libcm is a C development framework with an emphasis on audio signal processing applications.
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

cmProcTemplateCode.h 5.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. #ifdef cmProcTemplateCode_h
  2. //-----------------------------------------------------------------------------------------------------------
  3. // FFT
  4. //
  5. CLASS(Fft)* MEMBER(FftAlloc)( cmCtx* c, CLASS(Fft)* ap, T0* inPtr, unsigned wndSmpCnt, unsigned flags )
  6. {
  7. CLASS(Fft)* p = cmObjAlloc( CLASS(Fft), c, ap );
  8. if( wndSmpCnt > 0 )
  9. if( MEMBER(FftInit)( p,inPtr,wndSmpCnt,flags) != cmOkRC )
  10. MEMBER(FftFree)(&p);
  11. return p;
  12. }
  13. cmRC_t MEMBER(FftFree)( CLASS(Fft)** pp )
  14. {
  15. if( pp != NULL && *pp != NULL )
  16. {
  17. CLASS(Fft)* p = *pp;
  18. if( MEMBER(FftFinal)( *pp ) == cmOkRC )
  19. {
  20. cmMemPtrFree( &p->complexV );
  21. cmMemPtrFree( &p->magV );
  22. cmMemPtrFree( &p->phsV);
  23. if( p->copyFl )
  24. cmMemPtrFree( &p->inPtr );
  25. cmObjFree(pp);
  26. }
  27. }
  28. return cmOkRC;
  29. }
  30. cmRC_t MEMBER(FftInit)( CLASS(Fft)* p, T0* inPtr, unsigned wndSmpCnt, unsigned flags )
  31. {
  32. cmRC_t rc;
  33. if( cmIsPowerOfTwo(wndSmpCnt) == false )
  34. return cmCtxRtAssertFailed(&p->obj,cmArgAssertRC,"The FFT window sample count (%i) is not a power of two.",wndSmpCnt);
  35. if((rc = MEMBER(FftFinal)(p)) != cmOkRC )
  36. return rc;
  37. p->wndSmpCnt = wndSmpCnt;
  38. p->binCnt = wndSmpCnt / 2 + 1;
  39. p->flags = flags;
  40. p->magV = cmMemResize( T1, p->magV, p->binCnt );
  41. p->phsV = cmMemResize( T1, p->phsV, p->binCnt );
  42. p->copyFl = inPtr == NULL;
  43. p->complexV = cmMemResize( COMPLEX_T0, p->complexV, p->wndSmpCnt );
  44. p->inPtr = p->copyFl ? cmMemResizeZ( T0, p->inPtr, p->wndSmpCnt ) : inPtr;
  45. p->plan = FFT_FUNC_T0(FftPlanAlloc)( p->wndSmpCnt, p->inPtr, p->complexV, FFTW_ESTIMATE );
  46. //p->mfp = cmCtxAllocDebugFile( p->obj.ctx,"fft");
  47. return cmOkRC;
  48. }
  49. cmRC_t MEMBER(FftFinal)( CLASS(Fft)* p )
  50. {
  51. if( p != NULL )
  52. {
  53. //cmCtxFreeDebugFile(p->obj.ctx, &p->mfp);
  54. if( p->plan != NULL )
  55. {
  56. FFT_FUNC_T0(FftPlanFree)( p->plan );
  57. p->plan = NULL;
  58. }
  59. }
  60. return cmOkRC;
  61. }
  62. cmRC_t MEMBER(FftExec)( CLASS(Fft)* p, const T0* sp, unsigned sn )
  63. {
  64. // if a fixed input buffer is not being used then copy in the source samples
  65. if( sp != NULL && p->copyFl == true )
  66. {
  67. assert( p->inPtr != NULL );
  68. unsigned n = cmMin(sn,p->wndSmpCnt);
  69. VOP_T0(Copy)( p->inPtr,n, sp );
  70. if( n < p->wndSmpCnt )
  71. VOP_T0(Fill)( p->inPtr+n, p->wndSmpCnt-n, 0 );
  72. }
  73. // perform the Fourier transform
  74. FFT_FUNC_T0(FftExecute)(p->plan);
  75. COMPLEX_T0* cp = p->complexV;
  76. T1* mp = p->magV;
  77. T1* pp = p->phsV;
  78. T1* ep = mp + p->binCnt;
  79. // if polar conversion was requested
  80. if( cmIsFlag(p->flags, kToPolarFftFl ) )
  81. {
  82. while( mp < ep )
  83. {
  84. *mp++ = cmCabsR(*cp);
