libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmThread.c 44KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmMem.h"
  6. #include "cmMallocDebug.h"
  7. #include "cmThread.h"
  8. #include <pthread.h>
  9. #include <unistd.h> // usleep
  10. #ifdef OS_OSX
  11. #include <libkern/OSAtomic.h>
  12. #endif
  13. cmThreadH_t cmThreadNullHandle = {NULL};
  14. enum
  15. {
  16. kDoExitThFl = 0x01,
  17. kDoPauseThFl = 0x02,
  18. kDoRunThFl = 0x04
  19. };
  20. typedef struct
  21. {
  22. cmErr_t err;
  23. cmThreadFunc_t funcPtr;
  24. pthread_t pthreadH;
  25. cmThStateId_t state;
  26. void* funcParam;
  27. unsigned doFlags;
  28. unsigned pauseMicroSecs;
  29. unsigned waitMicroSecs;
  30. } cmThThread_t;
  31. cmThRC_t _cmThError( cmErr_t* err, cmThRC_t rc, int sysErr, const char* fmt, ... )
  32. {
  33. va_list vl;
  34. va_start(vl,fmt);
  35. cmErrVSysMsg(err,rc,sysErr,fmt,vl);
  36. va_end(vl);
  37. return rc;
  38. }
  39. void _cmThThreadCleanUpCallback(void* t)
  40. {
  41. ((cmThThread_t*)t)->state = kExitedThId;
  42. }
  43. void* _cmThThreadCallback(void* param)
  44. {
  45. cmThThread_t* t = (cmThThread_t*)param;
  46. // set a clean up handler - this will be called when the
  47. // thread terminates unexpectedly or pthread_cleanup_pop() is called.
  48. pthread_cleanup_push(_cmThThreadCleanUpCallback,t);
  49. while( cmIsFlag(t->doFlags,kDoExitThFl) == false )
  50. {
  51. if( t->state == kPausedThId )
  52. {
  53. cmSleepUs( t->pauseMicroSecs );
  54. if( cmIsFlag(t->doFlags,kDoRunThFl) )
  55. {
  56. t->doFlags = cmClrFlag(t->doFlags,kDoRunThFl);
  57. t->state = kRunningThId;
  58. }
  59. }
  60. else
  61. {
  62. if( t->funcPtr(t->funcParam)==false )
  63. break;
  64. if( cmIsFlag(t->doFlags,kDoPauseThFl) )
  65. {
  66. t->doFlags = cmClrFlag(t->doFlags,kDoPauseThFl);
  67. t->state = kPausedThId;
  68. }
  69. }
  70. }
  71. pthread_cleanup_pop(1);
  72. pthread_exit(NULL);
  73. return t;
  74. }
  75. cmThThread_t* _cmThThreadFromHandle( cmThreadH_t h )
  76. {
  77. cmThThread_t* tp = (cmThThread_t*)h.h;
  78. assert(tp != NULL);
  79. return tp->state==kNotInitThId ? NULL : tp;
  80. }
  81. cmThRC_t _cmThWaitForState( cmThThread_t* t, unsigned stateId )
  82. {
  83. unsigned waitTimeMicroSecs = 0;
  84. while( t->state != stateId && waitTimeMicroSecs < t->waitMicroSecs )
  85. {
  86. //cmSleepUs( t->waitMicroSecs );
  87. cmSleepUs( 15000 );
  88. waitTimeMicroSecs += 15000; //t->waitMicroSecs;
  89. }
  90. return t->state==stateId ? kOkThRC : kTimeOutThRC;
  91. }
  92. cmThRC_t cmThreadCreate( cmThreadH_t* hPtr, cmThreadFunc_t funcPtr, void* funcParam, cmRpt_t* rpt )
  93. {
  94. //pthread_attr_t attr;
  95. cmThRC_t rc = kOkThRC;
  96. cmThThread_t* tp = cmMemAllocZ( cmThThread_t, 1 );
  97. int sysErr;
  98. cmErrSetup(&tp->err,rpt,"Thread");
  99. tp->funcPtr = funcPtr;
  100. tp->funcParam = funcParam;
  101. tp->state = kPausedThId;
  102. tp->doFlags = 0;
  103. tp->pauseMicroSecs = 50000;
  104. tp->waitMicroSecs = 1000000;
  105. if((sysErr = pthread_create(&tp->pthreadH,NULL,_cmThThreadCallback, (void*)tp )) != 0 )
  106. {
  107. tp->state = kNotInitThId;
  108. rc = _cmThError(&tp->err,kCreateFailThRC,sysErr,"Thread create failed.");
  109. }
  110. hPtr->h = tp;
  111. return rc;
  112. }
  113. cmThRC_t cmThreadDestroy( cmThreadH_t* hPtr )
  114. {
  115. cmThRC_t rc = kOkThRC;
  116. if( hPtr==NULL || cmThreadIsValid(*hPtr)==false )
  117. return rc;
  118. cmThThread_t* t = _cmThThreadFromHandle(*hPtr );
  119. if( t == NULL )
  120. return kInvalidHandleThRC;
  121. // tell the thread to exit
  122. t->doFlags = cmSetFlag(t->doFlags,kDoExitThFl);
  123. // wait for the thread to exit and then deallocate the thread object
  124. if((rc = _cmThWaitForState(t,kExitedThId)) == kOkThRC )
  125. {
  126. cmMemFree(t);
  127. hPtr->h = NULL;
  128. }
  129. else
  130. {
  131. rc = _cmThError(&t->err,rc,0,"Thread timed out waiting for destroy.");
  132. }
  133. return rc;
  134. }
  135. cmThRC_t cmThreadPause( cmThreadH_t h, unsigned cmdFlags )
  136. {
  137. cmThRC_t rc = kOkThRC;
  138. bool pauseFl = cmIsFlag(cmdFlags,kPauseThFl);
  139. bool waitFl = cmIsFlag(cmdFlags,kWaitThFl);
  140. cmThThread_t* t = _cmThThreadFromHandle(h);
  141. unsigned waitId;
  142. if( t == NULL )
  143. return kInvalidHandleThRC;
  144. bool isPausedFl = t->state == kPausedThId;
  145. if( isPausedFl == pauseFl )
  146. return kOkThRC;
  147. if( pauseFl )
  148. {
  149. t->doFlags = cmSetFlag(t->doFlags,kDoPauseThFl);
  150. waitId = kPausedThId;
  151. }
  152. else
  153. {
  154. t->doFlags = cmSetFlag(t->doFlags,kDoRunThFl);
  155. waitId = kRunningThId;
  156. }
  157. if( waitFl )
  158. rc = _cmThWaitForState(t,waitId);
  159. if( rc != kOkThRC )
  160. _cmThError(&t->err,rc,0,"Thread timed out waiting for '%s'.", pauseFl ? "pause" : "un-pause");
  161. return rc;
  162. }
  163. cmThStateId_t cmThreadState( cmThreadH_t h )
  164. {
  165. cmThThread_t* tp = _cmThThreadFromHandle(h);
  166. if( tp == NULL )
  167. return kNotInitThId;
  168. return tp->state;
  169. }
  170. bool cmThreadIsValid( cmThreadH_t h )
  171. { return h.h != NULL; }
  172. unsigned cmThreadPauseTimeOutMicros( cmThreadH_t h )
  173. {
  174. cmThThread_t* tp = _cmThThreadFromHandle(h);
  175. return tp->pauseMicroSecs;
  176. }
  177. void cmThreadSetPauseTimeOutMicros( cmThreadH_t h, unsigned usecs )
  178. {
  179. cmThThread_t* tp = _cmThThreadFromHandle(h);
  180. tp->pauseMicroSecs = usecs;
  181. }
  182. unsigned cmThreadWaitTimeOutMicros( cmThreadH_t h )
  183. {
  184. cmThThread_t* tp = _cmThThreadFromHandle(h);
  185. return tp->waitMicroSecs;
  186. }
  187. void cmThreadSetWaitTimeOutMicros( cmThreadH_t h, unsigned usecs )
  188. {
  189. cmThThread_t* tp = _cmThThreadFromHandle(h);
  190. tp->waitMicroSecs = usecs;
  191. }
  192. bool _cmThreadTestCb( void* p )
  193. {
  194. unsigned* ip = (unsigned*)p;
  195. ip[0]++;
  196. return true;
  197. }
  198. void cmThreadTest(cmRpt_t* rpt)
  199. {
  200. cmThreadH_t th0;
  201. unsigned val = 0;
  202. if( cmThreadCreate(&th0,_cmThreadTestCb,&val,rpt) == kOkThRC )
  203. {
  204. if( cmThreadPause(th0,0) != kOkThRC )
  205. {
  206. cmRptPrintf(rpt,"Thread start failed.\n");
  207. return;
  208. }
  209. char c = 0;
  210. cmRptPrintf(rpt,"o=print p=pause s=state q=quit\n");
