libcm is a C development framework with an emphasis on audio signal processing applications.
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

cmAudioAggDev.c 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942
  1. #include "cmGlobal.h"
  2. #include "cmRpt.h"
  3. #include "cmErr.h"
  4. #include "cmCtx.h"
  5. #include "cmMem.h"
  6. #include "cmMallocDebug.h"
  7. #include "cmAudioPort.h"
  8. #include "cmAudioAggDev.h"
  9. #include "cmThread.h" // cmThUIntIncr()
  10. #include "cmApBuf.h" // only needed for cmApBufTest().
  11. //#include <unistd.h> // usleep
  12. enum
  13. {
  14. kBufArrayCnt = 2
  15. };
  16. struct cmApAgg_str;
  17. typedef struct
  18. {
  19. unsigned physDevIdx;
  20. struct cmApAgg_str* ap;
  21. unsigned iChIdx;
  22. unsigned iChCnt;
  23. unsigned oChIdx;
  24. unsigned oChCnt;
  25. } cmApAggDev_t;
  26. typedef struct cmApAgg_str
  27. {
  28. cmChar_t* label; // agg. device label
  29. unsigned aggDevIdx; // agg. device index
  30. unsigned sysDevIdx; // system device index
  31. unsigned devCnt; // count of phys devices
  32. cmApAggDev_t* devArray; // devArray[ devCnt ] - physical device array
  33. unsigned iChCnt; // sum of phys device input channels
  34. unsigned oChCnt; // sum of phys device output channels
  35. double srate; // agg. dev sample rate
  36. unsigned framesPerCycle; // agg. dev frames per cycle
  37. unsigned flags; // kAgInFl | kAgOutFl
  38. cmApCallbackPtr_t cbFunc; // client supplied callback func
  39. void* cbArg; // client supplied callback func arg.
  40. bool startedFl; // true if the agg. device is started
  41. struct cmApAgg_str* link; // _cmAg.list link
  42. } cmApAgg_t;
  43. typedef struct
  44. {
  45. cmErr_t err;
  46. cmApAgg_t* list;
  47. } cmApAggMain_t;
  48. cmApAggMain_t _cmAg;
  49. void _cmApAggCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  50. {
  51. unsigned i;
  52. cmApAudioPacket_t pkt;
  53. for(i=0; i<inPktCnt; ++i)
  54. {
  55. cmApAggDev_t* dp = (cmApAggDev_t*)inPktArray[i].userCbPtr;
  56. pkt = inPktArray[i];
  57. pkt.devIdx = dp->ap->sysDevIdx;
  58. pkt.begChIdx = dp->iChIdx;
  59. pkt.userCbPtr = dp->ap->cbArg;
  60. dp->ap->cbFunc( &pkt, 1, NULL, 0 );
  61. }
  62. for(i=0; i<outPktCnt; ++i)
  63. {
  64. cmApAggDev_t* dp = (cmApAggDev_t*)outPktArray[i].userCbPtr;
  65. pkt = outPktArray[i];
  66. pkt.devIdx = dp->ap->sysDevIdx;
  67. pkt.begChIdx = dp->oChIdx;
  68. pkt.userCbPtr = dp->ap->cbArg;
  69. dp->ap->cbFunc( NULL, 0, &pkt, 1 );
  70. }
  71. }
  72. void _cmApAgDeleteAggDev( cmApAgg_t* ap )
  73. {
  74. cmApAgg_t* cp = _cmAg.list;
  75. cmApAgg_t* pp = NULL;
  76. while( cp != NULL )
  77. {
  78. if( cp == ap )
  79. {
  80. if( pp == NULL )
  81. _cmAg.list = cp->link;
  82. else
  83. pp->link = cp->link;
  84. cmMemFree(ap->label);
  85. cmMemFree(ap->devArray);
  86. cmMemFree(ap);
  87. return;
  88. }
  89. pp = cp;
  90. cp = cp->link;
  91. }
  92. }
  93. cmAgRC_t cmApAggAllocate( cmRpt_t* rpt )
  94. {
  95. cmAgRC_t rc = kOkAgRC;
  96. cmErrSetup(&_cmAg.err,rpt,"cmAudioAggDev");
  97. _cmAg.list = NULL;
  98. return rc;
  99. }
  100. cmAgRC_t cmApAggFree()
  101. {
  102. cmAgRC_t rc = kOkAgRC;
  103. while( _cmAg.list != NULL )
  104. _cmApAgDeleteAggDev(_cmAg.list );
  105. return rc;
  106. }
  107. cmAgRC_t cmApAggInitialize( cmRpt_t* rpt, unsigned baseApDevIdx )
  108. {
  109. cmApAgg_t* ap = _cmAg.list;
  110. unsigned i;
  111. assert( baseApDevIdx == cmApDeviceCount() );
  112. for(i=0; ap!=NULL; ap=ap->link,++i)
  113. {
  114. ap->sysDevIdx = cmApDeviceCount() + i;
  115. ap->iChCnt = 0;
  116. ap->oChCnt = 0;
  117. unsigned i;
