. VECT_OP_TYPE VECT_OP_FUNC(KL_Distance2)( const VECT_OP_TYPE* up, const VECT_OP_TYPE* sp, unsigned sn )
  523. {
  524. VECT_OP_TYPE v0[ sn ];
  525. VECT_OP_TYPE v1[ sn ];
  526. VECT_OP_FUNC(NormalizeProbabilityVV)(v0,sn,up);
  527. VECT_OP_FUNC(NormalizeProbabilityVV)(v1,sn,sp);
  528. return VECT_OP_FUNC(KL_Distance)(v0,v1,sn);
  529. }
  530. /// If dv[scn] is non NULL then return the Euclidean distance from sv[scn] to each column of sm[srn,scn].
  531. /// The function returns the index of the closest data point (column) in sm[].
  532. unsigned VECT_OP_FUNC(EuclidDistanceVM)( VECT_OP_TYPE* dv, const VECT_OP_TYPE* sv, const VECT_OP_TYPE* sm, unsigned srn, unsigned scn )
  533. {
  534. unsigned minIdx = cmInvalidIdx;
  535. VECT_OP_TYPE minDist = 0;
  536. unsigned i = 0;
  537. for(; i<scn; ++i )
  538. {
  539. VECT_OP_TYPE dist = VECT_OP_FUNC(EuclidDistance)(sv, sm + (i*srn), srn );
  540. if( dv != NULL )
  541. *dv++ = dist;
  542. if( dist < minDist || minIdx == cmInvalidIdx )
  543. {
  544. minIdx = i;
  545. minDist = dist;
  546. }
  547. }
  548. return minIdx;
  549. }
  550. void VECT_OP_FUNC(DistVMM)( VECT_OP_TYPE* dM, VECT_OP_TYPE* mvV, unsigned* miV, unsigned rn, const VECT_OP_TYPE* s0M, unsigned s0cn, const VECT_OP_TYPE* s1M, unsigned s1cn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  551. {
  552. unsigned i,j,k;
  553. // for each col in s0M[];
  554. for(i=0,k=0; i<s0cn; ++i)
  555. {
  556. VECT_OP_TYPE min_val = VECT_OP_MAX;
  557. unsigned min_idx = cmInvalidIdx;
  558. // for each col in s1M[]
  559. for(j=0; j<s1cn; ++j,++k)
  560. {
  561. // v = distance(s0M[:,i],s1M[:,j]
  562. VECT_OP_TYPE v = distFunc( userPtr, s1M + (j*rn), s0M + (i*rn), rn );
  563. if( dM != NULL )
  564. dM[k] = v; // store distance
  565. // track closest col in s1M[]
  566. if( v < min_val || min_idx==cmInvalidIdx )
  567. {
  568. min_val = v;
  569. min_idx = j;
  570. }
  571. }
  572. if( mvV != NULL )
  573. mvV[i] = min_val;
  574. if( miV != NULL )
  575. miV[i] = min_idx;
  576. }
  577. }
  578. void VECT_OP_FUNC(SelectRandom) ( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn )
  579. {
  580. bool freeFl = false;
  581. unsigned i;
  582. assert( selIdxN != 0 );
  583. // if no selIdxV[] was given then create one
  584. if( selIdxV == NULL )
  585. {
  586. selIdxV = cmMemAlloc( unsigned, selIdxN );
  587. freeFl = true;
  588. }
  589. // select datapoints at random
  590. cmVOU_UniqueRandom(selIdxV,selIdxN,scn);
  591. // copy the data points into the output matrix
  592. if( dM != NULL )
  593. for(i=0; i<selIdxN; ++i)
  594. {
  595. assert( selIdxV[i] < scn );
  596. VECT_OP_FUNC(Copy)( dM + (i*srn), srn, sM + selIdxV[i]*srn );
  597. }
  598. if( freeFl )
  599. cmMemPtrFree(&selIdxV);
  600. }
  601. void VECT_OP_FUNC(_SelectDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr, bool avgFl )
  602. {
  603. unsigned i;
  604. unsigned dcn = 0;
  605. bool freeFl = false;
  606. assert( selIdxN > 0 );
  607. if( dM == NULL )
  608. {
  609. dM = cmMemAllocZ( VECT_OP_TYPE, srn*selIdxN );
  610. freeFl = true;
  611. }
  612. // allocate distM[scn,selIdxN] to hold the distances from each selected column to all columns in sM[]
  613. VECT_OP_TYPE* distM = cmMemAllocZ( VECT_OP_TYPE, scn*selIdxN );
  614. // sumV[] is a temp vector to hold the summed distances to from the selected columns to each column in sM[]
  615. VECT_OP_TYPE* sumV = cmMemAllocZ( VECT_OP_TYPE, scn );
  616. // select a random point from sM[] and copy it to the first column of dM[]
  617. cmVOU_Random(&i,1,scn);
  618. VECT_OP_FUNC(Copy)(dM, srn, sM + (i*srn));
  619. if( selIdxV != NULL )
  620. selIdxV[0] = i;
  621. for(dcn=1; dcn<selIdxN; ++dcn)
  622. {
  623. // set distM[scn,dcn] with the dist from dM[dcn,srn] to each column in sM[]
  624. VECT_OP_FUNC(DistVMM)( distM, NULL, NULL, srn, dM, dcn, sM, scn, distFunc, userPtr );
  625. // sum the rows of distM[ scn, dcn ] into sumV[scn]
  626. VECT_OP_FUNC(SumMN)( distM, scn, dcn, sumV );
  627. if( avgFl )
  628. VECT_OP_FUNC(DivVS)( sumV, scn, dcn );
  629. // find the point in sM[] which has the greatest combined distance to all previously selected points.
  630. unsigned maxIdx = VECT_OP_FUNC(MaxIndex)(sumV, scn, 1 );
  631. // copy the point into dM[]
  632. VECT_OP_FUNC(Copy)(dM + (dcn*srn), srn, sM + (maxIdx*srn));
  633. if( selIdxV != NULL )
  634. selIdxV[dcn] = maxIdx;
  635. }
  636. cmMemPtrFree(&distM);
  637. cmMemPtrFree(&sumV);
  638. if( freeFl )
  639. cmMemPtrFree(&dM);
  640. }
  641. void VECT_OP_FUNC(SelectMaxDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  642. { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,false); }
  643. void VECT_OP_FUNC(SelectMaxAvgDist)( VECT_OP_TYPE *dM, unsigned* selIdxV, unsigned selIdxN, const VECT_OP_TYPE* sM, unsigned srn, unsigned scn, VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ), void* userPtr )
  644. { VECT_OP_FUNC(_SelectDist)(dM,selIdxV,selIdxN,sM,srn,scn,distFunc,userPtr,true); }
  645. #ifdef CM_VECTOP
  646. VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  647. { return VECT_OP_BLAS_FUNC(dot)(sn, s0p, 1, s1p, 1); }
  648. #else
  649. VECT_OP_TYPE VECT_OP_FUNC(MultSumVV)( const VECT_OP_TYPE* s0p, const VECT_OP_TYPE* s1p, unsigned sn )
  650. {
  651. VECT_OP_TYPE sum = 0;
  652. const VECT_OP_TYPE* sep = s0p + sn;
  653. while(s0p<sep)
  654. sum += *s0p++ * *s1p++;
  655. return sum;
  656. }
  657. #endif
  658. VECT_OP_TYPE VECT_OP_FUNC(MultSumVS)( const VECT_OP_TYPE* s0p, unsigned sn, VECT_OP_TYPE s1 )
  659. {
  660. VECT_OP_TYPE sum = 0;
  661. const VECT_OP_TYPE* sep = s0p + sn;
  662. while(s0p<sep)
  663. sum += *s0p++ * s1;
  664. return sum;
  665. }
  666. #ifdef CM_VECTOP
  667. VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  668. {
  669. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasNoTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
  670. return dbp;
  671. }
  672. #else
  673. VECT_OP_TYPE* VECT_OP_FUNC(MultVMV)( VECT_OP_TYPE* dbp, unsigned mrn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  674. {
  675. const VECT_OP_TYPE* dep = dbp + mrn;
  676. VECT_OP_TYPE* dp = dbp;
  677. const VECT_OP_TYPE* vep = vp + mcn;
  678. // for each dest element
  679. for(; dbp < dep; ++dbp )
  680. {
  681. const VECT_OP_TYPE* vbp = vp;
  682. const VECT_OP_TYPE* mbp = mp++;
  683. *dbp = 0;
  684. // for each source vector row and src mtx col
  685. while( vbp < vep )
  686. {
  687. *dbp += *mbp * *vbp++;
  688. mbp += mrn;
  689. }
  690. }
  691. return dp;
  692. }
  693. #endif
  694. #ifdef CM_VECTOP
  695. VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
  696. {
  697. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, vn, dn, 1.0, mp, vn, vp, 1, 0.0, dbp, 1 );
  698. return dbp;
  699. }
  700. #else
  701. VECT_OP_TYPE* VECT_OP_FUNC(MultVVM)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* vp, unsigned vn, const VECT_OP_TYPE* mp )
  702. {
  703. unsigned i;
  704. for(i=0; i<dn; ++i)
  705. dbp[i] = VECT_OP_FUNC(MultSumVV)(vp,mp + (i*vn),vn);
  706. return dbp;
  707. }
  708. #endif
  709. #ifdef CM_VECTOP
  710. VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
  711. {
  712. VECT_OP_BLAS_FUNC(gemv)( CblasColMajor, CblasTrans, mrn, mcn, 1.0, mp, mrn, vp, 1, 0.0, dbp, 1 );
  713. return dbp;
  714. }
  715. #else
  716. VECT_OP_TYPE* VECT_OP_FUNC(MultVMtV)( VECT_OP_TYPE* dbp, unsigned mcn, const VECT_OP_TYPE* mp, unsigned mrn, const VECT_OP_TYPE* vp )
  717. {
  718. const VECT_OP_TYPE* dep = dbp + mcn;
  719. VECT_OP_TYPE* dp = dbp;
  720. const VECT_OP_TYPE* vep = vp + mrn;
  721. // for each dest element
  722. for(; dbp < dep; ++dbp )
  723. {
  724. const VECT_OP_TYPE* vbp = vp;
  725. *dbp = 0;
  726. // for each source vector row and src mtx col
  727. while( vbp < vep )
  728. *dbp += *mp++ * *vbp++;
  729. }
  730. return dp;
  731. }
  732. #endif
  733. VECT_OP_TYPE* VECT_OP_FUNC(MultDiagVMV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* mp, unsigned mcn, const VECT_OP_TYPE* vp )
  734. {
  735. VECT_OP_TYPE* rp = dbp;
  736. const VECT_OP_TYPE* mep = mp + (dn*mcn);
  737. // for each dest element
  738. for(; mp < mep; mp += dn+1 )
  739. *dbp++ = *vp++ * *mp;
  740. return rp;
  741. }
  742. /*
  743. Fortran Doc: http://www.netlib.org/blas/cgemm.f
  744. C Doc: http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?cmd=getdoc&coll=0650&db=man&fname=3%20INTRO_CBLAS
  745. C = alpha * op(A) * op(B) + beta * C
  746. cblas_Xgemm(
  747. order, enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
  748. transposeA, enum CBLAS_TRANSPOSE { CblasNoTrans, CblasTrans, CBlasConjTrans }
  749. transposeB,
  750. M, row op(A) and rows C (i.e. rows of A 'after' optional transpose)
  751. N, col op(B) and cols C (i.e. rows of B 'after' optional transpose)
  752. K, col op(A) and rows op(B)
  753. alpha, A scalar
  754. A, pointer to source matrix A
  755. lda, number of rows in A as it is stored in memory (assuming col major order)
  756. B, pointer to source matrix B
  757. ldb, number of rows in B as it is stored in memory (assuming col major order)
  758. beta C scalar
  759. C, pointer to destination matrix C
  760. ldc number of rows in C as it is stored in memory (assuming col major order)
  761. )
  762. */
  763. #ifdef CM_VECTOP
  764. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM1)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags )
  765. {
  766. bool t0fl = cmIsFlag(flags,kTransposeM0Fl);
  767. bool t1fl = cmIsFlag(flags,kTransposeM1Fl);
  768. VECT_OP_BLAS_FUNC(gemm)(
  769. CblasColMajor,
  770. t0fl ? CblasTrans : CblasNoTrans,
  771. t1fl ? CblasTrans : CblasNoTrans,
  772. drn, dcn, n,
  773. alpha,
  774. m0, t0fl ? n : drn,
  775. m1, t1fl ? dcn : n,
  776. beta,
  777. dbp, drn );
  778. return dbp;
  779. }
  780. #else
  781. // Not implemented.