  211. while( c != 'q' )
  212. {
  213. c = (char)fgetc(stdin);
  214. fflush(stdin);
  215. switch(c)
  216. {
  217. case 'o':
  218. cmRptPrintf(rpt,"val: 0x%x\n",val);
  219. break;
  220. case 's':
  221. cmRptPrintf(rpt,"state=%i\n",cmThreadState(th0));
  222. break;
  223. case 'p':
  224. {
  225. cmRC_t rc;
  226. if( cmThreadState(th0) == kPausedThId )
  227. rc = cmThreadPause(th0,kWaitThFl);
  228. else
  229. rc = cmThreadPause(th0,kPauseThFl|kWaitThFl);
  230. if( rc == kOkThRC )
  231. cmRptPrintf(rpt,"new state:%i\n", cmThreadState(th0));
  232. else
  233. cmRptPrintf(rpt,"cmThreadPause() failed.");
  234. }
  235. break;
  236. case 'q':
  237. break;
  238. //default:
  239. //cmRptPrintf(rpt,"Unknown:%c\n",c);
  240. }
  241. }
  242. if( cmThreadDestroy(&th0) != kOkThRC )
  243. cmRptPrintf(rpt,"Thread destroy failed.\n");
  244. }
  245. }
  246. //-----------------------------------------------------------------------------
  247. //-----------------------------------------------------------------------------
  248. //-----------------------------------------------------------------------------
  249. typedef struct
  250. {
  251. cmErr_t err;
  252. pthread_mutex_t mutex;
  253. pthread_cond_t cvar;
  254. } cmThreadMutex_t;
  255. cmThreadMutexH_t kThreadMutexNULL = {NULL};
  256. cmThreadMutex_t* _cmThreadMutexFromHandle( cmThreadMutexH_t h )
  257. {
  258. cmThreadMutex_t* p = (cmThreadMutex_t*)h.h;
  259. assert(p != NULL);
  260. return p;
  261. }
  262. cmThRC_t cmThreadMutexCreate( cmThreadMutexH_t* hPtr, cmRpt_t* rpt )
  263. {
  264. int sysErr;
  265. cmThreadMutex_t* p = cmMemAllocZ( cmThreadMutex_t, 1 );
  266. cmErrSetup(&p->err,rpt,"Thread Mutex");
  267. if((sysErr = pthread_mutex_init(&p->mutex,NULL)) != 0 )
  268. return _cmThError(&p->err,kCreateFailThRC,sysErr,"Thread mutex create failed.");
  269. if((sysErr = pthread_cond_init(&p->cvar,NULL)) != 0 )
  270. return _cmThError(&p->err,kCreateFailThRC,sysErr,"Thread Condition var. create failed.");
  271. hPtr->h = p;
  272. return kOkThRC;
  273. }
  274. cmThRC_t cmThreadMutexDestroy( cmThreadMutexH_t* hPtr )
  275. {
  276. int sysErr;
  277. cmThreadMutex_t* p = _cmThreadMutexFromHandle(*hPtr);
  278. if( p == NULL )
  279. return kInvalidHandleThRC;
  280. if((sysErr = pthread_cond_destroy(&p->cvar)) != 0)
  281. return _cmThError(&p->err,kDestroyFailThRC,sysErr,"Thread condition var. destroy failed.");
  282. if((sysErr = pthread_mutex_destroy(&p->mutex)) != 0)
  283. return _cmThError(&p->err,kDestroyFailThRC,sysErr,"Thread mutex destroy failed.");
  284. cmMemFree(p);
  285. hPtr->h = NULL;
  286. return kOkThRC;
  287. }
  288. cmThRC_t cmThreadMutexTryLock( cmThreadMutexH_t h, bool* lockFlPtr )
  289. {
  290. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  291. if( p == NULL )
  292. return kInvalidHandleThRC;
  293. int sysErr = pthread_mutex_trylock(&p->mutex);
  294. switch(sysErr)
  295. {
  296. case EBUSY:
  297. *lockFlPtr = false;
  298. break;
  299. case 0:
  300. *lockFlPtr = true;
  301. break;
  302. default:
  303. return _cmThError(&p->err,kLockFailThRC,sysErr,"Thread mutex try-lock failed.");;
  304. }
  305. return kOkThRC;
  306. }
  307. cmThRC_t cmThreadMutexLock( cmThreadMutexH_t h )
  308. {
  309. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  310. if( p == NULL )
  311. return kInvalidHandleThRC;
  312. int sysErr = pthread_mutex_lock(&p->mutex);
  313. if( sysErr == 0 )
  314. return kOkThRC;
  315. return _cmThError(&p->err,kLockFailThRC,sysErr,"Thread mutex lock failed.");
  316. }
  317. cmThRC_t cmThreadMutexUnlock( cmThreadMutexH_t h )
  318. {
  319. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  320. if( p == NULL )
  321. return kInvalidHandleThRC;
  322. int sysErr = pthread_mutex_unlock(&p->mutex);
  323. if( sysErr == 0 )
  324. return kOkThRC;
  325. return _cmThError(&p->err,kUnlockFailThRC,sysErr,"Thread mutex unlock failed.");
  326. }
  327. bool cmThreadMutexIsValid( cmThreadMutexH_t h )
  328. { return h.h != NULL; }
  329. cmThRC_t cmThreadMutexWaitOnCondVar( cmThreadMutexH_t h, bool lockFl )
  330. {
  331. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  332. if( p == NULL )
  333. return kInvalidHandleThRC;
  334. int sysErr;
  335. if( lockFl )
  336. if( (sysErr=pthread_mutex_lock(&p->mutex)) != 0 )
  337. _cmThError(&p->err,kLockFailThRC,sysErr,"Thread lock failed on cond. var. wait.");
  338. if((sysErr = pthread_cond_wait(&p->cvar,&p->mutex)) != 0 )
  339. _cmThError(&p->err,kCVarWaitFailThRC,sysErr,"Thread cond. var. wait failed.");
  340. return kOkThRC;
  341. }
  342. cmThRC_t cmThreadMutexSignalCondVar( cmThreadMutexH_t h )
  343. {
  344. int sysErr;
  345. cmThreadMutex_t* p = _cmThreadMutexFromHandle(h);
  346. if( p == NULL )
  347. return kInvalidHandleThRC;
  348. if((sysErr = pthread_cond_signal(&p->cvar)) != 0 )
  349. return _cmThError(&p->err,kCVarSignalFailThRC,sysErr,"Thread cond. var. signal failed.");
  350. return kOkThRC;
  351. }
  352. //-----------------------------------------------------------------------------
  353. //-----------------------------------------------------------------------------
  354. //-----------------------------------------------------------------------------
  355. cmTsQueueH_t cmTsQueueNullHandle = { NULL };
  356. enum { cmTsQueueBufCnt = 2 };
  357. typedef struct
  358. {
  359. unsigned allocCnt; // count of bytes allocated for the buffer
  360. unsigned fullCnt; // count of bytes used in the buffer
  361. char* basePtr; // base of buffer memory
  362. unsigned* msgPtr; // pointer to first msg
  363. unsigned msgCnt;
  364. } cmTsQueueBuf;
  365. typedef struct
  366. {
  367. cmThreadMutexH_t mutexH;
  368. cmTsQueueBuf bufArray[cmTsQueueBufCnt];
  369. unsigned inBufIdx;
  370. unsigned outBufIdx;
  371. char* memPtr;
  372. cmTsQueueCb_t cbFunc;
  373. void* userCbPtr;
  374. } cmTsQueue_t;
  375. cmTsQueue_t* _cmTsQueueFromHandle( cmTsQueueH_t h )
  376. {
  377. cmTsQueue_t* p = h.h;
  378. assert(p != NULL);
  379. return p;
  380. }
  381. cmThRC_t _cmTsQueueDestroy( cmTsQueue_t* p )
  382. {
  383. cmThRC_t rc;
  384. if( p == NULL )
  385. return kInvalidHandleThRC;
  386. if( p->mutexH.h != NULL )
  387. if((rc = cmThreadMutexDestroy(&p->mutexH)) != kOkThRC )
  388. return rc;
  389. if( p->memPtr != NULL )
  390. cmMemPtrFree(&p->memPtr);