  118. for(i=0; i<ap->devCnt; ++i)
  119. {
  120. ap->devArray[i].iChIdx = ap->iChCnt;
  121. ap->devArray[i].oChIdx = ap->oChCnt;
  122. ap->devArray[i].iChCnt = cmApDeviceChannelCount(ap->devArray[i].physDevIdx,true);
  123. ap->devArray[i].oChCnt = cmApDeviceChannelCount(ap->devArray[i].physDevIdx,false);
  124. ap->iChCnt += ap->devArray[i].iChCnt;
  125. ap->oChCnt += ap->devArray[i].oChCnt;
  126. }
  127. }
  128. return kOkAgRC;
  129. }
  130. cmAgRC_t cmApAggFinalize()
  131. { return kOkAgRC; }
  132. cmAgRC_t cmApAggCreateDevice(
  133. const cmChar_t* label,
  134. unsigned devCnt,
  135. const unsigned physDevIdxArray[],
  136. unsigned flags )
  137. {
  138. cmAgRC_t rc = kOkAgRC;
  139. unsigned i;
  140. if( devCnt < 2 )
  141. return cmErrMsg(&_cmAg.err,kMustAggTwoAgRC,"Cannot aggregate less than two devices.");
  142. /*
  143. for(i=0; i<devCnt; ++i)
  144. {
  145. unsigned physDevIdx = physDevIdxArray[i];
  146. if( cmApAggIsDeviceAggregated(physDevIdx) )
  147. return cmErrMsg(&_cmAg.err,kDevAlreadyAggAgRC,"The physical device associated with index '%i' ('%s') has already been assigned to another aggregated device.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  148. if( cmApDeviceIsStarted(physDevIdx) )
  149. return cmErrMsg(&_cmAg.err,kCantUseStartedDevAgRC,"The physical device associated with index '%i' ('%s') cannot be aggregated while it is running.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  150. }
  151. */
  152. cmApAgg_t* ap = cmMemAllocZ(cmApAgg_t,1);
  153. ap->label = cmMemAllocStr(label==NULL?"Aggregated Device":label);
  154. ap->devArray = cmMemAllocZ(cmApAggDev_t,devCnt);
  155. ap->aggDevIdx = cmApAggDeviceCount();
  156. ap->sysDevIdx = cmInvalidIdx;
  157. ap->devCnt = devCnt;
  158. ap->iChCnt = 0;
  159. ap->oChCnt = 0;
  160. for(i=0; i<devCnt; ++i)
  161. {
  162. ap->devArray[i].ap = ap;
  163. ap->devArray[i].physDevIdx = physDevIdxArray[i];
  164. }
  165. ap->link = _cmAg.list;
  166. _cmAg.list = ap;
  167. return rc;
  168. }
  169. cmApAgg_t* _cmApAggDevIdxToPtr( unsigned aggDevIdx )
  170. {
  171. cmApAgg_t* ap = _cmAg.list;
  172. unsigned i = 0;
  173. for(; ap!=NULL; ap=ap->link,++i)
  174. if( ap->aggDevIdx == aggDevIdx )
  175. return ap;
  176. return NULL;
  177. }
  178. cmAgRC_t _cmApAggGetAgg( unsigned aggDevIdx, cmApAgg_t** retPtrPtr )
  179. {
  180. if((*retPtrPtr = _cmApAggDevIdxToPtr(aggDevIdx)) == NULL )
  181. return cmErrMsg(&_cmAg.err,kInvalidDevIdxAgRC,"The aggregate system device index '%i' is invalid.");
  182. return kOkAgRC;
  183. }
  184. bool cmApAggIsDeviceAggregated( unsigned physDevIdx )
  185. {
  186. cmApAgg_t* ap = _cmAg.list;
  187. for(; ap!=NULL; ap=ap->link)
  188. {
  189. unsigned i;
  190. for(i=0; i<ap->devCnt; ++i)
  191. if( ap->devArray[i].physDevIdx == physDevIdx )
  192. return true;
  193. }
  194. return false;
  195. }
  196. cmAgRC_t cmApAggDeviceCount()
  197. {
  198. unsigned devCnt=0;
  199. cmApAgg_t* ap = _cmAg.list;
  200. for(; ap!=NULL; ap=ap->link)
  201. ++devCnt;
  202. return devCnt;
  203. }
  204. const char* cmApAggDeviceLabel( unsigned aggDevIdx )
  205. {
  206. cmApAgg_t* ap;
  207. cmAgRC_t rc;
  208. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  209. return ap->label;
  210. return NULL;
  211. }
  212. unsigned cmApAggDeviceChannelCount( unsigned aggDevIdx, bool inputFl )
  213. {
  214. cmApAgg_t* ap;
  215. cmAgRC_t rc;
  216. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  217. return inputFl ? ap->iChCnt : ap->oChCnt;
  218. return 0;
  219. }
  220. double cmApAggDeviceSampleRate( unsigned aggDevIdx )
  221. {