  782. #endif
  783. #ifdef CM_VECTOP
  784. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM2)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, VECT_OP_TYPE alpha, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n, VECT_OP_TYPE beta, unsigned flags, unsigned dprn, unsigned m0prn, unsigned m1prn )
  785. {
  786. VECT_OP_BLAS_FUNC(gemm)(
  787. CblasColMajor,
  788. cmIsFlag(flags,kTransposeM0Fl) ? CblasTrans : CblasNoTrans,
  789. cmIsFlag(flags,kTransposeM1Fl) ? CblasTrans : CblasNoTrans,
  790. drn, dcn, n,
  791. alpha,
  792. m0, m0prn,
  793. m1, m1prn,
  794. beta,
  795. dbp, dprn );
  796. return dbp;
  797. }
  798. #else
  799. // Not implemented.
  800. #endif
  801. #ifdef CM_VECTOP
  802. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned n )
  803. {
  804. VECT_OP_BLAS_FUNC(gemm)(
  805. CblasColMajor,
  806. CblasNoTrans, CblasNoTrans,
  807. drn, dcn, n,
  808. 1.0, m0, drn,
  809. m1, n,
  810. 0.0, dbp, drn );
  811. return dbp;
  812. }
  813. #else
  814. VECT_OP_TYPE* VECT_OP_FUNC(MultMMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  815. {
  816. unsigned i;
  817. for(i=0; i<dcn; ++i)
  818. VECT_OP_FUNC(MultVMV)(dbp+(i*drn),drn,m0,m0cn_m1rn,m1+(i*m0cn_m1rn));
  819. return dbp;
  820. }
  821. #endif
  822. #ifdef CM_VECTOP
  823. VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  824. {
  825. VECT_OP_BLAS_FUNC(gemm)( CblasColMajor, CblasNoTrans, CblasTrans,
  826. drn, dcn, m0cn_m1rn,
  827. 1.0, m0, drn,
  828. m1, dcn,
  829. 0.0, dbp, drn );
  830. return dbp;
  831. }
  832. #else
  833. VECT_OP_TYPE* VECT_OP_FUNC(MultMMMt)(VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* m0, const VECT_OP_TYPE* m1, unsigned m0cn_m1rn )
  834. {
  835. unsigned i,j,k;
  836. VECT_OP_FUNC(Zero)(dbp,drn*dcn);
  837. for(i=0; i<dcn; ++i)
  838. for(j=0; j<drn; ++j)
  839. for(k=0; k<m0cn_m1rn; ++k)
  840. dbp[ i*drn + j ] += m0[ k*drn + j ] * m1[ k*dcn + i ];
  841. return dbp;
  842. }
  843. #endif
  844. VECT_OP_TYPE* VECT_OP_FUNC(PowVS)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE expo )
  845. {
  846. VECT_OP_TYPE* dp = dbp;
  847. VECT_OP_TYPE* ep = dp + dn;
  848. for(; dp < ep; ++dp )
  849. *dp = (VECT_OP_TYPE)pow(*dp,expo);
  850. return dbp;
  851. }
  852. VECT_OP_TYPE* VECT_OP_FUNC(PowVVS)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE expo )
  853. {
  854. VECT_OP_TYPE* dp = dbp;
  855. VECT_OP_TYPE* ep = dp + dn;
  856. for(; dp < ep; ++dp,++sp )
  857. *dp = (VECT_OP_TYPE)pow(*sp,expo);
  858. return dbp;
  859. }
  860. VECT_OP_TYPE* VECT_OP_FUNC(LogV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp )
  861. {
  862. VECT_OP_TYPE* dp = dbp;
  863. VECT_OP_TYPE* ep = dp + dn;
  864. for(; dp <ep; ++dp,++sbp)
  865. *dp = (VECT_OP_TYPE)log(*sbp);
  866. return dbp;
  867. }
  868. VECT_OP_TYPE* VECT_OP_FUNC(RandSymPosDef)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE* t )
  869. {
  870. unsigned i,j;
  871. bool fl = t == NULL;
  872. if( fl )
  873. t = cmMemAlloc( VECT_OP_TYPE , dn*dn );
  874. do
  875. {
  876. // intialize t[] as a square symetric matrix with random values
  877. for(i=0; i<dn; ++i)
  878. for(j=i; j<dn; ++j)
  879. {
  880. VECT_OP_TYPE v = (VECT_OP_TYPE)rand()/RAND_MAX;
  881. t[ (i*dn) + j ] = v;
  882. if( i != j )
  883. t[ (j*dn) + i ] = v;
  884. }
  885. // square t[] to force the eigenvalues to be positive
  886. VECT_OP_FUNC(MultMMM)(dbp,dn,dn,t,t,dn);
  887. VECT_OP_FUNC(Copy)(t,dn*dn,dbp);
  888. // test that func is positive definite
  889. }while( VECT_OP_FUNC(Chol)(t,dn)==NULL );
  890. if( fl )
  891. cmMemFree(t);
  892. return dbp;
  893. }
  894. // Calculate the determinant of a matrix previously factored by
  895. // the lapack function dgetrf_()
  896. VECT_OP_TYPE VECT_OP_FUNC(LUDet)( const VECT_OP_TYPE* lu, const int_lap_t* ipiv, int rn )
  897. {
  898. VECT_OP_TYPE det1 = 1;
  899. int det2 = 0;
  900. int i;
  901. for(i=0; i<rn; ++i)
  902. {
  903. if( ipiv != NULL && ipiv[i] != (i+1) )
  904. det1 = -det1;
  905. det1 = lu[ (i*rn) + i ] * det1;
  906. if( det1 == 0 )
  907. break;
  908. while( fabs(det1) <= 1 )
  909. {
  910. det1 *= 10;
  911. det2 -= 1;
  912. }
  913. //continue;
  914. while( fabs(det1) >= 10 )
  915. {
  916. det1 /= 10;
  917. det2 += 1;
  918. }
  919. }
  920. // Here's where underflow or overflow might happen.
  921. // Enable floating point exception handling to trap.
  922. det1 *= pow(10.0,det2);
  923. return det1;
  924. }
  925. // take the inverse of a matrix factored via lapack dgetrf_()
  926. VECT_OP_TYPE* VECT_OP_FUNC(LUInverse)(VECT_OP_TYPE* dp, int_lap_t* ipiv, int drn )
  927. {
  928. int_lap_t ispec = 1;
  929. int_lap_t rn = drn;
  930. int_lap_t n1 = drn;
  931. int_lap_t n2 = drn;
  932. int_lap_t n3 = drn;
  933. int_lap_t n4 = drn;
  934. char funcNameStr[] = {"DGETRI"};
  935. // Calculate the NB factor for LWORK -
  936. // The two args are length of string args 'funcNameStr' and ' '.
  937. // It is not clear how many 'n' args are requred so all are passed set to 'drn'
  938. #ifdef OS_OSX
  939. int nb = ilaenv_(&ispec, funcNameStr, " ", &n1,&n2,&n3,&n4 );
  940. #else
  941. int nb = ilaenv_(&ispec, funcNameStr, " ", &n1,&n2,&n3,&n4, strlen(funcNameStr), 1 );
  942. #endif
  943. VECT_OP_TYPE w[drn * nb]; // allocate working memory
  944. int_lap_t info;
  945. // calculate inv(A) base on LU factorization
  946. VECT_OP_LAP_FUNC(getri_)(&rn,dp,&rn,ipiv,w,&rn,&info);
  947. assert(info==0);
  948. return info ==0 ? dp : NULL;
  949. }
  950. VECT_OP_TYPE VECT_OP_FUNC(DetM)( const VECT_OP_TYPE* sp, unsigned srn )
  951. {
  952. int_lap_t arn = srn;
  953. VECT_OP_TYPE A[ arn * arn ];
  954. int_lap_t ipiv[ arn ];
  955. int_lap_t info;
  956. VECT_OP_FUNC(Copy)(A,arn*arn,sp);
  957. // PLU factor
  958. VECT_OP_LAP_FUNC(getrf_)(&arn,&arn,A,&arn,ipiv,&info);
  959. if( info == 0 )
  960. return VECT_OP_FUNC(LUDet)(A,ipiv,arn);
  961. return 0;
  962. }
  963. VECT_OP_TYPE VECT_OP_FUNC(DetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
  964. { return VECT_OP_FUNC(LUDet)(sp,NULL,srn); }
  965. VECT_OP_TYPE VECT_OP_FUNC(LogDetM)( const VECT_OP_TYPE* sp, unsigned srn )
  966. {
  967. cmReal_t det = 0;
  968. unsigned ne2 = srn * srn;
  969. VECT_OP_TYPE U[ne2];
  970. const VECT_OP_TYPE* up = U;
  971. const VECT_OP_TYPE* ep = up + ne2;
  972. VECT_OP_FUNC(Copy)(U,ne2,sp);
  973. VECT_OP_FUNC(Chol)(U,srn);
  974. for(; up<ep; up += (srn+1) )
  975. det += log(*up);
  976. return 2*det;
  977. }
  978. VECT_OP_TYPE VECT_OP_FUNC(LogDetDiagM)( const VECT_OP_TYPE* sp, unsigned srn )
  979. { return log(VECT_OP_FUNC(DetDiagM)(sp,srn)); }
  980. VECT_OP_TYPE* VECT_OP_FUNC(InvM)( VECT_OP_TYPE* dp, unsigned drn )
  981. {
  982. int_lap_t rn = drn;
  983. int_lap_t ipiv[ rn ];
  984. int_lap_t info;
  985. // PLU factor
  986. VECT_OP_LAP_FUNC(getrf_)(&rn,&rn,dp,&rn,ipiv,&info);
  987. if( info == 0 )
  988. return VECT_OP_FUNC(LUInverse)(dp,ipiv,rn );
  989. return NULL;
  990. }
  991. VECT_OP_TYPE* VECT_OP_FUNC(InvDiagM)( VECT_OP_TYPE* dp, unsigned drn )
  992. {
  993. const VECT_OP_TYPE* dep = dp + (drn*drn);
  994. VECT_OP_TYPE* rp = dp;
  995. for(; dp < dep; dp += drn+1 )
  996. {
  997. *dp = 1.0 / *dp;
  998. // if any element on the diagonal is zero then the
  999. // determinant is zero and the matrix is not invertable
  1000. if( *dp == 0 )
  1001. break;
  1002. }
  1003. return dp < dep ? NULL : rp;
  1004. }
  1005. VECT_OP_TYPE* VECT_OP_FUNC(SolveLS)( VECT_OP_TYPE* A, unsigned an, VECT_OP_TYPE* B, unsigned bcn )
  1006. {
  1007. int_lap_t aN = an;
  1008. int_lap_t bcN = bcn;
  1009. int_lap_t ipiv[ an ];
  1010. int_lap_t info = 0;
  1011. VECT_OP_LAP_FUNC(gesv_)(&aN,&bcN,(VECT_OP_TYPE*)A,&aN,ipiv,B,&aN,&info);
  1012. return info == 0 ? B : NULL;
  1013. }
  1014. VECT_OP_TYPE* VECT_OP_FUNC(Chol)(VECT_OP_TYPE* A, unsigned an )
  1015. {
  1016. char uplo = 'U';
  1017. int_lap_t N = an;
  1018. int_lap_t lda = an;
  1019. int_lap_t info = 0;
  1020. VECT_OP_LAP_FUNC(potrf_(&uplo,&N,(VECT_OP_TYPE*)A,&lda,&info));
  1021. return info == 0 ? A : NULL;
  1022. }
  1023. VECT_OP_TYPE* VECT_OP_FUNC(CholZ)(VECT_OP_TYPE* A, unsigned an )
  1024. {
  1025. unsigned i,j;
  1026. VECT_OP_FUNC(Chol)(A,an);
  1027. // zero the lower triangle of A
  1028. for(i=0; i<an; ++i)
  1029. for(j=i+1; j<an; ++j)
  1030. A[ (i*an) + j ] = 0;
  1031. return A;
  1032. }
  1033. void VECT_OP_FUNC(Lsq1)(const VECT_OP_TYPE* x, const VECT_OP_TYPE* y, unsigned n, VECT_OP_TYPE* b0, VECT_OP_TYPE* b1 )
  1034. {
  1035. VECT_OP_TYPE sx = 0;
  1036. VECT_OP_TYPE sy = 0;
  1037. VECT_OP_TYPE sx_2 = 0;
  1038. VECT_OP_TYPE sxy = 0;
  1039. unsigned i;
  1040. if( x == NULL )
  1041. {
  1042. for(i=0; i<n; ++i)
  1043. {
  1044. VECT_OP_TYPE xx = i;
  1045. sx += xx;
  1046. sx_2 += xx * xx;
  1047. sxy += xx * y[i];
  1048. sy += y[i];
  1049. }
  1050. }
  1051. else
  1052. {
  1053. for(i=0; i<n; ++i)
  1054. {
  1055. sx += x[i];
  1056. sx_2 += x[i] * x[i];
  1057. sxy += x[i] * y[i];
  1058. sy += y[i];
  1059. }
  1060. }