  391. cmMemPtrFree(&p);
  392. return kOkThRC;
  393. }
  394. cmThRC_t cmTsQueueCreate( cmTsQueueH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* userCbPtr, cmRpt_t* rpt )
  395. {
  396. cmTsQueue_t* p = cmMemAllocZ( cmTsQueue_t, 1 );
  397. unsigned i;
  398. if( cmThreadMutexCreate(&p->mutexH,rpt) != kOkThRC )
  399. goto errLabel;
  400. p->memPtr = cmMemAllocZ( char, bufByteCnt*cmTsQueueBufCnt );
  401. p->outBufIdx = 0;
  402. p->inBufIdx = 1;
  403. p->cbFunc = cbFunc;
  404. p->userCbPtr = userCbPtr;
  405. for(i=0; i<cmTsQueueBufCnt; ++i)
  406. {
  407. p->bufArray[i].allocCnt = bufByteCnt;
  408. p->bufArray[i].fullCnt = 0;
  409. p->bufArray[i].basePtr = p->memPtr + (i*bufByteCnt);
  410. p->bufArray[i].msgPtr = NULL;
  411. p->bufArray[i].msgCnt = 0;
  412. }
  413. hPtr->h = p;
  414. return kOkThRC;
  415. errLabel:
  416. _cmTsQueueDestroy(p);
  417. return kCreateFailThRC;
  418. }
  419. cmThRC_t cmTsQueueDestroy( cmTsQueueH_t* hPtr )
  420. {
  421. cmThRC_t rc = kOkThRC;
  422. if( (hPtr != NULL) && cmTsQueueIsValid(*hPtr))
  423. if((rc = _cmTsQueueDestroy(_cmTsQueueFromHandle(*hPtr))) == kOkThRC )
  424. hPtr->h = NULL;
  425. return rc;
  426. }
  427. cmThRC_t cmTsQueueSetCallback( cmTsQueueH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  428. {
  429. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  430. p->cbFunc = cbFunc;
  431. p->userCbPtr = cbArg;
  432. return kOkThRC;
  433. }
  434. unsigned cmTsQueueAllocByteCount( cmTsQueueH_t h )
  435. {
  436. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  437. unsigned n = 0;
  438. if( cmThreadMutexLock(p->mutexH) == kOkThRC )
  439. {
  440. n = p->bufArray[ p->inBufIdx ].allocCnt;
  441. cmThreadMutexUnlock(p->mutexH);
  442. }
  443. return n;
  444. }
  445. unsigned cmTsQueueAvailByteCount( cmTsQueueH_t h )
  446. {
  447. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  448. unsigned n = 0;
  449. if(cmThreadMutexLock(p->mutexH) == kOkThRC )
  450. {
  451. n = p->bufArray[ p->inBufIdx ].allocCnt - p->bufArray[ p->inBufIdx].fullCnt;
  452. cmThreadMutexUnlock(p->mutexH);
  453. }
  454. return n;
  455. }
  456. cmThRC_t _cmTsQueueEnqueueMsg( cmTsQueueH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  457. {
  458. cmThRC_t rc;
  459. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  460. if( p == NULL )
  461. return kInvalidHandleThRC;
  462. // lock the mutex
  463. if((rc = cmThreadMutexLock(p->mutexH)) == kOkThRC )
  464. {
  465. cmTsQueueBuf* b = p->bufArray + p->inBufIdx; // ptr to buf recd
  466. const char* ep = b->basePtr + b->allocCnt; // end of buf data space
  467. unsigned *mp = (unsigned*)(b->basePtr + b->fullCnt); // ptr to size of new msg space
  468. char* dp = (char*)(mp+1); // ptr to data area of new msg space
  469. unsigned ttlByteCnt = 0; // track size of msg data
  470. unsigned i = 0;
  471. // get the total size of the msg
  472. for(i=0; i<arrayCnt; ++i)
  473. ttlByteCnt += msgByteCntArray[i];
  474. // if the msg is too big for the queue buf
  475. if( dp + ttlByteCnt > ep )
  476. rc = kBufFullThRC;
  477. else
  478. {
  479. // for each segment of the incoming msg
  480. for(i=0; i<arrayCnt; ++i)
  481. {
  482. // get the size of the segment
  483. unsigned n = msgByteCntArray[i];
  484. // copy in the segment
  485. memcpy(dp,msgPtrArray[i],n);
  486. dp += n; //
  487. }
  488. assert(dp <= ep );
  489. // write the size ofthe msg into the buffer
  490. *mp = ttlByteCnt;
  491. // update the pointer to the first msg
  492. if( b->msgPtr == NULL )
  493. b->msgPtr = mp;
  494. // track the count of msgs in this buffer
  495. ++b->msgCnt;
  496. // update fullCnt last since dequeue uses fullCnt to
  497. // notice that a msg may be waiting
  498. b->fullCnt += sizeof(unsigned) + ttlByteCnt;
  499. }
  500. cmThreadMutexUnlock(p->mutexH);
  501. }
  502. return rc;
  503. }
  504. cmThRC_t cmTsQueueEnqueueSegMsg( cmTsQueueH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  505. { return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,arrayCnt); }
  506. cmThRC_t cmTsQueueEnqueueMsg( cmTsQueueH_t h, const void* dataPtr, unsigned byteCnt )
  507. {
  508. const void* msgPtrArray[] = { dataPtr };
  509. unsigned msgByteCntArray[] = { byteCnt };
  510. return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,1);
  511. }
  512. cmThRC_t cmTsQueueEnqueueIdMsg( cmTsQueueH_t h, unsigned id, const void* dataPtr, unsigned byteCnt )
  513. {
  514. const void* msgPtrArray[] = { &id, dataPtr };
  515. unsigned msgByteCntArray[] = { sizeof(id), byteCnt };
  516. return _cmTsQueueEnqueueMsg(h,msgPtrArray,msgByteCntArray,2);
  517. }
  518. cmThRC_t _cmTsQueueDequeueMsg( cmTsQueue_t* p, void* retBuf, unsigned refBufByteCnt )
  519. {
  520. cmTsQueueBuf* b = p->bufArray + p->outBufIdx;
  521. // if the output buffer is empty - there is nothing to do
  522. if( b->fullCnt == 0 )
  523. return kBufEmptyThRC;
  524. assert( b->msgPtr != NULL );
  525. // get the output msg size and data
  526. unsigned msgByteCnt = *b->msgPtr;
  527. char* msgDataPtr = (char*)(b->msgPtr + 1);
  528. // transmit the msg via a callback
  529. if( retBuf == NULL && p->cbFunc != NULL )
  530. p->cbFunc(p->userCbPtr,msgByteCnt,msgDataPtr);
  531. else
  532. {
  533. // retBuf may be NULL if the func is being used by cmTsQueueDequeueByteCount()
  534. if( retBuf == NULL || msgByteCnt > refBufByteCnt )
  535. return kBufTooSmallThRC;
  536. // copy the msg to a buffer
  537. if( retBuf != NULL )
  538. memcpy(retBuf,msgDataPtr,msgByteCnt);
  539. }
  540. // update the buffer
  541. b->fullCnt -= sizeof(unsigned) + msgByteCnt;
  542. b->msgPtr = (unsigned*)(msgDataPtr + msgByteCnt);
  543. --(b->msgCnt);
  544. if( b->fullCnt == 0 )
  545. {
  546. assert(b->msgCnt == 0);
  547. b->msgPtr = NULL;
  548. }
  549. return kOkThRC;
  550. }
  551. cmThRC_t cmTsQueueDequeueMsg( cmTsQueueH_t h, void* retBuf, unsigned refBufByteCnt )
  552. {
  553. cmThRC_t rc;
  554. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  555. if( p == NULL )
  556. return kInvalidHandleThRC;
  557. // dequeue the next msg from the current output buffer
  558. if((rc =_cmTsQueueDequeueMsg( p, retBuf, refBufByteCnt )) != kBufEmptyThRC )
  559. return rc;
  560. // the current output buffer was empty
  561. cmTsQueueBuf* b = p->bufArray + p->inBufIdx;
  562. // if the input buffer has msg's ...