  222. cmApAgg_t* ap;
  223. cmAgRC_t rc;
  224. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  225. return ap->srate;
  226. return 0;
  227. }
  228. unsigned cmApAggDeviceFramesPerCycle( unsigned aggDevIdx, bool inputFl )
  229. {
  230. cmApAgg_t* ap;
  231. cmAgRC_t rc;
  232. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) == kOkAgRC )
  233. return ap->framesPerCycle;
  234. return 0;
  235. }
  236. cmAgRC_t cmApAggDeviceSetup(
  237. unsigned aggDevIdx,
  238. double srate,
  239. unsigned framesPerCycle,
  240. cmApCallbackPtr_t callbackPtr,
  241. void* userCbPtr )
  242. {
  243. cmApAgg_t* ap;
  244. cmAgRC_t rc;
  245. unsigned i;
  246. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  247. return rc;
  248. if((rc = cmApAggDeviceStop(aggDevIdx)) != kOkAgRC )
  249. return rc;
  250. for(i=0; i<ap->devCnt; ++i)
  251. {
  252. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  253. cmApAggDev_t* devPtr = ap->devArray + i;
  254. if( cmApDeviceSetup( physDevIdx, srate, framesPerCycle, _cmApAggCb, devPtr ) != kOkApRC )
  255. rc = cmErrMsg(&_cmAg.err,kPhysDevSetupFailAgRC,"The physical device (index:%i '%s') setup failed for sample rate:%f frames-per-cycle:%i.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)),srate,framesPerCycle);
  256. }
  257. if( rc == kOkAgRC )
  258. {
  259. ap->cbFunc = callbackPtr;
  260. ap->cbArg = userCbPtr;
  261. }
  262. return rc;
  263. }
  264. cmAgRC_t cmApAggDeviceStart( unsigned aggDevIdx )
  265. {
  266. cmAgRC_t rc = kOkAgRC;
  267. cmApAgg_t* ap;
  268. unsigned i;
  269. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  270. return rc;
  271. for(i=0; i<ap->devCnt; ++i)
  272. {
  273. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  274. if( cmApDeviceStart( physDevIdx ) != kOkApRC )
  275. return cmErrMsg(&_cmAg.err,kPhysDevStartFailAgRC,"The physical device (index:%i '%s') start failed.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  276. //usleep(1000);
  277. }
  278. ap->startedFl = true;
  279. return rc;
  280. }
  281. cmAgRC_t cmApAggDeviceStop( unsigned aggDevIdx )
  282. {
  283. cmAgRC_t rc = kOkAgRC;
  284. cmApAgg_t* ap;
  285. unsigned i;
  286. if((rc = _cmApAggGetAgg(aggDevIdx, &ap )) != kOkAgRC )
  287. return rc;
  288. for(i=0; i<ap->devCnt; ++i)
  289. {
  290. unsigned physDevIdx = ap->devArray[i].physDevIdx;
  291. if( cmApDeviceStop( physDevIdx ) != kOkApRC )
  292. return cmErrMsg(&_cmAg.err,kPhysDevStartFailAgRC,"The physical device (index:%i '%s') start failed.",physDevIdx,cmStringNullGuard(cmApDeviceLabel(physDevIdx)));
  293. }
  294. ap->startedFl = false;
  295. return rc;
  296. }
  297. bool cmApAggDeviceIsStarted( unsigned aggDevIdx )
  298. {
  299. cmApAgg_t* ap;
  300. if(_cmApAggGetAgg(aggDevIdx, &ap ) != kOkAgRC )
  301. return false;
  302. return ap->startedFl;
  303. }
  304. typedef struct
  305. {
  306. unsigned bufCnt; // 2=double buffering 3=triple buffering
  307. unsigned chIdx; // first test channel
  308. unsigned chCnt; // count of channels to test
  309. unsigned framesPerCycle; // DSP frames per cycle
  310. unsigned bufFrmCnt; // count of DSP frames used by the audio buffer (bufCnt * framesPerCycle)
  311. unsigned bufSmpCnt; // count of samples used by the audio buffer (chCnt * bufFrmCnt)
  312. unsigned inDevIdx; // input device index
  313. unsigned outDevIdx; // output device index
  314. double srate; // audio sample rate
  315. unsigned meterMs; // audio meter buffer length
  316. // param's and state for cmApSynthSine()
  317. bool synthFl;
  318. unsigned phase; // sine synth phase
  319. double frqHz; // sine synth frequency in Hz