  1061. *b1 = (sxy * n - sx * sy) / (sx_2 * n - sx*sx);
  1062. *b0 = (sy - (*b1) * sx) / n;
  1063. }
  1064. VECT_OP_TYPE VECT_OP_FUNC(FracAvg)( double bi, double ei, const VECT_OP_TYPE* sbp, unsigned sn )
  1065. {
  1066. unsigned bii = cmMax(0,cmMin(sn-1,(unsigned)ceil(bi)));
  1067. unsigned eii = cmMax(0,cmMin(sn,(unsigned)floor(ei)+1));
  1068. double begW = bii - bi;
  1069. double endW = eii - floor(ei);
  1070. double cnt = eii - bii;
  1071. double sum = (double)VECT_OP_FUNC(Sum)(sbp+bii,eii-bii);
  1072. if( begW>0 && bii > 0 )
  1073. {
  1074. cnt += begW;
  1075. sum += begW * sbp[ bii-1 ];
  1076. }
  1077. if( endW>0 && eii+1 < sn )
  1078. {
  1079. cnt += endW;
  1080. sum += endW * sbp[ eii+1 ];
  1081. }
  1082. return (VECT_OP_TYPE)(sum / cnt);
  1083. }
  1084. VECT_OP_TYPE* VECT_OP_FUNC(DownSampleAvg)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1085. {
  1086. const VECT_OP_TYPE* dep = dbp + dn;
  1087. VECT_OP_TYPE* rp = dbp;
  1088. unsigned i = 0;
  1089. double fact = (double)sn / dn;
  1090. assert( sn >= dn );
  1091. for(i=0; dbp < dep; ++i )
  1092. *dbp++ = VECT_OP_FUNC(FracAvg)( fact*i, fact*(i+1), sbp, sn );
  1093. return rp;
  1094. }
  1095. VECT_OP_TYPE* VECT_OP_FUNC(UpSampleInterp)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1096. {
  1097. const VECT_OP_TYPE* dep = dbp + dn;
  1098. const VECT_OP_TYPE* sep = sbp + sn;
  1099. VECT_OP_TYPE* rp = dbp;
  1100. double fact = (double)sn / dn;
  1101. double phs = 0;
  1102. assert( sn <= dn );
  1103. while( dbp<dep )
  1104. {
  1105. if( sbp < sep )
  1106. *dbp++ = (VECT_OP_TYPE)((*sbp) + (phs * ((*(sbp+1)) - (*sbp))));
  1107. else
  1108. *dbp++ = (*(sep-1));
  1109. phs += fact;
  1110. while( phs > 1.0 )
  1111. {
  1112. phs -= 1.0;
  1113. sbp++;
  1114. }
  1115. }
  1116. return rp;
  1117. }
  1118. VECT_OP_TYPE* VECT_OP_FUNC(FitToSize)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn )
  1119. {
  1120. if( dn == sn )
  1121. return VECT_OP_FUNC(Copy)(dbp,dn,sbp);
  1122. if( dn < sn )
  1123. return VECT_OP_FUNC(DownSampleAvg)(dbp,dn,sbp,sn);
  1124. return VECT_OP_FUNC(UpSampleInterp)(dbp,dn,sbp,sn);
  1125. }
  1126. VECT_OP_TYPE* VECT_OP_FUNC(LinearMap)(VECT_OP_TYPE* dV, unsigned dn, VECT_OP_TYPE* sV, unsigned sn )
  1127. {
  1128. if( dn == sn )
  1129. {
  1130. memcpy(dV,sV,dn*sizeof(VECT_OP_TYPE));
  1131. return dV;
  1132. }
  1133. unsigned i,j,k;
  1134. // if stretching
  1135. if( dn > sn )
  1136. {
  1137. VECT_OP_TYPE f_n = (VECT_OP_TYPE)dn/sn;
  1138. VECT_OP_TYPE f_nn = f_n;
  1139. unsigned i_n = floor(f_n);
  1140. k = 0;
  1141. i = 0;
  1142. // for each set of ceiling(dn/sn) dst values
  1143. while(1)
  1144. {
  1145. // repeat floor(dn/sn) src val into dst
  1146. for(j=0; j<i_n; ++j,++i)
  1147. dV[i] = sV[k];
  1148. if( k + 1 == sn )
  1149. break;
  1150. // interpolate between the cur and nxt source value
  1151. VECT_OP_TYPE w = f_nn - floor(f_nn);
  1152. dV[i] = sV[k] + w * (sV[k+1]-sV[k]);
  1153. ++i;
  1154. ++k;
  1155. i_n = floor(f_n - (1.0-w));
  1156. f_nn += f_n;
  1157. }
  1158. }
  1159. else // if shrinking
  1160. {
  1161. VECT_OP_TYPE f_n = (VECT_OP_TYPE)sn/dn;
  1162. VECT_OP_TYPE f_nn = f_n;
  1163. unsigned i_n = floor(f_n);
  1164. k = 0;
  1165. i = 0;
  1166. VECT_OP_TYPE acc = 0;
  1167. // for each seq of ceil(sn/dn) src values
  1168. while(1)
  1169. {
  1170. // accum first floor(sn/dn) src values
  1171. for(j=0; j<i_n; ++j,++i)
  1172. acc += sV[i];
  1173. if( k == dn-1 )
  1174. {
  1175. dV[k] = acc/f_n;
  1176. break;
  1177. }
  1178. // interpolate frac of last src value
  1179. VECT_OP_TYPE w = f_nn - floor(f_nn);
  1180. // form avg
  1181. dV[k] = (acc + (w*sV[i]))/f_n;
  1182. // reload acc with inverse frac of src value
  1183. acc = (1.0-w) * sV[i];
  1184. ++i;
  1185. ++k;
  1186. i_n = floor(f_n-(1.0-w));
  1187. f_nn += f_n;
  1188. }
  1189. }
  1190. return dV;
  1191. }
  1192. VECT_OP_TYPE* VECT_OP_FUNC(Random)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE minVal, VECT_OP_TYPE maxVal )
  1193. {
  1194. const VECT_OP_TYPE* dep = dbp + dn;
  1195. VECT_OP_TYPE* dp =dbp;
  1196. double fact = (maxVal - minVal)/RAND_MAX;
  1197. while( dbp < dep )
  1198. *dbp++ = fact * rand() + minVal;
  1199. return dp;
  1200. }
  1201. unsigned* VECT_OP_FUNC(WeightedRandInt)( unsigned *dbp, unsigned dn, const VECT_OP_TYPE* wp, unsigned wn )
  1202. {
  1203. unsigned i,j;
  1204. VECT_OP_TYPE a[ wn ];
  1205. // form bin boundaries by taking a cum. sum of the weight values.
  1206. VECT_OP_FUNC(CumSum)(a,wn,wp);
  1207. for(j=0; j<dn; ++j)
  1208. {
  1209. // gen a random number from a uniform distribution betwen 0 and the max value from the cumsum.
  1210. VECT_OP_TYPE rv = (VECT_OP_TYPE)rand() * a[wn-1] / RAND_MAX;
  1211. // find the bin the rv falls into
  1212. for(i=0; i<wn-1; ++i)
  1213. if( rv <= a[i] )
  1214. {
  1215. dbp[j] = i;
  1216. break;
  1217. }
  1218. if(i==wn-1)
  1219. dbp[j]= wn-1;
  1220. }
  1221. return dbp;
  1222. }
  1223. VECT_OP_TYPE* VECT_OP_FUNC(RandomGauss)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE mean, VECT_OP_TYPE var )
  1224. {
  1225. const VECT_OP_TYPE* dep = dbp + dn;
  1226. VECT_OP_TYPE* rp = dbp;
  1227. // The code below implements the Box-Muller uniform to
  1228. // Gaussian distribution transformation. In rectangular
  1229. // coordinates this transform is defined as:
  1230. // y1 = sqrt( - 2.0 * log(x1) ) * cos( 2.0*M_PI*x2 )
  1231. // y2 = sqrt( - 2.0 * log(x1) ) * sin( 2.0*M_PI*x2 )
  1232. //
  1233. while( dbp < dep )
  1234. *dbp++ = sqrt( -2.0 * log((VECT_OP_TYPE)rand()/RAND_MAX)) * cos(2.0*M_PI*((VECT_OP_TYPE)rand()/RAND_MAX)) * var + mean;
  1235. return rp;
  1236. }
  1237. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
  1238. {
  1239. VECT_OP_TYPE* rp = dbp;
  1240. const VECT_OP_TYPE* dep = dbp + dn;
  1241. while( dbp < dep )
  1242. VECT_OP_FUNC(RandomGauss)( dbp++, 1, *meanV++, *varV++ );
  1243. return rp;
  1244. }
  1245. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussM)( VECT_OP_TYPE* dbp, unsigned rn, unsigned cn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* varV )
  1246. {
  1247. unsigned i;
  1248. for(i=0; i<cn; ++i)
  1249. VECT_OP_FUNC(RandomGaussV)( dbp+(i*rn), rn, meanV, varV );
  1250. return dbp;
  1251. }
  1252. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM )
  1253. {
  1254. unsigned i,j;
  1255. for(i=0; i<dcn; ++i)
  1256. for(j=0; j<drn; ++j)
  1257. VECT_OP_FUNC(RandomGauss)(dbp + (i*drn)+j, 1, meanV[j], covarM[ (j*drn) + j]);
  1258. return dbp;
  1259. }
  1260. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, VECT_OP_TYPE* t )
  1261. {
  1262. bool fl = t == NULL;
  1263. if( fl )
  1264. t = cmMemAlloc(VECT_OP_TYPE, drn * drn );
  1265. VECT_OP_FUNC(Copy)(t,drn*drn,covarM);
  1266. if( VECT_OP_FUNC(CholZ)(t,drn) == NULL )
  1267. {
  1268. // Cholesky decomposition failed - should try eigen analysis next
  1269. // From octave mvnrnd.m
  1270. // [E,Lambda]=eig(Sigma);
  1271. // if (min(diag(Lambda))<0),error('Sigma must be positive semi-definite.'),end
  1272. // U = sqrt(Lambda)*E';
  1273. assert(0);
  1274. }
  1275. /*
  1276. unsigned i,j;
  1277. for(i=0; i<drn; ++i)
  1278. {
  1279. for(j=0; j<drn; ++j)
  1280. printf("%f ",t[ (j*drn) + i]);
  1281. printf("\n");
  1282. }
  1283. */
  1284. VECT_OP_FUNC(RandomGaussNonDiagM2)(dbp,drn,dcn,meanV,t);
  1285. if(fl)
  1286. cmMemFree(t);
  1287. return dbp;
  1288. }
  1289. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussNonDiagM2)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* uM )
  1290. {
  1291. unsigned i;
  1292. for(i=0; i<dcn; ++i)
  1293. {
  1294. VECT_OP_TYPE r[ drn ];
  1295. VECT_OP_FUNC(RandomGauss)(r,drn,0,1); // r = randn(drn,1);
  1296. VECT_OP_FUNC(MultVVM)( dbp+(i*drn),drn,r,drn,uM); // dbp[:i] = r * uM;
  1297. VECT_OP_FUNC(AddVV)( dbp+(i*drn),drn,meanV); // dbp[:,i] += meanV;
  1298. }
  1299. return dbp;
  1300. }
  1301. VECT_OP_TYPE* VECT_OP_FUNC(RandomGaussMM)( VECT_OP_TYPE* dbp, unsigned drn, unsigned dcn, const VECT_OP_TYPE* meanM, const VECT_OP_TYPE* varM, unsigned K )
  1302. {
  1303. unsigned k;
  1304. unsigned D = drn;
  1305. unsigned N = dcn/K;
  1306. for(k=0; k<K; ++k)
  1307. VECT_OP_FUNC(RandomGaussM)( dbp + (k*N*D), drn, N, meanM + (k*D), varM + (k*D) );
  1308. return dbp;
  1309. }
  1310. VECT_OP_TYPE* VECT_OP_FUNC(GaussPDF)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE mean, VECT_OP_TYPE stdDev )
  1311. {
  1312. VECT_OP_TYPE* rp = dbp;
  1313. const VECT_OP_TYPE* dep = dbp + dn;
  1314. VECT_OP_TYPE var = stdDev * stdDev;
  1315. VECT_OP_TYPE fact0 = 1.0/sqrt(2*M_PI*var);
  1316. VECT_OP_TYPE fact1 = 2.0 * var;
  1317. for(; dbp < dep; ++sbp )
  1318. *dbp++ = fact0 * exp( -((*sbp-mean)*(*sbp-mean))/ fact1 );
  1319. return rp;
  1320. }
  1321. /// Evaluate a multivariate normal distribution defined by meanV[D] and covarM[D,D]
  1322. /// at the data points held in the columns of xM[D,N]. Return the evaluation
  1323. /// results in the vector yV[N].