  563. if( b->fullCnt > 0 )
  564. {
  565. bool lockFl = false;
  566. // ...attempt to lock the mutex ...
  567. if( (cmThreadMutexTryLock(p->mutexH,&lockFl) == kOkThRC) && lockFl )
  568. {
  569. // ... swap the input and the output buffers ...
  570. unsigned tmp = p->inBufIdx;
  571. p->inBufIdx = p->outBufIdx;
  572. p->outBufIdx = tmp;
  573. // .. unlock the mutex
  574. cmThreadMutexUnlock(p->mutexH);
  575. // ... and dequeue the first msg from the new output buffer
  576. rc = _cmTsQueueDequeueMsg( p, retBuf, refBufByteCnt );
  577. }
  578. }
  579. return rc;
  580. }
  581. bool cmTsQueueMsgWaiting( cmTsQueueH_t h )
  582. {
  583. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  584. if( p == NULL )
  585. return false;
  586. if( p->bufArray[p->outBufIdx].fullCnt )
  587. return true;
  588. return p->bufArray[p->inBufIdx].fullCnt > 0;
  589. }
  590. unsigned cmTsQueueDequeueMsgByteCount( cmTsQueueH_t h )
  591. {
  592. cmTsQueue_t* p = _cmTsQueueFromHandle(h);
  593. if( p == NULL )
  594. return 0;
  595. // if output msgs are available then the msgPtr points to the size of the msg
  596. if( p->bufArray[p->outBufIdx].fullCnt )
  597. return *(p->bufArray[p->outBufIdx].msgPtr);
  598. // no msgs are waiting in the output buffer
  599. // force the buffers to swap - returns kBufEmptyThRC if there are
  600. // still no msgs waiting after the swap (the input buf was also empty)
  601. if( cmTsQueueDequeueMsg(h,NULL,0) == kBufTooSmallThRC )
  602. {
  603. // the buffers swapped so there must be msg waiting
  604. assert( p->bufArray[p->outBufIdx].fullCnt );
  605. return *(p->bufArray[p->outBufIdx].msgPtr);
  606. }
  607. return 0;
  608. }
  609. bool cmTsQueueIsValid( cmTsQueueH_t h )
  610. { return h.h != NULL; }
  611. //--------------------------------------------------------------------------------------------------
  612. //--------------------------------------------------------------------------------------------------
  613. //--------------------------------------------------------------------------------------------------
  614. //--------------------------------------------------------------------------------------------------
  615. //--------------------------------------------------------------------------------------------------
  616. //--------------------------------------------------------------------------------------------------
  617. typedef struct
  618. {
  619. volatile unsigned ii;
  620. cmErr_t err;
  621. char* buf;
  622. unsigned bn;
  623. cmTsQueueCb_t cbFunc;
  624. void* cbArg;
  625. volatile unsigned oi;
  626. } cmTs1p1c_t;
  627. cmTs1p1c_t* _cmTs1p1cHandleToPtr( cmTs1p1cH_t h )
  628. {
  629. cmTs1p1c_t* p = (cmTs1p1c_t*)h.h;
  630. assert( p != NULL );
  631. return p;
  632. }
  633. cmThRC_t cmTs1p1cCreate( cmTs1p1cH_t* hPtr, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  634. {
  635. cmThRC_t rc;
  636. if((rc = cmTs1p1cDestroy(hPtr)) != kOkThRC )
  637. return rc;
  638. cmTs1p1c_t* p = cmMemAllocZ(cmTs1p1c_t,1);
  639. cmErrSetup(&p->err,rpt,"1p1c Queue");
  640. p->buf = cmMemAllocZ(char,bufByteCnt+sizeof(unsigned));
  641. p->ii = 0;
  642. p->oi = 0;
  643. p->bn = bufByteCnt;
  644. p->cbFunc = cbFunc;
  645. p->cbArg = cbArg;
  646. hPtr->h = p;
  647. return rc;
  648. }
  649. cmThRC_t cmTs1p1cDestroy( cmTs1p1cH_t* hp )
  650. {
  651. cmThRC_t rc = kOkThRC;
  652. if( hp == NULL || cmTs1p1cIsValid(*hp)==false )
  653. return kOkThRC;
  654. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(*hp);
  655. cmMemFree(p->buf);
  656. cmMemFree(p);
  657. hp->h = NULL;
  658. return rc;
  659. }
  660. cmThRC_t cmTs1p1cSetCallback( cmTs1p1cH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  661. {
  662. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  663. p->cbFunc = cbFunc;
  664. p->cbArg = cbArg;
  665. return kOkThRC;
  666. }
  667. cmThRC_t cmTs1p1cEnqueueSegMsg( cmTs1p1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  668. {
  669. cmThRC_t rc = kOkThRC;
  670. unsigned mn = 0;
  671. unsigned i;
  672. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  673. // get the total count of bytes for this msg
  674. for(i=0; i<arrayCnt; ++i)
  675. mn += msgByteCntArray[i];
  676. int dn = mn + sizeof(unsigned);
  677. int oi = p->oi;
  678. int bi = p->ii; // 'bi' is the idx of the leftmost cell which can be written
  679. int en = p->bn; // 'en' is the idx of the cell just to the right of the rightmost cell that can be written
  680. // note: If 'oi' marks the rightmost location then 'en' must be set
  681. // one cell to the left of 'oi', because 'ii' can never be allowed to
  682. // advance onto 'oi' - because 'oi'=='ii' marks an empty (NOT a full)
  683. // queue.
  684. //
  685. // If 'bn' marks the rightmost location then 'ii' can advance onto 'bn'
  686. // beause the true queue length is bn+1.
  687. // if we need to wrap
  688. if( en-bi < dn && oi<=bi )
  689. {
  690. bi = 0;
  691. en = oi - 1; // note if oi==0 then en is negative - see note above re: oi==ii
  692. assert( p->ii>=0 && p->ii <= p->bn );
  693. *(unsigned*)(p->buf + p->ii) = cmInvalidIdx; // mark the wrap location
  694. }
  695. // if oi is between ii and bn
  696. if( oi > bi )
  697. en = oi - 1; // never allow ii to advance onto oi - see note above
  698. // if the msg won't fit
  699. if( en - bi < dn )
  700. return cmErrMsg(&p->err,kBufFullThRC,"%i consecutive bytes is not available in the queue.",dn);
  701. // set the msg byte count - the msg byte cnt precedes the msg body
  702. char* dp = p->buf + bi;
  703. *(unsigned*)dp = dn - sizeof(unsigned);
  704. dp += sizeof(unsigned);
  705. // copy the msg into the buffer
  706. for(i=0,dn=0; i<arrayCnt; ++i)
  707. {
  708. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  709. dp += msgByteCntArray[i];
  710. dn += msgByteCntArray[i];
  711. }
  712. // incrementing p->ii must occur last - the unnecessary accumulation
  713. // of dn in the above loop is intended to prevent this line from
  714. // begin moved before the copy loop.