  320. // buffer and state for cmApCopyIn/Out()
  321. cmApSample_t* buf; // buf[bufSmpCnt] - circular interleaved audio buffer
  322. unsigned bufInIdx; // next input buffer index
  323. unsigned bufOutIdx; // next output buffer index
  324. unsigned bufFullCnt; // count of full samples
  325. unsigned cbCnt; // count the callback
  326. unsigned underunCnt; //
  327. unsigned overunCnt;
  328. double* iMeter; // iMeter[ chCnt ]
  329. FILE* ifp;
  330. FILE* ofp;
  331. } cmApAggPortTestRecd;
  332. // The application can request any block of channels from the device. The packets are provided with the starting
  333. // device channel and channel count. This function converts device channels and channel counts to buffer
  334. // channel indexes and counts.
  335. //
  336. // Example:
  337. // input output
  338. // i,n i n
  339. // App: 0,4 0 1 2 3 -> 2 2
  340. // Pkt 2,8 2 3 4 5 6 7 8 -> 0 2
  341. //
  342. // The return value is the count of application requested channels located in this packet.
  343. //
  344. // input: *appChIdxPtr and appChCnt describe a block of device channels requested by the application.
  345. // *pktChIdxPtr and pktChCnt describe a block of device channels provided to the application
  346. //
  347. // output:*appChIdxPtr and <return value> describe a block of app buffer channels which will send/recv samples.
  348. // *pktChIdxPtr and <return value> describe a block of pkt buffer channels which will send/recv samples
  349. //
  350. unsigned _cmApAggDeviceToBuffer( unsigned* appChIdxPtr, unsigned appChCnt, unsigned* pktChIdxPtr, unsigned pktChCnt )
  351. {
  352. unsigned abi = *appChIdxPtr;
  353. unsigned aei = abi+appChCnt-1;
  354. unsigned pbi = *pktChIdxPtr;
  355. unsigned pei = pbi+pktChCnt-1;
  356. // if the ch's rqstd by the app do not overlap with this packet - return false.
  357. if( aei < pbi || abi > pei )
  358. return 0;
  359. // if the ch's rqstd by the app overlap with the beginning of the pkt channel block
  360. if( abi < pbi )
  361. {
  362. appChCnt -= pbi - abi;
  363. *appChIdxPtr = pbi - abi;
  364. *pktChIdxPtr = 0;
  365. }
  366. else
  367. {
  368. // the rqstd ch's begin inside the pkt channel block
  369. pktChCnt -= abi - pbi;
  370. *pktChIdxPtr = abi - pbi;
  371. *appChIdxPtr = 0;
  372. }
  373. // if the pkt channels extend beyond the rqstd ch block
  374. if( aei < pei )
  375. pktChCnt -= pei - aei;
  376. else
  377. appChCnt -= aei - pei; // the rqstd ch's extend beyond or coincide with the pkt block
  378. // the returned channel count must always be the same for both the rqstd and pkt
  379. return cmMin(appChCnt,pktChCnt);
  380. }
  381. // synthesize a sine signal into an interleaved audio buffer
  382. unsigned _cmApAggSynthSine( cmApAggPortTestRecd* r, float* p, unsigned chIdx, unsigned chCnt, unsigned frmCnt, unsigned phs, double hz )
  383. {
  384. long ph = 0;
  385. unsigned i;
  386. unsigned bufIdx = r->chIdx;
  387. unsigned bufChCnt;
  388. if( (bufChCnt = _cmApAggDeviceToBuffer( &bufIdx, r->chCnt, &chIdx, chCnt )) == 0)
  389. return phs;
  390. //if( r->cbCnt < 50 )
  391. // printf("ch:%i cnt:%i ch:%i cnt:%i bi:%i bcn:%i\n",r->chIdx,r->chCnt,chIdx,chCnt,bufIdx,bufChCnt);
  392. for(i=bufIdx; i<bufIdx+bufChCnt; ++i)
  393. {
  394. unsigned j;
  395. float* op = p + i;
  396. ph = phs;
  397. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  398. {
  399. *op = (float)(0.9 * sin( 2.0 * M_PI * hz * ph / r->srate ));
  400. }
  401. }
  402. return ph;
  403. }
  404. // Copy the audio samples in the interleaved audio buffer sp[srcChCnt*srcFrameCnt]
  405. // to the internal record buffer.