  1324. bool VECT_OP_FUNC(MultVarGaussPDF)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* covarM, unsigned D, unsigned N, bool diagFl )
  1325. {
  1326. VECT_OP_TYPE det0;
  1327. // calc the determinant of the covariance matrix
  1328. if( diagFl )
  1329. // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetDiagM)(covarM,D);
  1330. det0 = VECT_OP_FUNC(DetDiagM)(covarM,D);
  1331. else
  1332. // kpl 1/16/11 det0 = VECT_OP_FUNC(LogDetM)(covarM,D);
  1333. det0 = VECT_OP_FUNC(DetM)(covarM,D);
  1334. assert(det0 != 0 );
  1335. if( det0 == 0 )
  1336. return false;
  1337. // calc the inverse of the covariance matrix
  1338. VECT_OP_TYPE icM[D*D];
  1339. VECT_OP_FUNC(Copy)(icM,D*D,covarM);
  1340. VECT_OP_TYPE* r;
  1341. if( diagFl )
  1342. r = VECT_OP_FUNC(InvDiagM)(icM,D);
  1343. else
  1344. r = VECT_OP_FUNC(InvM)(icM,D);
  1345. if( r == NULL )
  1346. return false;
  1347. VECT_OP_FUNC(MultVarGaussPDF2)( yV, xM, meanV, icM, det0, D, N, diagFl );
  1348. return true;
  1349. }
  1350. VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF2)( VECT_OP_TYPE* yV, const VECT_OP_TYPE* xM, const VECT_OP_TYPE* meanV, const VECT_OP_TYPE* icM, VECT_OP_TYPE logDet, unsigned D, unsigned N, bool diagFl )
  1351. {
  1352. unsigned i;
  1353. double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
  1354. for(i=0; i<N; ++i)
  1355. {
  1356. VECT_OP_TYPE dx[D];
  1357. VECT_OP_TYPE t[D];
  1358. // dx[] difference between mean and ith data point
  1359. VECT_OP_FUNC(SubVVV)(dx,D, xM + (i*D), meanV);
  1360. // t[] = dx[] * inv(covarM);
  1361. if( diagFl )
  1362. VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
  1363. else
  1364. VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
  1365. // dist = sum(dx[] * t[])
  1366. cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
  1367. yV[i] = exp( fact - (0.5*dist) );
  1368. }
  1369. return yV;
  1370. }
  1371. VECT_OP_TYPE* VECT_OP_FUNC(MultVarGaussPDF3)(
  1372. VECT_OP_TYPE* yV,
  1373. const VECT_OP_TYPE* (*srcFunc)(void* funcDataPtr, unsigned frmIdx ),
  1374. void* funcDataPtr,
  1375. const VECT_OP_TYPE* meanV,
  1376. const VECT_OP_TYPE* icM,
  1377. VECT_OP_TYPE logDet,
  1378. unsigned D,
  1379. unsigned N,
  1380. bool diagFl )
  1381. {
  1382. unsigned i;
  1383. double fact = (-(cmReal_t)D/2) * log(2.0*M_PI) - 0.5*logDet;
  1384. for(i=0; i<N; ++i)
  1385. {
  1386. VECT_OP_TYPE dx[D];
  1387. VECT_OP_TYPE t[D];
  1388. const VECT_OP_TYPE* xV = srcFunc( funcDataPtr, i );
  1389. if( xV == NULL )
  1390. yV[i] = 0;
  1391. else
  1392. {
  1393. // dx[] difference between mean and ith data point
  1394. VECT_OP_FUNC(SubVVV)(dx, D, xV, meanV);
  1395. // t[] = dx[] * inv(covarM);
  1396. if( diagFl )
  1397. VECT_OP_FUNC(MultDiagVMV)(t,D,icM,D,dx);
  1398. else
  1399. VECT_OP_FUNC(MultVMV)(t,D,icM,D,dx);
  1400. // dist = sum(dx[] * t[])
  1401. cmReal_t dist = VECT_OP_FUNC(MultSumVV)(t,dx,D);
  1402. yV[i] = exp( fact - (0.5*dist) );
  1403. }
  1404. }
  1405. return yV;
  1406. }
  1407. unsigned VECT_OP_FUNC(SynthSine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1408. {
  1409. const VECT_OP_TYPE* dep = dbp + dn;
  1410. double rps = 2.0*M_PI*hz/srate;
  1411. while( dbp < dep )
  1412. *dbp++ = (VECT_OP_TYPE)sin( rps * phase++ );
  1413. return phase;
  1414. }
  1415. unsigned VECT_OP_FUNC(SynthCosine)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1416. {
  1417. const VECT_OP_TYPE* dep = dbp + dn;
  1418. double rps = 2.0*M_PI*hz/srate;
  1419. while( dbp < dep )
  1420. *dbp++ = (VECT_OP_TYPE)cos( rps * phase++ );
  1421. return phase;
  1422. }
  1423. unsigned VECT_OP_FUNC(SynthSquare)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1424. {
  1425. const VECT_OP_TYPE* dep = dbp + dn;
  1426. if( otCnt > 0 )
  1427. {
  1428. unsigned i;
  1429. // initialize the buffer with the fundamental
  1430. VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
  1431. otCnt *= 2;
  1432. // sum in each additional harmonic
  1433. for(i=3; i<otCnt; i+=2)
  1434. {
  1435. VECT_OP_TYPE* dp = dbp;
  1436. double rps = 2.0 * M_PI * i * hz / srate;
  1437. unsigned phs = phase;
  1438. double g = 1.0/i;
  1439. while( dp < dep )
  1440. *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
  1441. }
  1442. }
  1443. return phase + (dep - dbp);
  1444. }
  1445. unsigned VECT_OP_FUNC(SynthTriangle)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1446. {
  1447. const VECT_OP_TYPE* dep = dbp + dn;
  1448. if( otCnt > 0 )
  1449. {
  1450. unsigned i;
  1451. // initialize the buffer with the fundamental
  1452. VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
  1453. otCnt *= 2;
  1454. // sum in each additional harmonic
  1455. for(i=3; i<otCnt; i+=2)
  1456. {
  1457. VECT_OP_TYPE* dp = dbp;
  1458. double rps = 2.0 * M_PI * i * hz / srate;
  1459. unsigned phs = phase;
  1460. double g = 1.0/(i*i);
  1461. while( dp < dep )
  1462. *dp++ += (VECT_OP_TYPE)(g * cos( rps * phs++ ));
  1463. }
  1464. }
  1465. return phase + (dep - dbp);
  1466. }
  1467. unsigned VECT_OP_FUNC(SynthSawtooth)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1468. {
  1469. const VECT_OP_TYPE* dep = dbp + dn;
  1470. if( otCnt > 0 )
  1471. {
  1472. unsigned i;
  1473. // initialize the buffer with the fundamental
  1474. VECT_OP_FUNC(SynthSine)( dbp, dn, phase, srate, hz );
  1475. // sum in each additional harmonic
  1476. for(i=2; i<otCnt; ++i)
  1477. {
  1478. VECT_OP_TYPE* dp = dbp;
  1479. double rps = 2.0 * M_PI * i * hz / srate;
  1480. unsigned phs = phase;
  1481. double g = 1.0/i;
  1482. while( dp < dep )
  1483. *dp++ += (VECT_OP_TYPE)(g * sin( rps * phs++ ));
  1484. }
  1485. VECT_OP_FUNC(MultVS)(dbp,dn,2.0/M_PI);
  1486. }
  1487. return phase + (dep - dbp);
  1488. }
  1489. unsigned VECT_OP_FUNC(SynthPulseCos)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz, unsigned otCnt )
  1490. {
  1491. const VECT_OP_TYPE* dep = dbp + dn;
  1492. if( otCnt > 0 )
  1493. {
  1494. unsigned i;
  1495. // initialize the buffer with the fundamental
  1496. VECT_OP_FUNC(SynthCosine)( dbp, dn, phase, srate, hz );
  1497. // sum in each additional harmonic
  1498. for(i=1; i<otCnt; ++i)
  1499. {
  1500. VECT_OP_TYPE* dp = dbp;
  1501. double rps = 2.0 * M_PI * i * hz / srate;
  1502. unsigned phs = phase;
  1503. while( dp < dep )
  1504. *dp++ += (VECT_OP_TYPE)cos( rps * phs++ );
  1505. }
  1506. VECT_OP_FUNC(MultVS)(dbp,dn,1.0/otCnt);
  1507. }
  1508. return phase + (dep - dbp);
  1509. }
  1510. unsigned VECT_OP_FUNC(SynthImpulse)( VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1511. {
  1512. VECT_OP_FUNC(Zero)(dbp,dn);
  1513. unsigned i=0;
  1514. unsigned j=dn;
  1515. while(1)
  1516. {
  1517. //double samplesPerCycle = srate / hz;
  1518. j = round( (srate * i + phase) / hz);
  1519. if( j >= dn )
  1520. break;
  1521. dbp[j] = 1;
  1522. ++i;
  1523. }
  1524. // Note that returning an integer value here loses precision
  1525. // since j was rounded to the nearest integer.