  715. p->ii = bi + dn + sizeof(unsigned);
  716. assert( p->ii >= 0 && p->ii <= p->bn);
  717. return rc;
  718. }
  719. cmThRC_t cmTs1p1cEnqueueMsg( cmTs1p1cH_t h, const void* dataPtr, unsigned byteCnt )
  720. { return cmTs1p1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  721. unsigned cmTs1p1cAllocByteCount( cmTs1p1cH_t h )
  722. {
  723. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  724. return p->bn;
  725. }
  726. unsigned cmTs1p1cAvailByteCount( cmTs1p1cH_t h )
  727. {
  728. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  729. unsigned oi = p->oi;
  730. unsigned ii = p->ii;
  731. return oi < ii ? p->bn - ii + oi : oi - ii;
  732. }
  733. unsigned _cmTs1p1cDequeueMsgByteCount( cmTs1p1c_t* p )
  734. {
  735. // if the buffer is empty
  736. if( p->ii == p->oi )
  737. return 0;
  738. // get the length of the next msg
  739. unsigned mn = *(unsigned*)(p->buf + p->oi);
  740. // if the msg length is cmInvalidIdx ...
  741. if( mn == cmInvalidIdx )
  742. {
  743. p->oi = 0; // ... wrap to buf begin and try again
  744. return _cmTs1p1cDequeueMsgByteCount(p);
  745. }
  746. return mn;
  747. }
  748. cmThRC_t cmTs1p1cDequeueMsg( cmTs1p1cH_t h, void* dataPtr, unsigned byteCnt )
  749. {
  750. cmThRC_t rc = kOkThRC;
  751. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  752. unsigned mn;
  753. if((mn = _cmTs1p1cDequeueMsgByteCount(p)) == 0 )
  754. return kBufEmptyThRC;
  755. void* mp = p->buf + p->oi + sizeof(unsigned);
  756. if( dataPtr != NULL )
  757. {
  758. if( byteCnt < mn )
  759. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,mn);
  760. memcpy(dataPtr,mp,mn);
  761. }
  762. else
  763. {
  764. p->cbFunc(p->cbArg,mn,mp);
  765. }
  766. p->oi += mn + sizeof(unsigned);
  767. return rc;
  768. }
  769. unsigned cmTs1p1cDequeueMsgByteCount( cmTs1p1cH_t h )
  770. {
  771. cmTs1p1c_t* p = _cmTs1p1cHandleToPtr(h);
  772. return _cmTs1p1cDequeueMsgByteCount(p);
  773. }
  774. bool cmTs1p1cMsgWaiting( cmTs1p1cH_t h )
  775. { return cmTs1p1cDequeueMsgByteCount(h) > 0; }
  776. bool cmTs1p1cIsValid( cmTs1p1cH_t h )
  777. { return h.h != NULL; }
  778. //============================================================================================================================
  779. bool cmThIntCAS( int* addr, int old, int new )
  780. {
  781. #ifdef OS_OSX
  782. int rv = OSAtomicCompareAndSwap32Barrier(old,new,addr);
  783. return rv;
  784. #endif
  785. #ifdef OS_LINUX
  786. return __sync_bool_compare_and_swap(addr,old,new);
  787. #endif
  788. }
  789. bool cmThUIntCAS( unsigned* addr, unsigned old, unsigned new )
  790. {
  791. #ifdef OS_OSX
  792. return OSAtomicCompareAndSwap32Barrier((int)old,(int)new,(int*)addr);
  793. #endif
  794. #ifdef OS_LINUX
  795. return __sync_bool_compare_and_swap(addr,old,new);
  796. #endif
  797. }
  798. bool cmThFloatCAS( float* addr, float old, float new )
  799. {
  800. #ifdef OS_OSX
  801. return OSAtomicCompareAndSwap32Barrier(*(int*)(&old),*(int*)(&new),(int*)addr );
  802. #endif
  803. #ifdef OS_LINUX
  804. // If we use pointer aliasing to pun the pointer types then it will violate the
  805. // strict pointer aliasing rules used by -O2. Instead we use this union
  806. // punning scheme which in theory should always work in C99 (although no C++).
  807. typedef union
  808. {
  809. unsigned* up;
  810. float* fp;
  811. } u;
  812. u u0,u1;
  813. u0.fp = &old;
  814. u1.fp = &new;
  815. return __sync_bool_compare_and_swap((unsigned*)addr,*u0.up,*u1.up);
  816. #endif
  817. }
  818. bool cmThPtrCAS( void* addr, void* old, void* neww )
  819. {
  820. #ifdef OS_OSX
  821. // REMOVE THIS HACK AND USE OSAtomicCompareAndSwapPtrBarrier() WHEN
  822. // A 64 BIT BUILD IS POSSIBLE ON OS-X.
  823. typedef struct
  824. {
  825. union
  826. {
  827. void* addr;
  828. #ifdef OSX_VER_10_5
  829. int val;
  830. #else
  831. int64_t val;
  832. #endif
  833. } u;
  834. } s_t;
  835. s_t ov,nv;
  836. ov.u.addr = old;
  837. nv.u.addr = neww;
  838. #ifdef OSX_VER_10_5
  839. int rv = OSAtomicCompareAndSwap32Barrier(ov.u.val,nv.u.val,(int*)addr);
  840. #else
  841. int rv = OSAtomicCompareAndSwap64Barrier(ov.u.val,nv.u.val,(int64_t*)addr);
  842. #endif
  843. return rv;
  844. #endif
  845. #ifdef OS_LINUX
  846. #ifdef OS_64
  847. return __sync_bool_compare_and_swap((long long*)addr, (long long)old, (long long)neww);
  848. #else
  849. return __sync_bool_compare_and_swap((int*)addr,(int)old,(int)neww);
  850. #endif
  851. #endif
  852. }
  853. void cmThIntIncr( int* addr, int incr )
  854. {
  855. #ifdef OS_OSX
  856. OSAtomicAdd32Barrier(incr,addr);
  857. #endif
  858. #ifdef OS_LINUX
  859. // ... could also use __sync_add_and_fetch() ...
