libcm/cmProc2.c

6780 lines
172 KiB
C

#include "cmPrefix.h"
#include "cmGlobal.h"
#include "cmRpt.h"
#include "cmErr.h"
#include "cmCtx.h"
#include "cmMem.h"
#include "cmMallocDebug.h"
#include "cmLinkedHeap.h"
#include "cmSymTbl.h"
#include "cmFloatTypes.h"
#include "cmComplexTypes.h"
#include "cmFile.h"
#include "cmFileSys.h"
#include "cmProcObj.h"
#include "cmProcTemplate.h"
#include "cmAudioFile.h"
#include "cmMath.h"
#include "cmProc.h"
#include "cmVectOps.h"
#include "cmKeyboard.h"
#include "cmGnuPlot.h"
#include "cmTime.h"
#include "cmMidi.h"
#include "cmProc2.h"
//------------------------------------------------------------------------------------------------------------
cmArray* cmArrayAllocate( cmCtx* c, cmArray* ap, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
{
cmArray* p = cmObjAlloc( cmArray, c, ap );
if( eleCnt > 0 && eleByteCnt > 0 )
if( cmArrayInit(p, eleCnt, eleByteCnt, flags ) != cmOkRC )
cmArrayFree(&p);
return cmOkRC;
}
cmRC_t cmArrayFree( cmArray** pp )
{
cmRC_t rc = cmOkRC;
cmArray* p = *pp;
if( pp == NULL || *pp == NULL )
return cmOkRC;
if((rc = cmArrayFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->ptr);
cmObjFree(pp);
return rc;
}
cmRC_t cmArrayInit( cmArray* p, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
{
cmRC_t rc = cmOkRC;
if((rc = cmArrayFinal(p)) != cmOkRC )
return rc;
p->allocByteCnt = eleCnt * eleByteCnt;
p->ptr = cmIsFlag(flags,kZeroArrayFl) ? cmMemResizeZ( char, p->ptr, p->allocByteCnt ) : cmMemResize( char, p->ptr, p->allocByteCnt );
p->eleCnt = eleCnt;
p->eleByteCnt = eleByteCnt;
return rc;
}
cmRC_t cmArrayFinal( cmArray* p )
{ return cmOkRC; }
char* cmArrayReallocDestroy(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
{
// if memory is expanding
if( newEleCnt * newEleByteCnt > p->allocByteCnt )
cmArrayInit( p, newEleCnt, newEleByteCnt, flags );
else
{
// ... otherwise memory is contrcmting
p->eleCnt = newEleCnt;
p->eleByteCnt = newEleByteCnt;
if( cmIsFlag( flags, kZeroArrayFl ))
memset(p->ptr,0,p->eleByteCnt);
}
return p->ptr;
}
void cmArrayReallocDestroyV(cmArray* p, int eleByteCnt,unsigned flags, ... )
{
unsigned i;
unsigned eleCnt = 0;
unsigned argCnt = 0;
va_list vl0,vl1;
assert(eleByteCnt>0);
va_start(vl0,flags);
va_copy(vl1,vl0);
while( va_arg(vl0,void**) != NULL )
{
int argEleCnt = va_arg(vl0,int);
assert(argEleCnt>0);
eleCnt += argEleCnt;
++argCnt;
}
va_end(vl0);
char* a = cmArrayReallocDestroy(p,eleCnt,eleByteCnt,flags);
for(i=0; i<argCnt; ++i)
{
void** vp = va_arg(vl1,void**);
unsigned n = va_arg(vl1,unsigned);
*vp = a;
a += n*eleByteCnt;
}
va_end(vl1);
}
char* cmArrayReallocPreserve(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
{
unsigned cn = p->eleCnt * p->eleByteCnt;
unsigned dn = newEleCnt * newEleByteCnt;
if( dn > p->allocByteCnt )
p->allocByteCnt = dn;
p->ptr = cmIsFlag(flags,kZeroArrayFl ) ? cmMemResizePZ( char, p->ptr, cn ) : cmMemResizeP( char, p->ptr, cn);
p->eleCnt = newEleCnt;