  1526. return j - dn;
  1527. }
  1528. VECT_OP_TYPE VECT_OP_FUNC(SynthPinkNoise)( VECT_OP_TYPE* dbp, unsigned n, VECT_OP_TYPE delaySmp )
  1529. {
  1530. const VECT_OP_TYPE* dep = dbp + n;
  1531. VECT_OP_TYPE tmp[ n ];
  1532. VECT_OP_FUNC(Random)(tmp,n,-1.0,1.0);
  1533. VECT_OP_TYPE* sp = tmp;
  1534. VECT_OP_TYPE reg = delaySmp;
  1535. for(; dbp < dep; ++sp)
  1536. {
  1537. *dbp++ = (*sp + reg)/2.0;
  1538. reg = *sp;
  1539. }
  1540. return *sp;
  1541. }
  1542. VECT_OP_TYPE* VECT_OP_FUNC(AmplToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
  1543. {
  1544. VECT_OP_TYPE minVal = pow(10.0,minDb/20.0);
  1545. VECT_OP_TYPE* dp = dbp;
  1546. VECT_OP_TYPE* ep = dp + dn;
  1547. for(; dp<ep; ++dp,++sbp)
  1548. *dp = *sbp<minVal ? minDb : 20.0 * log10(*sbp);
  1549. return dbp;
  1550. }
  1551. VECT_OP_TYPE* VECT_OP_FUNC(DbToAmplVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  1552. {
  1553. VECT_OP_TYPE* dp = dbp;
  1554. VECT_OP_TYPE* ep = dp + dn;
  1555. for(; dp<ep; ++dp,++sbp)
  1556. *dp = pow(10.0,*sbp/20.0);
  1557. return dbp;
  1558. }
  1559. VECT_OP_TYPE* VECT_OP_FUNC(PowToDbVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp, VECT_OP_TYPE minDb )
  1560. {
  1561. VECT_OP_TYPE minVal = pow(10.0,minDb/10.0);
  1562. VECT_OP_TYPE* dp = dbp;
  1563. VECT_OP_TYPE* ep = dp + dn;
  1564. for(; dp<ep; ++dp,++sbp)
  1565. *dp = *sbp<minVal ? minDb : 10.0 * log10(*sbp);
  1566. return dbp;
  1567. }
  1568. VECT_OP_TYPE* VECT_OP_FUNC(DbToPowVV)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sbp)
  1569. {
  1570. VECT_OP_TYPE* dp = dbp;
  1571. VECT_OP_TYPE* ep = dp + dn;
  1572. for(; dp<ep; ++dp,++sbp)
  1573. *dp = pow(10.0,*sbp/10.0);
  1574. return dbp;
  1575. }
  1576. VECT_OP_TYPE* VECT_OP_FUNC(LinearToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
  1577. {
  1578. const VECT_OP_TYPE* dep = dbp + dn;
  1579. VECT_OP_TYPE* rp = dbp;
  1580. while( dbp < dep )
  1581. *dbp++ = (VECT_OP_TYPE)(mult * log10( VECT_OP_EPSILON + *sp++ ));
  1582. return rp;
  1583. }
  1584. VECT_OP_TYPE* VECT_OP_FUNC(dBToLinear)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp, VECT_OP_TYPE mult )
  1585. {
  1586. const VECT_OP_TYPE* dep = dbp + dn;
  1587. VECT_OP_TYPE* rp = dbp;
  1588. while( dbp < dep )
  1589. *dbp++ = (VECT_OP_TYPE)pow(10.0, *sp++ / mult );
  1590. return rp;
  1591. }
  1592. VECT_OP_TYPE* VECT_OP_FUNC(AmplitudeToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1593. { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,20.0); }
  1594. VECT_OP_TYPE* VECT_OP_FUNC(PowerToDb)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1595. { return VECT_OP_FUNC(LinearToDb)(dbp,dn,sp,10.0); }
  1596. VECT_OP_TYPE* VECT_OP_FUNC(dBToAmplitude)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1597. { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,20); }
  1598. VECT_OP_TYPE* VECT_OP_FUNC(dBToPower)( VECT_OP_TYPE* dbp, unsigned dn, const VECT_OP_TYPE* sp )
  1599. { return VECT_OP_FUNC(dBToLinear)( dbp,dn,sp,10); }
  1600. unsigned VECT_OP_FUNC(SynthPhasor)(VECT_OP_TYPE* dbp, unsigned dn, unsigned phase, double srate, double hz )
  1601. {
  1602. const VECT_OP_TYPE* dep = dbp + dn;
  1603. while( dbp < dep )
  1604. *dbp++ = (VECT_OP_TYPE)fmod( (hz * phase++)/srate, 1.0 );
  1605. return phase;
  1606. }
  1607. VECT_OP_TYPE VECT_OP_FUNC(KaiserBetaFromSidelobeReject)( double sidelobeRejectDb )
  1608. {
  1609. double beta;
  1610. if( sidelobeRejectDb < 13.26 )
  1611. sidelobeRejectDb = 13.26;
  1612. else
  1613. if( sidelobeRejectDb > 120.0)
  1614. sidelobeRejectDb = 120.0;
  1615. if( sidelobeRejectDb < 60.0 )
  1616. beta = (0.76609 * pow(sidelobeRejectDb - 13.26,0.4)) + (0.09834*(sidelobeRejectDb-13.26));
  1617. else
  1618. beta = 0.12438 * (sidelobeRejectDb + 6.3);
  1619. return (VECT_OP_TYPE)beta;
  1620. }
  1621. VECT_OP_TYPE VECT_OP_FUNC(KaiserFreqResolutionFactor)( double sidelobeRejectDb )
  1622. { return (6.0 * (sidelobeRejectDb + 12.0))/155.0; }
  1623. VECT_OP_TYPE* VECT_OP_FUNC(Kaiser)( VECT_OP_TYPE* dbp, unsigned n, double beta )
  1624. {
  1625. bool zeroFl = false;
  1626. int M = 0;
  1627. double den = cmBessel0(beta); // wnd func denominator
  1628. int cnt = n;
  1629. int i;
  1630. assert( n >= 3 );
  1631. // force ele cnt to be odd
  1632. if( cmIsEvenU(cnt) )
  1633. {
  1634. cnt--;
  1635. zeroFl = true;
  1636. }
  1637. // at this point cnt is odd and >= 3
  1638. // calc half the window length
  1639. M = (int)((cnt - 1.0)/2.0);
  1640. double Msqrd = M*M;
  1641. for(i=0; i<cnt; i++)
  1642. {
  1643. double v0 = (double)(i - M);
  1644. double num = cmBessel0(beta * sqrt(1.0 - ((v0*v0)/Msqrd)));
  1645. dbp[i] = (VECT_OP_TYPE)(num/den);
  1646. }
  1647. if( zeroFl )
  1648. dbp[cnt] = 0.0; // zero the extra element in the output array
  1649. return dbp;
  1650. }
  1651. VECT_OP_TYPE* VECT_OP_FUNC(Gaussian)( VECT_OP_TYPE* dbp, unsigned dn, double mean, double variance )
  1652. {
  1653. int M = dn-1;
  1654. double sqrt2pi = sqrt(2.0*M_PI);
  1655. unsigned i;
  1656. for(i=0; i<dn; i++)
  1657. {
  1658. double arg = ((((double)i/M) - 0.5) * M);
  1659. arg = pow( (double)(arg-mean), 2.0);
  1660. arg = exp( -arg / (2.0*variance));
  1661. dbp[i] = (VECT_OP_TYPE)(arg / (sqrt(variance) * sqrt2pi));
  1662. }
  1663. return dbp;
  1664. }
  1665. VECT_OP_TYPE* VECT_OP_FUNC(Hamming)( VECT_OP_TYPE* dbp, unsigned dn )
  1666. {
  1667. const VECT_OP_TYPE* dep = dbp + dn;
  1668. VECT_OP_TYPE* dp = dbp;
  1669. double fact = 2.0 * M_PI / (dn-1);
  1670. unsigned i;
  1671. for(i=0; dbp < dep; ++i )
  1672. *dbp++ = (VECT_OP_TYPE)(.54 - (.46 * cos(fact*i)));
  1673. return dp;
  1674. }
  1675. VECT_OP_TYPE* VECT_OP_FUNC(Hann)( VECT_OP_TYPE* dbp, unsigned dn )
  1676. {
  1677. const VECT_OP_TYPE* dep = dbp + dn;
  1678. VECT_OP_TYPE* dp = dbp;
  1679. double fact = 2.0 * M_PI / (dn-1);
  1680. unsigned i;
  1681. for(i=0; dbp < dep; ++i )
  1682. *dbp++ = (VECT_OP_TYPE)(.5 - (.5 * cos(fact*i)));
  1683. return dp;
  1684. }
  1685. VECT_OP_TYPE* VECT_OP_FUNC(HannMatlab)( VECT_OP_TYPE* dbp, unsigned dn )
  1686. {
  1687. const VECT_OP_TYPE* dep = dbp + dn;
  1688. VECT_OP_TYPE* dp = dbp;
  1689. double fact = 2.0 * M_PI / (dn+1);
  1690. unsigned i;
  1691. for(i=0; dbp < dep; ++i )
  1692. *dbp++ = (VECT_OP_TYPE)(0.5*(1.0-cos(fact*(i+1))));
  1693. return dp;
  1694. }
  1695. VECT_OP_TYPE* VECT_OP_FUNC(Triangle)( VECT_OP_TYPE* dbp, unsigned dn )
  1696. {
  1697. unsigned n = dn/2;
  1698. VECT_OP_TYPE incr = 1.0/n;
  1699. VECT_OP_FUNC(Seq)(dbp,n,0,incr);
  1700. VECT_OP_FUNC(Seq)(dbp+n,dn-n,1,-incr);
  1701. return dbp;
  1702. }
  1703. VECT_OP_TYPE* VECT_OP_FUNC(GaussWin)( VECT_OP_TYPE* dbp, unsigned dn, double arg )
  1704. {
  1705. const VECT_OP_TYPE* dep = dbp + dn;
  1706. VECT_OP_TYPE* rp = dbp;
  1707. int N = (dep - dbp) - 1;
  1708. int n = -N/2;
  1709. if( N == 0 )
  1710. *dbp = 1.0;
  1711. else
  1712. {
  1713. while( dbp < dep )
  1714. {
  1715. double a = (arg * n++) / (N/2);
  1716. *dbp++ = (VECT_OP_TYPE)exp( -(a*a)/2 );
  1717. }
  1718. }
  1719. return rp;
  1720. }
  1721. VECT_OP_TYPE* VECT_OP_FUNC(Filter)(
  1722. VECT_OP_TYPE* y,
  1723. unsigned yn,
  1724. const VECT_OP_TYPE* x,
  1725. unsigned xn,
  1726. cmReal_t b0,
  1727. const cmReal_t* b,
  1728. const cmReal_t* a,
  1729. cmReal_t* d,
  1730. unsigned dn )
  1731. {
  1732. int i,j;
  1733. VECT_OP_TYPE y0 = 0;
  1734. unsigned n = cmMin( yn, xn );
  1735. // This is a direct form II algorithm based on the MATLAB implmentation
  1736. // http://www.mathworks.com/access/helpdesk/help/techdoc/ref/filter.html#f83-1015962
  1737. for(i=0; i<n; ++i)
  1738. {
  1739. y[i] = (x[i] * b0) + d[0];
  1740. y0 = y[i];
  1741. for(j=0; j<dn; ++j)
  1742. d[j] = (b[j] * x[i]) - (a[j] * y0) + d[j+1];
  1743. }
  1744. // if fewer input samples than output samples - zero the end of the output buffer
  1745. if( yn > xn )
  1746. VECT_OP_FUNC(Fill)(y+i,yn-i,0);
  1747. return y;
  1748. }
  1749. VECT_OP_TYPE* VECT_OP_FUNC(FilterFilter)(struct cmFilter_str* f, cmRC_t (*func)( struct cmFilter_str* f, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn ), const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const VECT_OP_TYPE* x, unsigned xn, VECT_OP_TYPE* y, unsigned yn )
  1750. {
  1751. int i,j;
  1752. int nfilt = cmMax(bn,an);
  1753. int nfact = 3*(nfilt-1);
  1754. const cmReal_t* a = aa;
  1755. const cmReal_t* b = bb;
  1756. cmReal_t* m = NULL;
  1757. cmReal_t* p;
  1758. unsigned zn = (nfilt-1)*(nfilt-1);
  1759. unsigned mn = 2*zn; // space for mtx z0 and z1
  1760. mn += nfilt; // space for zero padded coeff vector
  1761. mn += 2*nfact; // space for begin/end sequences
  1762. if( nfact >= xn )
  1763. {
  1764. return cmOkRC;
  1765. }
  1766. m = cmMemAllocZ( cmReal_t, mn );
  1767. p = m;
  1768. cmReal_t* z0 = p;
  1769. p += zn;
  1770. cmReal_t* z1 = p;
  1771. p += zn;
  1772. cmReal_t* s0 = p;
  1773. p += nfact;
  1774. cmReal_t* s1 = p;
  1775. p += nfact;
  1776. // zero pad the shorter coeff vect
  1777. if( bn < nfilt )
  1778. {
  1779. cmVOR_Copy(p,bn,bb);
  1780. b = p;
  1781. p += nfilt;
  1782. }
  1783. else
  1784. if( an < nfilt )
  1785. {
  1786. cmVOR_Copy(p,an,aa);
  1787. a = p;
  1788. p += nfilt;
  1789. }
  1790. // z0=eye(nfilt-1)
  1791. cmVOR_Identity(z0,nfilt-1,nfilt-1);
  1792. // z1=[eye(nfilt-1,nfilt-2); zeros(1,nfilt-1)];
  1793. cmVOR_Identity(z1,nfilt-1,nfilt-2);
  1794. // z0(:,1) -= a(:)
  1795. for(i=0; i<nfilt-1; ++i)
  1796. z0[i] -= -a[i+1];
  1797. // z0(:,2:end) -= z1;
  1798. for(i=1; i<nfilt-1; ++i)
  1799. for(j=0; j<nfilt-1; ++j)
  1800. z0[ (i*(nfilt-1)) + j ] -= z1[ ((i-1)*(nfilt-1)) + j ];
  1801. // z1 = b - (a * b[0])
  1802. for(i=1; i<nfilt; ++i)
  1803. z1[i-1] = b[i] - (a[i] * b[0]);
  1804. // z1 = z0\z1
  1805. cmVOR_SolveLS(z0,nfilt-1,z1,1);
  1806. // if yn<xn then truncate x.