  406. void _cmApAggCopyIn( cmApAggPortTestRecd* r, const cmApSample_t* sp, unsigned srcChIdx, unsigned srcChCnt, unsigned srcFrameCnt )
  407. {
  408. unsigned i,j;
  409. unsigned chCnt = cmMin(r->chCnt,srcChCnt);
  410. // write the incoming sample to an output file for debugging
  411. if( r->ifp != NULL )
  412. if( fwrite(sp,sizeof(cmApSample_t),srcChCnt*srcFrameCnt,r->ifp) != srcChCnt*srcFrameCnt )
  413. printf("file write fail.\n");
  414. // zero the input meter array
  415. for(i=0; i<r->chCnt; ++i)
  416. r->iMeter[i] = 0;
  417. for(i=0; i<srcFrameCnt; ++i)
  418. {
  419. // copy samples from the src to the buffer - both src and buffer are interleaved
  420. for(j=0; j<chCnt; ++j)
  421. {
  422. r->buf[ r->bufInIdx + j ] = sp[ (i*srcChCnt) + srcChIdx + j ];
  423. // record the max value in the input meter array
  424. if( r->buf[ r->bufInIdx + j ] > r->iMeter[j] )
  425. r->iMeter[j] = r->buf[ r->bufInIdx + j ];
  426. }
  427. // zero channels that are not used in the buffer
  428. for(; j<r->chCnt; ++j)
  429. r->buf[ r->bufInIdx + j ] = 0;
  430. // advance to the next frame
  431. r->bufInIdx = (r->bufInIdx+r->chCnt) % r->bufFrmCnt;
  432. }
  433. //r->bufFullCnt = (r->bufFullCnt + srcFrameCnt) % r->bufFrmCnt;
  434. cmThUIntIncr(&r->bufFullCnt,srcFrameCnt);
  435. if( r->bufFullCnt > r->bufFrmCnt )
  436. {
  437. //printf("Input buffer overrun.\n");
  438. ++r->overunCnt;
  439. r->bufFullCnt = 0;
  440. }
  441. }
  442. // Copy audio samples out of the internal record buffer into dp[dstChCnt*dstFrameCnt].
  443. void _cmApAggCopyOut( cmApAggPortTestRecd* r, cmApSample_t* dp, unsigned dstChIdx, unsigned dstChCnt, unsigned dstFrameCnt )
  444. {
  445. // if there are not enough samples available to fill the destination
  446. // buffer then zero the dst buf.
  447. if( r->bufFullCnt < dstFrameCnt )
  448. {
  449. //printf("Empty Output Buffer %i < %i\n",r->bufFullCnt,dstFrameCnt);
  450. memset( dp, 0, dstFrameCnt*dstChCnt*sizeof(cmApSample_t) );
  451. ++r->underunCnt;
  452. }
  453. else
  454. {
  455. unsigned i,j;
  456. unsigned chCnt = cmMin(dstChCnt,r->chCnt);
  457. for(i=0; i<dstFrameCnt; ++i)
  458. {
  459. // copy the stored buffer samples to the dst buffer
  460. for(j=0; j<chCnt; ++j)
  461. dp[ (i*dstChCnt) + dstChIdx + j ] = r->buf[ r->bufOutIdx + j ];
  462. // zero unset channels in the dst buffer
  463. for(; j<dstChCnt; ++j)
  464. dp[ (i*dstChCnt) + dstChIdx + j ] = 0;
  465. r->bufOutIdx = (r->bufOutIdx + r->chCnt) % r->bufFrmCnt;
  466. }
  467. cmThUIntDecr(&r->bufFullCnt,dstFrameCnt);
  468. }
  469. if( r->ofp != NULL )
  470. fwrite(dp,sizeof(cmApSample_t),dstChCnt*dstFrameCnt,r->ofp);
  471. }
  472. // Audio port callback function called from the audio device thread.