  860. __sync_fetch_and_add(addr,incr);
  861. #endif
  862. }
  863. void cmThUIntIncr( unsigned* addr, unsigned incr )
  864. {
  865. #ifdef OS_OSX
  866. OSAtomicAdd32Barrier((int)incr,(int*)addr);
  867. #endif
  868. #ifdef OS_LINUX
  869. __sync_fetch_and_add(addr,incr);
  870. #endif
  871. }
  872. void cmThFloatIncr(float* addr, float incr )
  873. {
  874. float old,new;
  875. do
  876. {
  877. old = *addr;
  878. new = old + incr;
  879. }while( cmThFloatCAS(addr,old,new)==0 );
  880. }
  881. void cmThIntDecr( int* addr, int decr )
  882. {
  883. #ifdef OS_OSX
  884. OSAtomicAdd32Barrier(-decr,addr);
  885. #endif
  886. #ifdef OS_LINUX
  887. __sync_fetch_and_sub(addr,decr);
  888. #endif
  889. }
  890. void cmThUIntDecr( unsigned* addr, unsigned decr )
  891. {
  892. #ifdef OS_OSX
  893. OSAtomicAdd32Barrier(-((int)decr),(int*)addr);
  894. #endif
  895. #ifdef OS_LINUX
  896. __sync_fetch_and_sub(addr,decr);
  897. #endif
  898. }
  899. void cmThFloatDecr(float* addr, float decr )
  900. {
  901. float old,new;
  902. do
  903. {
  904. old = *addr;
  905. new = old - decr;
  906. }while( cmThFloatCAS(addr,old,new)==0 );
  907. }
  908. //============================================================================================================================
  909. //
  910. //
  911. typedef pthread_t cmThreadId_t;
  912. typedef struct
  913. {
  914. cmThreadId_t id; // id of this thread as returned by pthread_self()
  915. char* buf; // buf[bn]
  916. int ii; // input index
  917. int oi; // output index (oi==ii == empty buffer)
  918. } cmTsBuf_t;
  919. // msg header - which is actually written AFTER the msg it is associated with
  920. typedef struct cmTsHdr_str
  921. {
  922. int mn; // length of the msg
  923. int ai; // buffer index
  924. struct cmTsHdr_str* link; // pointer to next msg
  925. } cmTsHdr_t;
  926. typedef struct
  927. {
  928. cmErr_t err;
  929. int bn; // bytes per thread buffer
  930. cmTsBuf_t* a; // a[an] buffer array
  931. unsigned an; // length of a[] - one buffer per thread
  932. cmTsQueueCb_t cbFunc;
  933. void* cbArg;
  934. cmTsHdr_t* ilp; // prev msg hdr record
  935. cmTsHdr_t* olp; // prev msg hdr record (wait for olp->link to be set to go to next record)
  936. } cmTsMp1c_t;
  937. cmTsMp1cH_t cmTsMp1cNullHandle = cmSTATIC_NULL_HANDLE;
  938. void _cmTsMp1cPrint( cmTsMp1c_t* p )
  939. {
  940. unsigned i;
  941. for(i=0; i<p->an; ++i)
  942. printf("%2i ii:%3i oi:%3i\n",i,p->a[i].ii,p->a[i].oi);
  943. }
  944. cmTsMp1c_t* _cmTsMp1cHandleToPtr( cmTsMp1cH_t h )
  945. {
  946. cmTsMp1c_t* p = (cmTsMp1c_t*)h.h;
  947. assert(p != NULL);
  948. return p;
  949. }
  950. unsigned _cmTsMp1cBufIndex( cmTsMp1c_t* p, cmThreadId_t id )
  951. {
  952. unsigned i;
  953. for(i=0; i<p->an; ++i)
  954. if( p->a[i].id == id )
  955. return i;
  956. p->an = i+1;
  957. p->a = cmMemResizePZ(cmTsBuf_t,p->a,p->an);
  958. p->a[i].buf = cmMemAllocZ(char,p->bn);
  959. p->a[i].id = id;
  960. return i;
  961. }
  962. cmThRC_t cmTsMp1cDestroy( cmTsMp1cH_t* hp )
  963. {
  964. if( hp == NULL || cmTsMp1cIsValid(*hp) == false )
  965. return kOkThRC;
  966. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(*hp);
  967. unsigned i;
  968. for(i=0; i<p->an; ++i)
  969. cmMemFree(p->a[i].buf);
  970. cmMemPtrFree(&p->a);
  971. cmMemFree(p);
  972. hp->h = NULL;
  973. return kOkThRC;
  974. }
  975. cmThRC_t cmTsMp1cCreate( cmTsMp1cH_t* hp, unsigned bufByteCnt, cmTsQueueCb_t cbFunc, void* cbArg, cmRpt_t* rpt )
  976. {
  977. cmThRC_t rc;
  978. if((rc = cmTsMp1cDestroy(hp)) != kOkThRC )
  979. return rc;
  980. cmTsMp1c_t* p = cmMemAllocZ(cmTsMp1c_t,1);
  981. cmErrSetup(&p->err,rpt,"TsMp1c Queue");
  982. p->a = NULL;
  983. p->an = 0;
  984. p->bn = bufByteCnt;
  985. p->cbFunc = cbFunc;
  986. p->cbArg = cbArg;
  987. p->ilp = NULL;
  988. p->olp = NULL;
  989. hp->h = p;
  990. return rc;
  991. }
  992. void cmTsMp1cSetCbFunc( cmTsMp1cH_t h, cmTsQueueCb_t cbFunc, void* cbArg )
  993. {
  994. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  995. p->cbFunc = cbFunc;
  996. p->cbArg = cbArg;
  997. }
  998. cmTsQueueCb_t cmTsMp1cCbFunc( cmTsMp1cH_t h )
  999. {
  1000. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1001. return p->cbFunc;
  1002. }
  1003. void* cmTsMp1cCbArg( cmTsMp1cH_t h )
  1004. {
  1005. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1006. return p->cbArg;
  1007. }
  1008. //#define CAS(addr,old,new) __sync_bool_compare_and_swap(addr,old,new)
  1009. //#define CAS(addr,old,neww) cmThPtrCAS(addr,old,neww)
  1010. cmThRC_t cmTsMp1cEnqueueSegMsg( cmTsMp1cH_t h, const void* msgPtrArray[], unsigned msgByteCntArray[], unsigned arrayCnt )
  1011. {
  1012. cmThRC_t rc = kOkThRC;
  1013. unsigned mn = 0;
  1014. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1015. unsigned ai = _cmTsMp1cBufIndex( p, pthread_self() );
  1016. cmTsBuf_t* b = p->a + ai;
  1017. int i,bi,ei;
  1018. cmTsHdr_t hdr;
  1019. // Use a stored oi for the duration of this function.
  1020. // b->oi may be changed by the dequeue thread but storing it here
  1021. // at least prevents it from changing during the course of the this function.
  1022. // Note: b->oi is only used to check for buffer full. Even if it changes
  1023. // it would only mean that more bytes were available than calculated based
  1024. // on the stored value. A low estimate of the actual bytes available is
  1025. // never unsafe.
  1026. volatile int oi = b->oi;
  1027. // get the total count of bytes for this msg
  1028. for(i=0; i<arrayCnt; ++i)
  1029. mn += msgByteCntArray[i];
  1030. // dn = count of msg bytes + count of header bytes
  1031. int dn = mn + sizeof(hdr);
  1032. // if oi is ahead of ii in the queue then we must write
  1033. // in the area between ii and oi
  1034. if( oi > b->ii )
  1035. {
  1036. ei = oi-1; // (never allow ii to equal oi (that's the empty condition))
  1037. bi = b->ii;
  1038. }
  1039. else // otherwise oi is same or before ii in the queue and we have the option to wrap
  1040. {
  1041. // if the new msg will not fit at the end of the queue ....
  1042. if( b->ii + dn > p->bn )
  1043. {
  1044. bi = 0; // ... then wrap to the beginning
  1045. ei = oi-1; // (never allow ii to equal oi (that's the empty condition))
  1046. }
  1047. else
  1048. {
  1049. ei = p->bn; // otherwise write at the current location
  1050. bi = b->ii;
  1051. }
  1052. }
  1053. if( bi + dn > ei )
  1054. return cmErrMsg(&p->err,kBufFullThRC,"%i consecutive bytes is not available in the queue.",dn);
  1055. char* dp = b->buf + bi;
  1056. // write the msg
  1057. for(i=0; i<arrayCnt; ++i)
  1058. {
  1059. memcpy(dp,msgPtrArray[i],msgByteCntArray[i]);
  1060. dp += msgByteCntArray[i];
  1061. }
  1062. // setup the msg header
  1063. hdr.ai = ai;
  1064. hdr.mn = mn;
  1065. hdr.link = NULL;
  1066. // write the msg header (following the msg body in memory)
  1067. cmTsHdr_t* hp = (cmTsHdr_t*)dp;
  1068. memcpy(hp,&hdr,sizeof(hdr));
  1069. // increment the buffers input index
  1070. b->ii = bi + dn;
  1071. // update the link list head to point to this msg hdr
  1072. cmTsHdr_t* old_hp, *new_hp;
  1073. do
  1074. {
  1075. old_hp = p->ilp;
  1076. new_hp = hp;
  1077. }while(!cmThPtrCAS(&p->ilp,old_hp,new_hp));
  1078. // link the prev recd to this recd
  1079. if( old_hp != NULL )
  1080. old_hp->link = hp;
  1081. // if this is the first record written by this queue then prime the output list
  1082. do
  1083. {