  1807. xn = cmMin(xn,yn);
  1808. yn = xn;
  1809. // fill in the beginning sequence
  1810. for(i=0; i<nfact; ++i)
  1811. s0[i] = 2*x[0] - x[ nfact-i ];
  1812. // fill in the ending sequence
  1813. for(i=0; i<nfact; ++i)
  1814. s1[i] = 2*x[xn-1] - x[ xn-2-i ];
  1815. cmVOR_MultVVS( z0, nfact, z1, s0[0]);
  1816. unsigned pn = cmMin(1024,xn);
  1817. //acFilter* f = cmFilterAlloc(c,NULL,b,bn,a,an,pn,z0);
  1818. cmFilterInit(f,b,bn,a,an,pn,z0);
  1819. const VECT_OP_TYPE* xx = x;
  1820. for(j=0; j<2; ++j)
  1821. {
  1822. unsigned n = pn;
  1823. // filter begining sequence
  1824. cmFilterExecR(f,s0,nfact,s0,nfact);
  1825. // filter middle sequence
  1826. for(i=0; i<xn; i+=n)
  1827. {
  1828. n = cmMin(pn,xn-i);
  1829. func(f,xx+i,n,y+i,n);
  1830. }
  1831. // filter ending sequence
  1832. cmFilterExecR(f,s1,nfact,s1,nfact);
  1833. // flip all the sequences
  1834. cmVOR_Flip(s0,nfact);
  1835. cmVOR_Flip(s1,nfact);
  1836. VECT_OP_FUNC(Flip)(y,yn);
  1837. if( j==0)
  1838. {
  1839. // swap the begin and end sequences
  1840. cmReal_t* t = s0;
  1841. s0 = s1;
  1842. s1 = t;
  1843. xx = y;
  1844. cmVOR_MultVVS( z0, nfact, z1, s0[0]);
  1845. cmFilterInit(f,b,bn,a,an,pn,z0);
  1846. }
  1847. }
  1848. //cmFilterFree(&f);
  1849. cmMemPtrFree(&m);
  1850. return y;
  1851. }
  1852. VECT_OP_TYPE* VECT_OP_FUNC(LP_Sinc)(VECT_OP_TYPE* dp, unsigned dn, const VECT_OP_TYPE* wndV, double srate, double fcHz, unsigned flags )
  1853. {
  1854. VECT_OP_TYPE* rp = dp;
  1855. int dM = dn % 2; // dM is used to handle odd length windows
  1856. int M = (dn - dM)/2;
  1857. int Mi = -M;
  1858. double phsFact = 2.0 * M_PI * fcHz / srate;
  1859. double sum = 0;
  1860. VECT_OP_TYPE noWndV[ dn ];
  1861. // if no window was given then create a unity window
  1862. if( wndV == NULL )
  1863. {
  1864. VECT_OP_FUNC(Fill)(noWndV,dn,1);
  1865. wndV = noWndV;
  1866. }
  1867. M += dM;
  1868. //printf("M=%i Mi=%i sign:%f phs:%f\n",M,Mi,signFact,phsFact);
  1869. for(; Mi<M; ++Mi,++dp,++wndV)
  1870. {
  1871. double phs = phsFact * Mi;
  1872. if( Mi != 0 )
  1873. *dp = *wndV * 0.5 * sin(phs)/phs;
  1874. else
  1875. *dp = *wndV * 0.5;
  1876. sum += *dp;
  1877. }
  1878. // normalize the filter to produce unity gain.
  1879. if( cmIsFlag(flags,kNormalize_LPSincFl) )
  1880. VECT_OP_FUNC(DivVS)(rp,dn,fabs(sum));
  1881. // Convert low-pass filter to high-pass filter
  1882. // Note that this can only be done after the filter is normalized.
  1883. if( cmIsFlag(flags,kHighPass_LPSincFl) )
  1884. {
  1885. VECT_OP_FUNC(MultVS)(rp,dn,-1);
  1886. rp[M-1] = 1.0 + rp[M-1];
  1887. }
  1888. return rp;
  1889. }
  1890. VECT_OP_TYPE* VECT_OP_FUNC(MelMask)( VECT_OP_TYPE* maskMtx, unsigned filterCnt, unsigned binCnt, double srate, unsigned flags )
  1891. {
  1892. unsigned fi,bi;
  1893. double mxh = srate/2.0; // nyquist
  1894. double dh = mxh/(binCnt-1) ; // binHz
  1895. double mxm = 1127.0 * log( 1.0 + mxh/700.0); // max mel value in Hz
  1896. double dm = mxm / (filterCnt+1); // avg mel band hz
  1897. double sum = 0;
  1898. for(fi=0; fi<filterCnt; ++fi)
  1899. {
  1900. double m = (fi+1) * dm;
  1901. // calc min/center/max frequencies for this band
  1902. double minHz = 700.0 * (exp((m-dm)/1127.01048)-1.0);
  1903. double ctrHz = 700.0 * (exp( m /1127.01048)-1.0);
  1904. double maxHz = 700.0 * (exp((m+dm)/1127.01048)-1.0);
  1905. // shift the band min/ctr/max to the nearest bin ctr frequency
  1906. if( cmIsFlag(flags,kShiftMelFl) )
  1907. {
  1908. unsigned i;
  1909. i = (unsigned)floor(minHz/dh);
  1910. minHz = minHz - (dh*i) < dh*(i+1) - minHz ? dh*i : dh*(i+1);
  1911. i = (unsigned)floor(ctrHz/dh);
  1912. ctrHz = ctrHz - (dh*i) < dh*(i+1) - ctrHz ? dh*i : dh*(i+1);
  1913. i = (unsigned)floor(maxHz/dh);
  1914. maxHz = maxHz - (dh*i) < dh*(i+1) - maxHz ? dh*i : dh*(i+1);
  1915. }
  1916. // calc the height of the triangle - such that all bands have equal area
  1917. double a = 2.0/(maxHz - minHz);
  1918. for(bi=0; bi<binCnt; ++bi)
  1919. {
  1920. double h = bi*dh;
  1921. unsigned mi = bi*filterCnt + fi;
  1922. if( h < minHz || h > maxHz )
  1923. maskMtx[mi] = 0;
  1924. else
  1925. {
  1926. if( h <= ctrHz )
  1927. maskMtx[mi] = a * (h - minHz)/(ctrHz-minHz);
  1928. else
  1929. maskMtx[mi] = a * (maxHz - h)/(maxHz-ctrHz);
  1930. sum += maskMtx[mi];
  1931. }
  1932. }
  1933. }
  1934. if( cmIsFlag(flags,kNormalizeMelFl) )
  1935. VECT_OP_FUNC(DivVS)( maskMtx, (filterCnt*binCnt), sum );
  1936. return maskMtx;
  1937. }
  1938. unsigned VECT_OP_FUNC(BarkMap)(unsigned* binIdxV, unsigned* cntV, unsigned bandCnt, unsigned binCnt, double srate )
  1939. {
  1940. if( bandCnt == 0 )
  1941. return 0;
  1942. //zwicker & fastl: psychoacoustics 1999, page 159
  1943. double bandUprHz[] = { 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500 };
  1944. unsigned hn = sizeof(bandUprHz)/sizeof(double);
  1945. unsigned i, bi = 0;
  1946. bandCnt = cmMin(hn,bandCnt);
  1947. binIdxV[0] = 0;
  1948. cntV[0] = 1;
  1949. for(i=1; bi < bandCnt && i<binCnt; ++i)
  1950. {
  1951. double hz = srate * i / (2 * (binCnt-1));
  1952. if( hz <= bandUprHz[bi] )
  1953. cntV[bi]++;
  1954. else
  1955. {
  1956. //printf("%i %i %i %f\n",bi,binIdxV[bi],cntV[bi],bandUprHz[bi]);
  1957. ++bi;
  1958. if( bi < bandCnt )
  1959. {
  1960. binIdxV[bi] = i;
  1961. cntV[bi] = 1;
  1962. }
  1963. }
  1964. }
  1965. return bi;
  1966. }
  1967. VECT_OP_TYPE* VECT_OP_FUNC(TriangleMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, const VECT_OP_TYPE* ctrHzV, VECT_OP_TYPE binHz, VECT_OP_TYPE stSpread, const VECT_OP_TYPE* lfV, const VECT_OP_TYPE* hfV )
  1968. {
  1969. unsigned i,j;
  1970. VECT_OP_TYPE v0[ bandCnt ];
  1971. VECT_OP_TYPE v1[ bandCnt ];
  1972. // if no lower/upper band limits were give use a fixed semitone band width
  1973. if( lfV==NULL || hfV==NULL)
  1974. {
  1975. for(i=0; i<bandCnt; ++i)
  1976. {
  1977. v0[i] = ctrHzV[i] * pow(2.0,-stSpread/12.0);
  1978. v1[i] = ctrHzV[i] * pow(2.0, stSpread/12.0);
  1979. }
  1980. lfV = v0;
  1981. hfV = v1;
  1982. }
  1983. VECT_OP_FUNC(Zero)(maskMtx,bandCnt*binCnt);
  1984. // for each band
  1985. for(i=0; i<bandCnt; ++i)
  1986. {
  1987. // calc bin index of first possible bin in this band
  1988. // j = (unsigned)floor(lfV[i] / binHz);
  1989. double binHz_j = 0;
  1990. // for each bin whose ctr frq is <= the band upper limit
  1991. for(j=0; j<binCnt; ++j)
  1992. {
  1993. double v;
  1994. // if bin[j] is inside the lower leg of the triangle
  1995. if( lfV[i] <= binHz_j && binHz_j <= ctrHzV[i] )
  1996. v = (binHz_j - lfV[i]) / cmMax(VECT_OP_MIN, ctrHzV[i] - lfV[i] );
  1997. else
  1998. // if bin[j] is inside the upper leg of the triangle
  1999. if( ctrHzV[i] < binHz_j && binHz_j <= hfV[i] )
  2000. v = (hfV[i] - binHz_j) / cmMax(VECT_OP_MIN, hfV[i] - ctrHzV[i] );
  2001. else
  2002. v = 0;
  2003. maskMtx[ (j*bandCnt)+i ] = v;
  2004. binHz_j = binHz * (j+1);
  2005. }
  2006. }
  2007. return maskMtx;
  2008. }
  2009. VECT_OP_TYPE* VECT_OP_FUNC(BarkMask)(VECT_OP_TYPE* maskMtx, unsigned bandCnt, unsigned binCnt, double binHz )
  2010. {
  2011. // -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (23+1)
  2012. VECT_OP_TYPE b[]= {0, 50,150,250,350,450,570,700,840,1000,1170,1370,1600,1850,2150,2500,2900,3400,4000,4800,5800,7000,8500,10500,13500, 15500 };
  2013. bandCnt = cmMin(bandCnt,kDefaultBarkBandCnt);
  2014. VECT_OP_FUNC(TriangleMask)(maskMtx, bandCnt, binCnt, b+1, binHz, 0, b+0, b+2 );
  2015. return maskMtx;
  2016. }
  2017. VECT_OP_TYPE* VECT_OP_FUNC(TerhardtThresholdMask)(VECT_OP_TYPE* maskV, unsigned binCnt, double srate, unsigned flags )