  473. void _cmApAggPortCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  474. {
  475. unsigned i;
  476. // for each incoming audio packet
  477. for(i=0; i<inPktCnt; ++i)
  478. {
  479. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)inPktArray[i].userCbPtr;
  480. if( r->synthFl==false && inPktArray[i].devIdx == r->inDevIdx )
  481. {
  482. // copy the incoming audio into an internal buffer where it can be picked up by _cpApCopyOut().
  483. _cmApAggCopyIn( r, (cmApSample_t*)inPktArray[i].audioBytesPtr, inPktArray[i].begChIdx, inPktArray[i].chCnt, inPktArray[i].audioFramesCnt );
  484. }
  485. ++r->cbCnt;
  486. //printf("i %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  487. }
  488. unsigned hold_phase = 0;
  489. // for each outgoing audio packet
  490. for(i=0; i<outPktCnt; ++i)
  491. {
  492. cmApAggPortTestRecd* r = (cmApAggPortTestRecd*)outPktArray[i].userCbPtr;
  493. if( outPktArray[i].devIdx == r->outDevIdx )
  494. {
  495. // zero the output buffer
  496. memset(outPktArray[i].audioBytesPtr,0,outPktArray[i].chCnt * outPktArray[i].audioFramesCnt * sizeof(cmApSample_t) );
  497. // if the synth is enabled
  498. if( r->synthFl )
  499. {
  500. unsigned tmp_phase = _cmApAggSynthSine( r, outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt, r->phase, r->frqHz );
  501. // the phase will only change on packets that are actually used
  502. if( tmp_phase != r->phase )
  503. hold_phase = tmp_phase;
  504. }
  505. else
  506. {
  507. // copy the any audio in the internal record buffer to the playback device
  508. _cmApAggCopyOut( r, (cmApSample_t*)outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt );
  509. }
  510. }
  511. r->phase = hold_phase;
  512. //printf("o %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  513. // count callbacks
  514. ++r->cbCnt;
  515. }
  516. }
  517. // print the usage message for cmAudioPortTest.c
  518. void _cmApAggPrintUsage( cmRpt_t* rpt )
  519. {
  520. char msg[] =
  521. "cmApAggPortTest() command switches\n"
  522. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -t -p -h \n"
  523. "\n"
  524. "-r <srate> = sample rate\n"
  525. "-a <chidx> = first channel\n"
  526. "-c <chcnt> = audio channels\n"
  527. "-b <bufcnt> = count of buffers\n"
  528. "-f <frmcnt> = count of samples per buffer\n"
  529. "-i <idevidx> = input device index\n"
  530. "-o <odevidx> = output device index\n"
  531. "-p = print report but do not start audio devices\n"
  532. "-h = print this usage message\n";
  533. cmRptPrintf(rpt,msg);
  534. }
  535. // Get a command line option.
  536. int _cmApAggGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  537. {
  538. int i = 0;
  539. for(; i<argc; ++i)
  540. if( strcmp(label,argv[i]) == 0 )
  541. {
  542. if(boolFl)
  543. return 1;
  544. if( i == (argc-1) )
  545. return defaultVal;
  546. return atoi(argv[i+1]);
  547. }
  548. return defaultVal;
  549. }
  550. void _cmApBufShowMeter( cmRpt_t* rpt, unsigned devIdx )
  551. {
  552. unsigned faultCnt = 0;
  553. unsigned meterCnt = cmApBufChannelCount(devIdx,kInApFl);
  554. double meterArray[ meterCnt ];
  555. unsigned n = cmApBufGetStatus(devIdx, kInApFl, meterArray, meterCnt, &faultCnt );
  556. unsigned i;
  557. cmRptPrintf(rpt,"In: actual:%i fault: %i : ",n,faultCnt);
  558. for(i=0; i<meterCnt; ++i)
  559. cmRptPrintf(rpt,"%i:%f ",i,meterArray[i]);
  560. cmRptPrintf(rpt,"\n");
  561. }
  562. unsigned _cmAggGlobalInDevIdx = 0;