  85. *pp++ = cmCargR(*cp++);
  86. }
  87. }
  88. else
  89. // if rectangular splitting was requested
  90. if( cmIsFlag(p->flags, kToRectFftFl ) )
  91. {
  92. while( mp < ep )
  93. {
  94. *mp++ = cmCrealR(*cp);
  95. *pp++ = cmCimagR(*cp++);
  96. }
  97. }
  98. /*
  99. if( p->mfp != NULL )
  100. {
  101. cmMtxFileRealExec( p->mfp, p->magV, p->binCnt );
  102. cmMtxFileRealExec( p->mfp, p->phsV, p->binCnt );
  103. }
  104. */
  105. return cmOkRC;
  106. }
  107. //-----------------------------------------------------------------------------------------------------------
  108. // IFft
  109. //
  110. CLASS(IFft)* MEMBER(IFftAlloc)( cmCtx* c, CLASS(IFft)* ap, unsigned binCnt )
  111. {
  112. CLASS(IFft)* p = cmObjAlloc( CLASS(IFft), c, ap );
  113. if( binCnt > 0 )
  114. if( MEMBER(IFftInit)( p,binCnt) != cmOkRC )
  115. MEMBER(IFftFree)(&p);
  116. return p;
  117. }
  118. cmRC_t MEMBER(IFftFree)( CLASS(IFft)** pp )
  119. {
  120. if( pp != NULL && pp != NULL)
  121. {
  122. CLASS(IFft)* p = *pp;
  123. if( MEMBER(IFftFinal)(p) == cmOkRC )
  124. {
  125. cmMemPtrFree(&p->complexV);
  126. cmMemPtrFree(&p->outV);
  127. cmObjFree(pp);
  128. }
  129. }
  130. return cmOkRC;
  131. }
  132. cmRC_t MEMBER(IFftInit)( CLASS(IFft)* p, unsigned binCnt )
  133. {
  134. cmRC_t rc;
  135. if((rc = MEMBER(IFftFinal)(p)) != cmOkRC )
  136. return rc;
  137. p->outN = (binCnt-1)*2;
  138. p->outV = cmMemResizeZ(T1, p->outV, p->outN);
  139. p->complexV = cmMemResizeZ(COMPLEX_T1, p->complexV,p->outN);
  140. if( p->binCnt != binCnt )
  141. {
  142. p->binCnt = binCnt;
  143. p->plan = FFT_FUNC_T1(IFftPlanAlloc)( p->outN, p->complexV, p->outV, FFTW_ESTIMATE );
  144. }
  145. return cmOkRC;
  146. }
  147. cmRC_t MEMBER(IFftFinal)( CLASS(IFft)* p )
  148. { return cmOkRC; }
  149. // x must contain 'binCnt' elements.
  150. cmRC_t MEMBER(IFftExec)( CLASS(IFft)* p, COMPLEX_T0* x )
  151. {
  152. unsigned i,j;
  153. if( x != NULL )
  154. for(i=0; i<p->binCnt; ++i)
  155. p->complexV[i] = x[i];
  156. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  157. p->complexV[i] = (COMPLEX_T1)conj(p->complexV[j]);
  158. FFT_FUNC_T1(FftExecute)(p->plan);
  159. return cmOkRC;
  160. }
  161. cmRC_t MEMBER(IFftExecPolar)( CLASS(IFft)* p, const T0* magV, const T0* phsV )
  162. {
  163. unsigned i,j;
  164. for(i=0; i<p->binCnt; ++i)
  165. p->complexV[i] = (COMPLEX_T1)(magV[i] * cos(phsV[i])) + (magV[i] * I * sin(phsV[i]));
  166. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  167. p->complexV[i] = (COMPLEX_T1)(magV[j] * cos(phsV[j])) + (magV[j] * I * sin(phsV[j]));
  168. FFT_FUNC_T1(FftExecute)(p->plan);
  169. return cmOkRC;
  170. }
  171. cmRC_t MEMBER(IFftExecRect)( CLASS(IFft)* p, const T0* rV, const T0* iV )
  172. {
  173. unsigned i,j;
  174. for(i=0; i<p->binCnt; ++i)
  175. p->complexV[i] = rV[i] + (I * iV[i]);
  176. for(i=p->outN-1,j=1; j<p->binCnt-1; --i,++j)
  177. p->complexV[i] = rV[j] + (I * iV[j]);
  178. FFT_FUNC_T1(FftExecute)(p->plan);
  179. return cmOkRC;
  180. }
  181. #endif