  2018. {
  2019. unsigned i;
  2020. double c0 = cmIsFlag(flags,kModifiedTtmFl) ? 0.6 : 1.0;
  2021. double c1 = cmIsFlag(flags,kModifiedTtmFl) ? 0.5 : 6.5;
  2022. maskV[0]=0;
  2023. for(i=0; i<binCnt; ++i)
  2024. {
  2025. double hz = srate * i / (2 * (binCnt-1));
  2026. maskV[i] = pow(pow(10,(c0 * -3.64* pow(hz/1000,-0.8) + c1 * exp(-0.6 * pow(hz/1000 - 3.3,2)) - 0.001* pow(hz/1000,4))/20),2);
  2027. }
  2028. return maskV;
  2029. }
  2030. VECT_OP_TYPE* VECT_OP_FUNC(ShroederSpreadingFunc)(VECT_OP_TYPE* m, unsigned bandCnt, double srate)
  2031. {
  2032. int fi,bi;
  2033. for(fi=0; fi<bandCnt; ++fi)
  2034. for(bi=0; bi<bandCnt; ++bi )
  2035. m[ fi + (bi*bandCnt) ] = pow(10,(15.81 + 7.5 * ((fi-bi)+0.474)-17.5*pow(1+pow((fi-bi)+0.474,2),0.5))/10);
  2036. return m;
  2037. }
  2038. unsigned VECT_OP_FUNC(Kmeans)(
  2039. unsigned* classIdxV, // classIdxV[scn] - data point class assignments
  2040. VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
  2041. unsigned K, // count of clusters
  2042. const VECT_OP_TYPE* sM, // sM[srn,scn] source data matrix
  2043. unsigned srn, // dimensionality of each data point
  2044. unsigned scn, // count of data points
  2045. const unsigned* selIdxV, // data subset selection id vector (optional)
  2046. unsigned selKey, // data subset selection key (optional)
  2047. bool initFromCentroidFl,// true if the starting centroids are in centroidM[]
  2048. VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
  2049. void* userDistPtr
  2050. )
  2051. {
  2052. unsigned D = srn; // data dimensionality
  2053. unsigned N = scn; // count of data points to cluster
  2054. unsigned iterCnt = 0;
  2055. unsigned ki;
  2056. unsigned i = 0;
  2057. unsigned selN = N;
  2058. // if a data point selection vector was given
  2059. if( selIdxV != NULL )
  2060. {
  2061. selN = 0;
  2062. for(i=0; i<N; ++i)
  2063. {
  2064. selN += selIdxV[i]==selKey;
  2065. classIdxV[i] = K;
  2066. }
  2067. }
  2068. assert(K<=selN);
  2069. // if the numer of datapoints and the number of clusters is the same
  2070. // make the datapoints the centroids and return
  2071. if( K == selN )
  2072. {
  2073. ki = 0;
  2074. for(i=0; i<N; ++i)
  2075. if( selIdxV==NULL || selIdxV[i]==selKey )
  2076. {
  2077. VECT_OP_FUNC(Copy)(centroidM+(ki*D),D,sM+(i*D));
  2078. classIdxV[ki] = ki;
  2079. ++ki;
  2080. }
  2081. return 0;
  2082. }
  2083. // if centroidM[] has not been initialized with the starting centroid vectors.
  2084. if( initFromCentroidFl == false )
  2085. {
  2086. unsigned* kiV = cmMemAlloc( unsigned, N );
  2087. // select K unique datapoints at random as the initial centroids
  2088. cmVOU_RandomSeq(kiV,N);
  2089. for(i=0,ki=0; i<N && ki<K; ++i)
  2090. {
  2091. if( selIdxV==NULL || selIdxV[ kiV[i] ]==selKey )
  2092. {
  2093. VECT_OP_FUNC(Copy)( centroidM + (ki*D), D, sM + (kiV[i]*D) );
  2094. ++ki;
  2095. }
  2096. }
  2097. cmMemPtrFree(&kiV);
  2098. }
  2099. unsigned* nV = cmMemAllocZ( unsigned,K);
  2100. while(1)
  2101. {
  2102. unsigned changeCnt = 0;
  2103. cmVOU_Zero(nV,K);
  2104. // for each data point - assign data point to a cluster
  2105. for(i=0; i<N; ++i)
  2106. if( selIdxV==NULL || selIdxV[i] == selKey )
  2107. {
  2108. // set ki with the index of the centroid closest to sM[:,i]
  2109. VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sM + (i*srn), 1, centroidM, K, distFunc, userDistPtr );
  2110. assert(ki<K);
  2111. nV[ki]++;
  2112. changeCnt += ( ki != classIdxV[i] );
  2113. classIdxV[i] = ki;
  2114. }
  2115. // if no data points change classes then the centroids have converged
  2116. if( changeCnt == 0 )
  2117. break;
  2118. ++iterCnt;
  2119. // zero the centroid matrix
  2120. VECT_OP_FUNC(Fill)(centroidM, D*K, 0 );
  2121. // update the centroids
  2122. for(ki=0; ki<K; ++ki)
  2123. {
  2124. unsigned n = 0;
  2125. // sum the all datapoints belonging to class ki
  2126. for(i=0; i<N; ++i)
  2127. if( classIdxV[i] == ki )
  2128. {
  2129. VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sM + (i*srn) );
  2130. ++n;
  2131. }
  2132. // convert the sum to a mean to form the centroid
  2133. if( n > 0 )
  2134. VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
  2135. }
  2136. }
  2137. cmVOU_PrintL("class cnt:",NULL,1,K,nV);
  2138. cmMemPtrFree(&nV);
  2139. return iterCnt;
  2140. }
  2141. unsigned VECT_OP_FUNC(Kmeans2)(
  2142. unsigned* classIdxV, // classIdxV[scn] - data point class assignments
  2143. VECT_OP_TYPE* centroidM, // centroidM[srn,K] - cluster centroids
  2144. unsigned K, // count of clusters
  2145. const VECT_OP_TYPE* (*srcFunc)(void* userPtr, unsigned frmIdx ),
  2146. unsigned srn, // dimensionality of each data point
  2147. unsigned scn, // count of data points
  2148. void* userSrcPtr, // callback data for srcFunc
  2149. VECT_OP_TYPE (*distFunc)( void* userPtr, const VECT_OP_TYPE* s0V, const VECT_OP_TYPE* s1V, unsigned sn ),
  2150. void* distUserPtr,
  2151. int maxIterCnt,
  2152. int deltaStopCnt
  2153. )
  2154. {
  2155. unsigned D = srn; // data dimensionality
  2156. unsigned N = scn; // count of data points to cluster
  2157. unsigned iterCnt = 0;
  2158. unsigned ki;
  2159. unsigned i = 0;
  2160. const VECT_OP_TYPE* sp;
  2161. assert(K<N);
  2162. deltaStopCnt = cmMax(0,deltaStopCnt);
  2163. // nV[K] - class assignment vector
  2164. unsigned* nV = cmMemAllocZ( unsigned,2*K);
  2165. // roV[K] - read-only flag centroid
  2166. // centroids flagged as read-only will not be updated by the clustering routine
  2167. unsigned* roV = nV + K;
  2168. // copy the read-only flags into roV[K]
  2169. for(i=0; i<K; ++i)
  2170. roV[i] = classIdxV[i];
  2171. while(1)
  2172. {
  2173. unsigned changeCnt = 0;
  2174. cmVOU_Zero(nV,K);
  2175. // for each data point - assign data point to a cluster
  2176. for(i=0; i<N; ++i)
  2177. if((sp = srcFunc(userSrcPtr,i)) != NULL)
  2178. {
  2179. // set ki with the index of the centroid closest to sM[:,i]
  2180. VECT_OP_FUNC(DistVMM)( NULL, NULL, &ki, D, sp, 1, centroidM, K, distFunc, distUserPtr );
  2181. assert(ki<K);
  2182. // track the number of data points assigned to each centroid
  2183. nV[ki]++;
  2184. // track the number of data points which change classes
  2185. changeCnt += ( ki != classIdxV[i] );
  2186. // update the class that this data point belongs to
  2187. classIdxV[i] = ki;
  2188. }
  2189. // if the count of data points which changed classes is less than deltaStopCnt
  2190. // then the centroids have converged
  2191. if( changeCnt <= deltaStopCnt )
  2192. break;
  2193. if( maxIterCnt!=-1 && iterCnt>=maxIterCnt )
  2194. break;
  2195. // track the number of interations required to converge
  2196. ++iterCnt;
  2197. fprintf(stderr,"%i:%i (", iterCnt,changeCnt );
  2198. for(i=0; i<K; ++i)
  2199. fprintf(stderr,"%i ",nV[i]);
  2200. fprintf(stderr,") ");
  2201. fflush(stderr);
  2202. // update the centroids
  2203. for(ki=0; ki<K; ++ki)
  2204. if( roV[ki]==0 )
  2205. {
  2206. unsigned n = 0;
  2207. VECT_OP_FUNC(Zero)(centroidM + (ki*D), D );
  2208. // sum the all datapoints belonging to class ki
  2209. for(i=0; i<N; ++i)
  2210. if( classIdxV[i] == ki && ((sp=srcFunc(userSrcPtr,i))!=NULL))
  2211. {
  2212. VECT_OP_FUNC(AddVV)(centroidM + (ki*D), D, sp );
  2213. ++n;
  2214. }
  2215. // convert the sum to a mean to form the centroid
  2216. if( n > 0 )
  2217. VECT_OP_FUNC(DivVS)(centroidM + (ki*D), D, n );
  2218. }
  2219. }
  2220. cmMemPtrFree(&nV);
  2221. return iterCnt;
  2222. }
  2223. /// stateV[timeN]
  2224. /// a[stateN,stateN],
  2225. /// b[stateN,timeN]
  2226. /// phi[stateN].