  1084. old_hp = p->olp;
  1085. new_hp = hp;
  1086. if( old_hp != NULL )
  1087. break;
  1088. }while(!cmThPtrCAS(&p->olp,old_hp,new_hp));
  1089. //printf("%p %p %i\n",p->ilp,p->olp,p->olp->mn);
  1090. return rc;
  1091. }
  1092. cmThRC_t cmTsMp1cEnqueueMsg( cmTsMp1cH_t h, const void* dataPtr, unsigned byteCnt )
  1093. { return cmTsMp1cEnqueueSegMsg(h,&dataPtr,&byteCnt,1); }
  1094. unsigned cmTsMp1cAllocByteCount( cmTsMp1cH_t h )
  1095. {
  1096. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1097. return p->bn;
  1098. }
  1099. unsigned cmTsMp1cAvailByteCount( cmTsMp1cH_t h )
  1100. {
  1101. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1102. unsigned ai = _cmTsMp1cBufIndex(p,pthread_self());
  1103. const cmTsBuf_t* b = p->a + ai;
  1104. if( b->oi > b->ii )
  1105. return b->oi - b->ii - 1;
  1106. return (p->bn - b->ii) + b->oi - 1;
  1107. }
  1108. unsigned _cmTsMp1cNextMsgByteCnt( cmTsMp1c_t* p )
  1109. {
  1110. if( p->olp == NULL )
  1111. return 0;
  1112. // if the current msg has not yet been read
  1113. if( p->olp->mn != 0 )
  1114. return p->olp->mn;
  1115. // if the current msg has been read but a new next msg has been linked
  1116. if( p->olp->mn == 0 && p->olp->link != NULL )
  1117. {
  1118. // advance the buffer output msg past the prev msg header
  1119. char* hp = (char*)(p->olp + 1);
  1120. p->a[p->olp->ai].oi = hp - p->a[p->olp->ai].buf;
  1121. // advance msg pointer to point to the new msg header
  1122. p->olp = p->olp->link;
  1123. // return the size of the new msg
  1124. return p->olp->mn;
  1125. }
  1126. return 0;
  1127. }
  1128. cmThRC_t cmTsMp1cDequeueMsg( cmTsMp1cH_t h, void* dataPtr, unsigned byteCnt )
  1129. {
  1130. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1131. // if there are no messages waiting
  1132. if( _cmTsMp1cNextMsgByteCnt(p) == 0 )
  1133. return kBufEmptyThRC;
  1134. char* hp = (char*)p->olp;
  1135. char* dp = hp - p->olp->mn; // the msg body is before the msg hdr
  1136. if( dataPtr == NULL )
  1137. {
  1138. p->cbFunc(p->cbArg,p->olp->mn,dp);
  1139. }
  1140. else
  1141. {
  1142. if( p->olp->mn > byteCnt )
  1143. return cmErrMsg(&p->err,kBufTooSmallThRC,"The return buffer constains too few bytes (%i) to contain %i bytes.",byteCnt,p->olp->mn);
  1144. memcpy(dataPtr,dp,p->olp->mn);
  1145. }
  1146. // advance the buffers output index past the msg body
  1147. p->a[p->olp->ai].oi = hp - p->a[p->olp->ai].buf;
  1148. // mark the msg as read
  1149. p->olp->mn = 0;
  1150. return kOkThRC;
  1151. }
  1152. bool cmTsMp1cMsgWaiting( cmTsMp1cH_t h )
  1153. {
  1154. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1155. return _cmTsMp1cNextMsgByteCnt(p) != 0;
  1156. }
  1157. unsigned cmTsMp1cDequeueMsgByteCount( cmTsMp1cH_t h )
  1158. {
  1159. cmTsMp1c_t* p = _cmTsMp1cHandleToPtr(h);
  1160. return _cmTsMp1cNextMsgByteCnt(p);
  1161. }
  1162. bool cmTsMp1cIsValid( cmTsMp1cH_t h )
  1163. { return h.h != NULL; }
  1164. //============================================================================================================================/
  1165. //
  1166. // cmTsQueueTest()
  1167. //
  1168. // param recd for use by _cmTsQueueCb0() and
  1169. // the msg record passed between the sender
  1170. // threads and the receiver thread
  1171. typedef struct
  1172. {
  1173. unsigned id;
  1174. cmTsQueueH_t qH;
  1175. int val;
  1176. } _cmTsQCbParam_t;
  1177. // Generate a random number and put it in a TS queue
  1178. bool _cmTsQueueCb0(void* param)
  1179. {
  1180. _cmTsQCbParam_t* p = (_cmTsQCbParam_t*)param;
  1181. p->val = rand(); // generate a random number
  1182. // send the msg
  1183. if( cmTsQueueEnqueueMsg( p->qH, p, sizeof(_cmTsQCbParam_t)) == kOkThRC )
  1184. printf("in:%i %i\n",p->id,p->val);
  1185. else
  1186. printf("in error %i\n",p->id);
  1187. cmSleepUs(100*1000);
  1188. return true;
  1189. }
  1190. // Monitor a TS queue for incoming messages from _cmTsQueueCb1()
  1191. bool _cmTsQueueCb1(void* param)
  1192. {
  1193. // the thread param is a ptr to the TS queue to monitor.
  1194. cmTsQueueH_t* qp = (cmTsQueueH_t*)param;
  1195. cmThRC_t rc;
  1196. _cmTsQCbParam_t msg;
  1197. // dequeue any waiting messages
  1198. if((rc = cmTsQueueDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1199. printf("out:%i %i\n",msg.id,msg.val);
  1200. else
  1201. {
  1202. if( rc != kBufEmptyThRC )
  1203. printf("out error:%i\n", rc);
  1204. }
  1205. return true;
  1206. }
  1207. // Test the TS queue by starting sender threads (threads 0 & 1)
  1208. // and a receiver thread (thread 2) and sending messages
  1209. // from the sender to the receiver.
  1210. void cmTsQueueTest( cmRpt_t* rpt )
  1211. {
  1212. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1213. cmTsQueueH_t q=cmTsQueueNullHandle;
  1214. _cmTsQCbParam_t param0, param1;
  1215. // create a TS Queue
  1216. if( cmTsQueueCreate(&q,100,NULL,NULL,rpt) != kOkThRC )
  1217. goto errLabel;
  1218. // create thread 0
  1219. param0.id = 0;
  1220. param0.qH = q;
  1221. if( cmThreadCreate(&th0,_cmTsQueueCb0,&param0,rpt) != kOkThRC )
  1222. goto errLabel;
  1223. // create thread 1
  1224. param1.id = 1;
  1225. param1.qH = q;
  1226. if( cmThreadCreate(&th1,_cmTsQueueCb0,&param1,rpt) != kOkThRC )
  1227. goto errLabel;
  1228. // create thread 2
  1229. if( cmThreadCreate(&th2,_cmTsQueueCb1,&q,rpt) != kOkThRC )
  1230. goto errLabel;
  1231. // start thread 0
  1232. if( cmThreadPause(th0,0) != kOkThRC )
  1233. goto errLabel;
  1234. // start thread 1
  1235. if( cmThreadPause(th1,0) != kOkThRC )
  1236. goto errLabel;
  1237. // start thread 2
  1238. if( cmThreadPause(th2,0) != kOkThRC )
  1239. goto errLabel;
  1240. printf("any key to quit.");
  1241. getchar();
  1242. errLabel:
  1243. if( cmThreadIsValid(th0) )
  1244. if( cmThreadDestroy(&th0) != kOkThRC )
  1245. printf("Error destroying thread 0\n");
  1246. if( cmThreadIsValid(th1) )
  1247. if( cmThreadDestroy(&th1) != kOkThRC )
  1248. printf("Error destroying thread 1\n");
  1249. if( cmThreadIsValid(th2) )
  1250. if( cmThreadDestroy(&th2) != kOkThRC )
  1251. printf("Error destroying thread 1\n");
  1252. if( cmTsQueueIsValid(q) )
  1253. if( cmTsQueueDestroy(&q) != kOkThRC )
  1254. printf("Error destroying queue\n");
  1255. }
  1256. //============================================================================================================================/
  1257. //
  1258. // cmTs1p1cTest()
  1259. //
  1260. // param recd for use by _cmTsQueueCb0() and
  1261. // the msg record passed between the sender
  1262. // threads and the receiver thread
  1263. typedef struct
  1264. {
  1265. unsigned id;
  1266. cmTs1p1cH_t qH;
  1267. int val;
  1268. } _cmTs1p1cCbParam_t;
  1269. cmTs1p1cH_t cmTs1p1cNullHandle = cmSTATIC_NULL_HANDLE;
  1270. // Generate a random number and put it in a TS queue
  1271. bool _cmTs1p1cCb0(void* param)
  1272. {
  1273. _cmTs1p1cCbParam_t* p = (_cmTs1p1cCbParam_t*)param;
  1274. p->val = rand(); // generate a random number
  1275. // send the msg
  1276. if( cmTs1p1cEnqueueMsg( p->qH, p, sizeof(_cmTs1p1cCbParam_t)) == kOkThRC )
  1277. printf("in:%i %i\n",p->id,p->val);
  1278. else
  1279. printf("in error %i\n",p->id);
  1280. ++p->id;
  1281. cmSleepUs(100*1000);
  1282. return true;
  1283. }
  1284. // Monitor a TS queue for incoming messages from _cmTs1p1cCb1()
  1285. bool _cmTs1p1cCb1(void* param)
  1286. {
  1287. // the thread param is a ptr to the TS queue to monitor.