  563. unsigned _cmAggGlobalOutDevIdx = 0;
  564. void _cmApAggPortCb2( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  565. {
  566. cmApBufInputToOutput( _cmAggGlobalInDevIdx, _cmAggGlobalOutDevIdx );
  567. cmApBufUpdate( inPktArray, inPktCnt, outPktArray, outPktCnt );
  568. }
  569. void recdPrint();
  570. // Audio Port testing function
  571. int cmApAggTest( bool runFl, cmCtx_t* ctx, int argc, const char* argv[] )
  572. {
  573. cmApAggPortTestRecd r;
  574. unsigned i;
  575. cmRpt_t* rpt = &ctx->rpt;
  576. if( _cmApAggGetOpt(argc,argv,"-h",0,true) )
  577. _cmApAggPrintUsage(rpt);
  578. runFl = _cmApAggGetOpt(argc,argv,"-p",!runFl,true)?false:true;
  579. r.chIdx = _cmApAggGetOpt(argc,argv,"-a",0,false);
  580. r.chCnt = _cmApAggGetOpt(argc,argv,"-c",2,false);
  581. r.bufCnt = _cmApAggGetOpt(argc,argv,"-b",3,false);
  582. r.framesPerCycle = _cmApAggGetOpt(argc,argv,"-f",512,false);
  583. r.bufFrmCnt = (r.bufCnt*r.framesPerCycle);
  584. r.bufSmpCnt = (r.chCnt * r.bufFrmCnt);
  585. r.synthFl = false;
  586. r.meterMs = 50;
  587. cmApSample_t buf[r.bufSmpCnt];
  588. double imeter[r.chCnt];
  589. r.iMeter = imeter;
  590. r.inDevIdx = _cmAggGlobalInDevIdx = _cmApAggGetOpt(argc,argv,"-i",0,false);
  591. r.outDevIdx = _cmAggGlobalOutDevIdx = _cmApAggGetOpt(argc,argv,"-o",2,false);
  592. r.phase = 0;
  593. r.frqHz = 2000;
  594. r.srate = 44100;
  595. r.bufInIdx = 0;
  596. r.bufOutIdx = 0;
  597. r.bufFullCnt = 0;
  598. r.buf = buf;
  599. r.cbCnt = 0;
  600. r.underunCnt = 0;
  601. r.overunCnt = 0;
  602. r.ifp = NULL;
  603. r.ofp = NULL;
  604. if(0)
  605. {
  606. if((r.ifp = fopen("/home/kevin/temp/itemp0.bin","wb")) == NULL )
  607. cmRptPrintf(rpt,"File open failed.\n");
  608. if((r.ofp = fopen("/home/kevin/temp/otemp0.bin","wb")) == NULL )
  609. cmRptPrintf(rpt,"File open failed.\n");
  610. }
  611. cmRptPrintf(rpt,"%s in:%i out:%i chidx:%i chs:%i bufs=%i frm=%i rate=%f\n",runFl?"exec":"rpt",r.inDevIdx,r.outDevIdx,r.chIdx,r.chCnt,r.bufCnt,r.framesPerCycle,r.srate);
  612. // allocate the aggregate device system
  613. if( cmApAggAllocate(rpt) != kOkAgRC )
  614. {
  615. cmRptPrintf(rpt,"The aggregate device system allocation failed.\n");
  616. return 1;
  617. }
  618. unsigned physDevIdxArray[] = { 0, 1 };
  619. unsigned physDevCnt = sizeof(physDevIdxArray)/sizeof(physDevIdxArray[0]);
  620. if( cmApAggCreateDevice("aggdev",physDevCnt,physDevIdxArray,kInAggFl | kOutAggFl) != kOkAgRC )
  621. {
  622. cmRptPrintf(rpt,"The aggregate device creation failed.n");
  623. goto doneLabel;
  624. }
  625. // initialize the audio device interface
  626. if( cmApInitialize(rpt) != kOkApRC )
  627. {
  628. cmRptPrintf(rpt,"Initialize failed.\n");
  629. goto doneLabel;
  630. }
  631. // report the current audio device configuration
  632. for(i=0; i<cmApDeviceCount(); ++i)
  633. {
  634. cmRptPrintf(rpt,"%i [in: chs=%i frames=%i] [out: chs=%i frames=%i] srate:%f %s\n",i,cmApDeviceChannelCount(i,true),cmApDeviceFramesPerCycle(i,true),cmApDeviceChannelCount(i,false),cmApDeviceFramesPerCycle(i,false),cmApDeviceSampleRate(i),cmApDeviceLabel(i));
  635. }
  636. // report the current audio devices using the audio port interface function
  637. cmApReport(rpt);
  638. if( runFl )
  639. {
  640. // initialize the audio bufer
  641. cmApBufInitialize( cmApDeviceCount(), r.meterMs );
  642. // setup the buffer for the output device