  2227. void VECT_OP_FUNC(DiscreteViterbi)(unsigned* stateV, unsigned tN, unsigned sN, const VECT_OP_TYPE* phi, const VECT_OP_TYPE* a, const VECT_OP_TYPE* b )
  2228. {
  2229. unsigned* psiM = cmMemAlloc( unsigned, sN*tN ); // psi[sN,tN]
  2230. VECT_OP_TYPE* dV = cmMemAlloc( VECT_OP_TYPE, 2*sN );
  2231. VECT_OP_TYPE* d0V = dV;
  2232. VECT_OP_TYPE* d1V = dV + sN;
  2233. int t,i,j;
  2234. // calc the prob of starting in each state given the observations
  2235. VECT_OP_FUNC(MultVVV)( d0V, sN, phi, b );
  2236. VECT_OP_FUNC(NormalizeProbability)( d0V, sN ); // scale to prevent underflow
  2237. // for each time step
  2238. for(t=1; t<tN; ++t)
  2239. {
  2240. // for each possible next state
  2241. for(j=0; j<sN; ++j)
  2242. {
  2243. VECT_OP_TYPE mv = 0;
  2244. unsigned mi = 0;
  2245. // The following loop could be replaced with these vector op's:
  2246. // VECT_OP_TYPE tV[ sN ];
  2247. // VECT_OP_TYPE(MultVVV)(tV,sN,d0V,a + (j*sN));
  2248. // mi = VECT_OP_TYPE(MaxIndex)(tV,sN);
  2249. // mv = tV[mi];
  2250. // for each possible prev state
  2251. for(i=0; i<sN; ++i)
  2252. {
  2253. // calc prob of having ended in state i and transitioning to state j
  2254. VECT_OP_TYPE v = d0V[i] * a[ i + (j*sN) ];
  2255. // track the most likely transition ending in state j
  2256. if( v > mv )
  2257. {
  2258. mv = v;
  2259. mi = i;
  2260. }
  2261. }
  2262. // scale the prob of the most likely state by the prob of the obs given that state
  2263. d1V[j] = mv * b[ (t*sN) + j ];
  2264. // store the most likely previous state given that the current state is j
  2265. // (this is the key to understanding the backtracking step below)
  2266. psiM[ (t*sN) + j ] = mi;
  2267. }
  2268. VECT_OP_FUNC(NormalizeProbability)( d1V, sN ); // scale to prevent underflow
  2269. // swap d0V and d1V
  2270. VECT_OP_TYPE* tmp = d0V;
  2271. d0V = d1V;
  2272. d1V = tmp;
  2273. }
  2274. // store the most likely ending state
  2275. stateV[tN-1] = VECT_OP_FUNC(MaxIndex)( d0V, sN, 1 );
  2276. // given the most likely next step select the most likely previous step
  2277. for(t=tN-2; t>=0; --t)
  2278. stateV[t] = psiM[ ((t+1)*sN) + stateV[t+1] ];
  2279. cmMemPtrFree( &psiM );
  2280. cmMemPtrFree( &dV );
  2281. }
  2282. VECT_OP_TYPE* VECT_OP_FUNC(CircleCoords)( VECT_OP_TYPE* dbp, unsigned dn, VECT_OP_TYPE x, VECT_OP_TYPE y, VECT_OP_TYPE varX, VECT_OP_TYPE varY )
  2283. {
  2284. unsigned i;
  2285. for(i=0; i<dn; ++i)
  2286. {
  2287. double a = 2.0*M_PI*i/(dn-1);
  2288. dbp[ i ] = (VECT_OP_TYPE)(varX * cos(a) + x);
  2289. dbp[ i+dn ] = (VECT_OP_TYPE)(varY * sin(a) + y);
  2290. }
  2291. return dbp;
  2292. }
  2293. bool VECT_OP_FUNC(ClipLine2)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax, VECT_OP_TYPE* t0, VECT_OP_TYPE* t1 )
  2294. {
  2295. VECT_OP_TYPE dx = x1 - x0;
  2296. VECT_OP_TYPE dy = y1 - y0;
  2297. VECT_OP_TYPE p=0,q=0,r=0;
  2298. *t0 = 0.0;
  2299. *t1 = 1.0;
  2300. unsigned i;
  2301. for(i=0; i<4; ++i)
  2302. {
  2303. switch(i)
  2304. {
  2305. case 0: p=-dx; q=-(xMin - x0); break; // left
  2306. case 1: p= dx; q= (xMax - x0); break; // right
  2307. case 2: p=-dy; q=-(yMin - y0); break; // bottom
  2308. case 3: p= dy; q= (yMax - y0); break; // top
  2309. }
  2310. // if parallel to edge i
  2311. if( p == 0 )
  2312. {
  2313. // if entirely outside of window
  2314. if( q < 0 )
  2315. return false;
  2316. continue;
  2317. }
  2318. r = p/q;
  2319. // if travelling right/up
  2320. if( p < 0 )
  2321. {
  2322. // travelling away from x1,y1
  2323. if( r > *t1 )
  2324. return false;
  2325. // update distance on line to point of intersection
  2326. if( r > *t0 )
  2327. *t0 = r;
  2328. }
  2329. else // if travelling left/down
  2330. {
  2331. // travelling away from x1,y1
  2332. if( r < *t0 )
  2333. return false;
  2334. // update distance on line to point of intersection
  2335. if( r < *t1 )
  2336. *t1 = r;
  2337. }
  2338. }
  2339. return true;
  2340. }
  2341. /// (Uses the Laing-Barsky clipping algorithm)
  2342. /// From: http://www.skytopia.com/project/articles/compsci/clipping.html
  2343. bool VECT_OP_FUNC(ClipLine)( VECT_OP_TYPE* x0, VECT_OP_TYPE* y0, VECT_OP_TYPE* x1, VECT_OP_TYPE* y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
  2344. {
  2345. VECT_OP_TYPE t0;
  2346. VECT_OP_TYPE t1;
  2347. if( VECT_OP_FUNC(ClipLine2)(*x0,*y0,*x1,*y1,xMin,yMin,xMax,yMax,&t0,&t1) )
  2348. {
  2349. VECT_OP_TYPE dx = *x1 - *x0;
  2350. VECT_OP_TYPE dy = *y1 - *y0;
  2351. *x0 = *x0 + t0*dx;
  2352. *x1 = *x0 + t1*dx;
  2353. *y0 = *y0 + t0*dy;
  2354. *y1 = *y0 + t1*dy;
  2355. return true;
  2356. }
  2357. return false;
  2358. }
  2359. bool VECT_OP_FUNC(IsLineInRect)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE xMin, VECT_OP_TYPE yMin, VECT_OP_TYPE xMax, VECT_OP_TYPE yMax )
  2360. {
  2361. VECT_OP_TYPE t0;
  2362. VECT_OP_TYPE t1;
  2363. return VECT_OP_FUNC(ClipLine2)(x0,y0,x1,y1,xMin,yMin,xMax,yMax,&t0,&t1);
  2364. }
  2365. VECT_OP_TYPE VECT_OP_FUNC(PtToLineDistance)( VECT_OP_TYPE x0, VECT_OP_TYPE y0, VECT_OP_TYPE x1, VECT_OP_TYPE y1, VECT_OP_TYPE px, VECT_OP_TYPE py)
  2366. {
  2367. // from:http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
  2368. double normalLength = sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
  2369. if( normalLength <= 0 )
  2370. return 0;
  2371. return (VECT_OP_TYPE)fabs((px - x0) * (y1 - y0) - (py - y0) * (x1 - x0)) / normalLength;
  2372. }
  2373. VECT_OP_TYPE VECT_OP_FUNC(ComplexDetect)(const VECT_OP_TYPE* mag0V, const VECT_OP_TYPE* mag1V, const VECT_OP_TYPE* phs0V, const VECT_OP_TYPE* phs1V, const VECT_OP_TYPE* phs2V, unsigned binCnt )
  2374. {
  2375. double sum = 0;
  2376. const VECT_OP_TYPE* ep = mag0V + binCnt;
  2377. unsigned i = 0;
  2378. for(; mag0V < ep; ++i )
  2379. {
  2380. // calc phase deviation from expected
  2381. double dev_rads = *phs0V++ - (2 * *phs1V++) + *phs2V++;
  2382. // map deviation into range: -pi to pi
  2383. //double dev_rads1 = mod(dev_rads0 + M_PI, -2*M_PI ) + M_PI;
  2384. while( dev_rads > M_PI)
  2385. dev_rads -= 2*M_PI;
  2386. while( dev_rads < -M_PI)
  2387. dev_rads += 2*M_PI;
  2388. // convert into rect coord's
  2389. double m1r = *mag1V++;
  2390. double m0r = *mag0V * cos(dev_rads);
  2391. double m0i = *mag0V++ * sin(dev_rads);
  2392. // calc the combined amplitude and phase deviation
  2393. // sum += hypot( m1 - (m0 * e^(-1*dev_rads)));
  2394. sum += hypot( m1r-m0r, -m0i );
  2395. }
  2396. return (VECT_OP_TYPE)sum;
  2397. }
  2398. VECT_OP_TYPE* VECT_OP_FUNC(DctMatrix)( VECT_OP_TYPE* dp, unsigned coeffCnt, unsigned filtCnt )
  2399. {
  2400. VECT_OP_TYPE* dbp = dp;
  2401. double c0 = 1.0/sqrt(filtCnt/2); // row 1-coeffCnt factor
  2402. double c1 = c0 * sqrt(2)/2; // row 0 factor
  2403. unsigned i,j;
  2404. // for each column
  2405. for(i=0; i<filtCnt; ++i)
  2406. // for each row
  2407. for(j=0; j<coeffCnt; ++j)
  2408. *dp++ = (j==0 ? c1 : c0) * cos( (0.5 + i) * M_PI * j / filtCnt);
  2409. return dbp;
  2410. }
  2411. unsigned VECT_OP_FUNC(PeakIndexes)( unsigned* dbp, unsigned dn, const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE threshold )
  2412. {
  2413. unsigned pkCnt = 0;
  2414. const unsigned* dep = dbp + dn;
  2415. const VECT_OP_TYPE* sep = sbp + sn;
  2416. const VECT_OP_TYPE* s2p = sbp;
  2417. const VECT_OP_TYPE* s0p = s2p++;
  2418. const VECT_OP_TYPE* s1p = s2p++;
  2419. while( dbp < dep && s2p < sep )
  2420. {
  2421. if( (*s0p < *s1p) && (*s1p > *s2p) && (*s1p >= threshold) )
  2422. {
  2423. *dbp++ = s1p - sbp;
  2424. s0p = s2p++;
  2425. s1p = s2p++;
  2426. ++pkCnt;
  2427. }
  2428. else
  2429. {
  2430. s0p = s1p;
  2431. s1p = s2p++;
  2432. }
  2433. }
  2434. return pkCnt;
  2435. }
  2436. unsigned VECT_OP_FUNC(BinIndex)( const VECT_OP_TYPE* sbp, unsigned sn, VECT_OP_TYPE v )
  2437. {
  2438. const VECT_OP_TYPE* sep = sbp + sn;
  2439. const VECT_OP_TYPE* bp = sbp;
  2440. sep--;
  2441. for(; sbp < sep; ++sbp )
  2442. if( *sbp <= v && v < *(sbp+1) )
  2443. return sbp - bp;
  2444. return cmInvalidIdx;
  2445. }
  2446. void VECT_OP_FUNC(Interp1)(VECT_OP_TYPE* y1, const VECT_OP_TYPE* x1, unsigned xy1N, const VECT_OP_TYPE* x0, const VECT_OP_TYPE* y0, unsigned xy0N )
  2447. {
  2448. unsigned i,j;
  2449. // for each output value
  2450. for(i=0,j=0; i<xy1N; ++i)
  2451. {
  2452. // x1[] and x0[] are increasing monotonic therefore j should never
  2453. // have to decrease
  2454. for(; j<xy0N-1; ++j)
  2455. {
  2456. // if x1[i] is between x0[j] and x0[j+1]
  2457. if( x0[j] <= x1[i] && x1[i] < x0[j+1] )
  2458. {
  2459. // interpolate y0[j] based on the distance beteen x0[j] and x1[i].
  2460. y1[i] = y0[j] + (y0[j+1]-y0[j]) * ((x1[i] - x0[j]) / (x0[j+1] - x0[j]));
  2461. break;
  2462. }
  2463. }
  2464. if( j == xy0N-1 )
  2465. y1[i] = y0[xy0N-1];
  2466. }
  2467. }
  2468. #endif