  1288. cmTs1p1cH_t* qp = (cmTs1p1cH_t*)param;
  1289. cmThRC_t rc;
  1290. _cmTs1p1cCbParam_t msg;
  1291. // dequeue any waiting messages
  1292. if((rc = cmTs1p1cDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1293. printf("out:%i %i\n",msg.id,msg.val);
  1294. else
  1295. {
  1296. if( rc != kBufEmptyThRC )
  1297. printf("out error:%i\n", rc);
  1298. }
  1299. return true;
  1300. }
  1301. // Test the TS queue by starting sender threads (threads 0 & 1)
  1302. // and a receiver thread (thread 2) and sending messages
  1303. // from the sender to the receiver.
  1304. void cmTs1p1cTest( cmRpt_t* rpt )
  1305. {
  1306. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1307. cmTs1p1cH_t q=cmTs1p1cNullHandle;
  1308. _cmTs1p1cCbParam_t param1;
  1309. // create a TS Queue
  1310. if( cmTs1p1cCreate(&q,28*2,NULL,NULL,rpt) != kOkThRC )
  1311. goto errLabel;
  1312. // create thread 1
  1313. param1.id = 0;
  1314. param1.qH = q;
  1315. if( cmThreadCreate(&th1,_cmTs1p1cCb0,&param1,rpt) != kOkThRC )
  1316. goto errLabel;
  1317. // create thread 2
  1318. if( cmThreadCreate(&th2,_cmTs1p1cCb1,&q,rpt) != kOkThRC )
  1319. goto errLabel;
  1320. // start thread 1
  1321. if( cmThreadPause(th1,0) != kOkThRC )
  1322. goto errLabel;
  1323. // start thread 2
  1324. if( cmThreadPause(th2,0) != kOkThRC )
  1325. goto errLabel;
  1326. printf("any key to quit.");
  1327. getchar();
  1328. errLabel:
  1329. if( cmThreadIsValid(th0) )
  1330. if( cmThreadDestroy(&th0) != kOkThRC )
  1331. printf("Error destroying thread 0\n");
  1332. if( cmThreadIsValid(th1) )
  1333. if( cmThreadDestroy(&th1) != kOkThRC )
  1334. printf("Error destroying thread 1\n");
  1335. if( cmThreadIsValid(th2) )
  1336. if( cmThreadDestroy(&th2) != kOkThRC )
  1337. printf("Error destroying thread 1\n");
  1338. if( cmTs1p1cIsValid(q) )
  1339. if( cmTs1p1cDestroy(&q) != kOkThRC )
  1340. printf("Error destroying queue\n");
  1341. }
  1342. //============================================================================================================================/
  1343. //
  1344. // cmTsMp1cTest()
  1345. //
  1346. // param recd for use by _cmTsQueueCb0() and
  1347. // the msg record passed between the sender
  1348. // threads and the receiver thread
  1349. typedef struct
  1350. {
  1351. unsigned id;
  1352. cmTsMp1cH_t qH;
  1353. int val;
  1354. } _cmTsMp1cCbParam_t;
  1355. unsigned _cmTsMp1cVal = 0;
  1356. // Incr the global value _cmTsMp1cVal and put it in a TS queue
  1357. bool _cmTsMp1cCb0(void* param)
  1358. {
  1359. _cmTsMp1cCbParam_t* p = (_cmTsMp1cCbParam_t*)param;
  1360. //p->val = __sync_fetch_and_add(&_cmTsMp1cVal,1);
  1361. cmThUIntIncr(&_cmTsMp1cVal,1);
  1362. p->val = _cmTsMp1cVal;
  1363. // send the msg
  1364. if( cmTsMp1cEnqueueMsg( p->qH, p, sizeof(_cmTsMp1cCbParam_t)) == kOkThRC )
  1365. printf("in:%i %i\n",p->id,p->val);
  1366. else
  1367. printf("in error %i\n",p->id);
  1368. cmSleepUs(100*1000);
  1369. return true;
  1370. }
  1371. // Monitor a TS queue for incoming messages from _cmTsMp1cCb1()
  1372. bool _cmTsMp1cCb1(void* param)
  1373. {
  1374. // the thread param is a ptr to the TS queue to monitor.
  1375. cmTsMp1cH_t* qp = (cmTsMp1cH_t*)param;
  1376. cmThRC_t rc;
  1377. _cmTsMp1cCbParam_t msg;
  1378. // dequeue any waiting messages
  1379. if((rc = cmTsMp1cDequeueMsg( *qp, &msg, sizeof(msg))) == kOkThRC )
  1380. printf("out - cons id:%i val:%i\n",msg.id,msg.val);
  1381. else
  1382. {
  1383. if( rc != kBufEmptyThRC )
  1384. printf("out error:%i\n", rc);
  1385. }
  1386. return true;
  1387. }
  1388. // Test the TS queue by starting sender threads (threads 0 & 1)
  1389. // and a receiver thread (thread 2) and sending messages
  1390. // from the sender to the receiver.
  1391. void cmTsMp1cTest( cmRpt_t* rpt )
  1392. {
  1393. cmThreadH_t th0=cmThreadNullHandle,th1=cmThreadNullHandle,th2=cmThreadNullHandle;
  1394. cmTsMp1cH_t q=cmTsMp1cNullHandle;
  1395. _cmTsMp1cCbParam_t param0, param1;
  1396. // create a TS Queue
  1397. if( cmTsMp1cCreate(&q,1000,NULL,NULL,rpt) != kOkThRC )
  1398. goto errLabel;
  1399. // create thread 0 - producer 0
  1400. param0.id = 0;
  1401. param0.qH = q;
  1402. if( cmThreadCreate(&th0,_cmTsMp1cCb0,&param0,rpt) != kOkThRC )
  1403. goto errLabel;
  1404. // create thread 1 - producer 1
  1405. param1.id = 1;
  1406. param1.qH = q;
  1407. if( cmThreadCreate(&th1,_cmTsMp1cCb0,&param1,rpt) != kOkThRC )
  1408. goto errLabel;
  1409. // create thread 2 - consumer 0
  1410. if( cmThreadCreate(&th2,_cmTsMp1cCb1,&q,rpt) != kOkThRC )
  1411. goto errLabel;
  1412. // start thread 0
  1413. if( cmThreadPause(th0,0) != kOkThRC )
  1414. goto errLabel;
  1415. // start thread 1
  1416. if( cmThreadPause(th1,0) != kOkThRC )
  1417. goto errLabel;
  1418. // start thread 2
  1419. if( cmThreadPause(th2,0) != kOkThRC )
  1420. goto errLabel;
  1421. printf("any key to quit.");
  1422. getchar();
  1423. errLabel:
  1424. if( cmThreadIsValid(th0) )
  1425. if( cmThreadDestroy(&th0) != kOkThRC )
  1426. printf("Error destroying thread 0\n");
  1427. if( cmThreadIsValid(th1) )
  1428. if( cmThreadDestroy(&th1) != kOkThRC )
  1429. printf("Error destroying thread 1\n");
  1430. if( cmThreadIsValid(th2) )
  1431. if( cmThreadDestroy(&th2) != kOkThRC )
  1432. printf("Error destroying thread 1\n");
  1433. if( cmTsMp1cIsValid(q) )
  1434. if( cmTsMp1cDestroy(&q) != kOkThRC )
  1435. printf("Error destroying queue\n");
  1436. }
  1437. void cmSleepUs( unsigned microseconds )
  1438. { usleep(microseconds); }
  1439. void cmSleepMs( unsigned milliseconds )
  1440. { cmSleepUs(milliseconds*1000); }