  643. cmApBufSetup( r.outDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.outDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.outDevIdx,false), r.framesPerCycle );
  644. // setup the buffer for the input device
  645. if( r.inDevIdx != r.outDevIdx )
  646. cmApBufSetup( r.inDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.inDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.inDevIdx,false), r.framesPerCycle );
  647. // setup an input device
  648. if( cmApDeviceSetup(r.inDevIdx,r.srate,r.framesPerCycle,_cmApAggPortCb2,&r) != kOkApRC )
  649. {
  650. cmRptPrintf(rpt,"In device setup failed.\n");
  651. goto errLabel;
  652. }
  653. // setup an output device
  654. if( r.inDevIdx != r.outDevIdx )
  655. {
  656. if(cmApDeviceSetup(r.outDevIdx,r.srate,r.framesPerCycle,_cmApAggPortCb2,&r) != kOkApRC )
  657. {
  658. cmRptPrintf(rpt,"Out device setup failed.\n");
  659. goto errLabel;
  660. }
  661. }
  662. // start the input device
  663. if( cmApDeviceStart(r.inDevIdx) != kOkApRC )
  664. {
  665. cmRptPrintf(rpt,"In device start failed.\n");
  666. goto errLabel;
  667. }
  668. if( r.inDevIdx != r.outDevIdx )
  669. {
  670. // start the output device
  671. if( cmApDeviceStart(r.outDevIdx) != kOkApRC )
  672. {
  673. cmRptPrintf(rpt,"Out Device start failed.\n");
  674. goto errLabel;
  675. }
  676. }
  677. cmApBufEnableChannel(r.inDevIdx, -1, kInApFl | kEnableApFl );
  678. cmApBufEnableChannel(r.outDevIdx, -1, kOutApFl | kEnableApFl );
  679. cmApBufEnableMeter(r.inDevIdx, -1, kInApFl | kEnableApFl );
  680. cmRptPrintf(rpt,"q=quit O/o output tone, I/i input tone P/p pass\n");
  681. char c;
  682. while((c=getchar()) != 'q')
  683. {
  684. //cmApDeviceRtReport(rpt,r.outDevIdx);
  685. switch(c)
  686. {
  687. case 'i':
  688. case 'I':
  689. cmApBufEnableTone(r.inDevIdx,-1,kInApFl | (c=='I'?kEnableApFl:0));
  690. break;
  691. case 'o':
  692. case 'O':
  693. cmApBufEnableTone(r.outDevIdx,-1,kOutApFl | (c=='O'?kEnableApFl:0));
  694. break;
  695. case 'p':
  696. case 'P':
  697. cmApBufEnablePass(r.outDevIdx,-1,kOutApFl | (c=='P'?kEnableApFl:0));
  698. break;
  699. case 's':
  700. cmApBufReport(rpt);
  701. break;
  702. case 'm':
  703. _cmApBufShowMeter(rpt,_cmAggGlobalInDevIdx);
  704. /*
  705. cmRptPrintf(rpt,"iMeter: ");
  706. for(i=0; i<r.chCnt; ++i)
  707. cmRptPrintf(rpt,"%f ",r.iMeter[i]);
  708. cmRptPrintf(rpt,"\n");
  709. */
  710. break;
  711. case 'r':
  712. recdPrint();
  713. break;
  714. default:
  715. cmRptPrintf(rpt,"cb:%i\n",r.cbCnt);
  716. }
  717. }
  718. errLabel:
  719. // stop the input device
  720. if( cmApDeviceIsStarted(r.inDevIdx) )
  721. if( cmApDeviceStop(r.inDevIdx) != kOkApRC )
  722. cmRptPrintf(rpt,"In device stop failed.\n");
  723. // stop the output device
  724. if( cmApDeviceIsStarted(r.outDevIdx) )
  725. if( cmApDeviceStop(r.outDevIdx) != kOkApRC )
  726. cmRptPrintf(rpt,"Out device stop failed.\n");
  727. }
  728. doneLabel:
  729. // report the count of audio buffer callbacks
  730. cmRptPrintf(rpt,"cb:%i under:%i over:%i\n", r.cbCnt, r.underunCnt, r.overunCnt );
  731. // release any resources held by the audio port interface
  732. if( cmApFinalize() != kOkApRC )
  733. cmRptPrintf(rpt,"Finalize failed.\n");
  734. if( cmApAggFree() != kOkAgRC )
  735. cmRptPrintf(rpt,"Agg device system free failed.");
  736. if(r.ifp != NULL)
  737. fclose(r.ifp);
  738. if(r.ofp != NULL)
  739. fclose(r.ofp);
  740. cmApBufFinalize();
  741. return 0;
  742. }