p->eleByteCnt= newEleByteCnt;
return p->ptr;
}
//------------------------------------------------------------------------------------------------------------
cmAudioFileWr* cmAudioFileWrAlloc( cmCtx* c, cmAudioFileWr* ap, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
{
cmAudioFileWr* p = cmObjAlloc( cmAudioFileWr, c, ap );
if( cmAudioFileWrInit( p, procSmpCnt, fn, srate, chCnt, bitsPerSample ) != cmOkRC )
cmObjFree(&p);
return p;
}
cmRC_t cmAudioFileWrFree( cmAudioFileWr** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmAudioFileWr* p = *pp;
if((rc = cmAudioFileWrFinal(p)) == cmOkRC )
{
cmMemPtrFree(&p->bufV);
cmMemPtrFree(&p->fn );
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmAudioFileWrInit( cmAudioFileWr* p, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
{
cmRC_t rc;
cmRC_t afRC;
if((rc = cmAudioFileWrFinal( p)) != cmOkRC )
return rc;
p->h = cmAudioFileNewCreate( fn, srate, bitsPerSample, chCnt, &afRC, p->obj.err.rpt );
if( afRC != kOkAfRC )
return cmCtxRtCondition( &p->obj, afRC, "Unable to open the audio file:'%s'", fn );
p->bufV = cmMemResize( cmSample_t, p->bufV, procSmpCnt * chCnt );
p->procSmpCnt = procSmpCnt;
p->chCnt = chCnt;
p->curChCnt = 0;
p->fn = cmMemResizeZ( cmChar_t, p->fn, strlen(fn)+1 );
strcpy(p->fn,fn);
return rc;
}
cmRC_t cmAudioFileWrFinal( cmAudioFileWr* p )
{
cmRC_t afRC;
if( p != NULL )
{
if( cmAudioFileIsValid( p->h ) )
if(( afRC = cmAudioFileDelete( &p->h )) != kOkAfRC )
return cmCtxRtCondition( &p->obj, afRC, "Unable to close the audio file:'%s'", p->fn );
}
return cmOkRC;
}
cmRC_t cmAudioFileWrExec( cmAudioFileWr* p, unsigned chIdx, const cmSample_t* sp, unsigned sn )
{
cmRC_t afRC;
assert( sn <= p->procSmpCnt && chIdx < p->chCnt );
cmSample_t* buf = p->bufV + (chIdx * p->procSmpCnt);
cmVOS_Copy( buf, sn, sp);
if( sn < p->procSmpCnt )
cmVOS_Fill( buf+sn, p->procSmpCnt-sn, 0 );
p->curChCnt++;
if( p->curChCnt == p->chCnt )
{
p->curChCnt = 0;
cmSample_t* bufPtrPtr[ p->chCnt ];
unsigned i = 0;
for(i=0; i<p->chCnt; ++i)
bufPtrPtr[i] = p->bufV + (i*p->procSmpCnt);
if((afRC = cmAudioFileWriteSample( p->h, p->procSmpCnt, p->chCnt, bufPtrPtr )) != kOkAfRC )
return cmCtxRtCondition( &p->obj, afRC, "Write failed on audio file:'%s'", p->fn );
}
return cmOkRC;
}
void cmAudioFileWrTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
const char* fn = "/home/kevin/src/cm/test0.aif";
double durSecs = 10;
double srate = 44100;
unsigned chCnt = 2;
unsigned bitsPerSmp = 16;
unsigned procSmpCnt = 64;
double hz = 1000;
unsigned overToneCnt= 1;
unsigned smpCnt = durSecs * srate;
unsigned i;
cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
cmSigGen* sgp = cmSigGenAlloc( c, NULL, procSmpCnt, srate, kWhiteWfId, hz, overToneCnt );
cmAudioFileWr* awp = cmAudioFileWrAlloc( c, NULL, procSmpCnt, fn, srate, chCnt, bitsPerSmp );
for(i=0; i<smpCnt; ++i)
{
cmSigGenExec( sgp );
cmAudioFileWrExec( awp, 0, sgp->outV, sgp->outN );
cmAudioFileWrExec( awp, 1, sgp->outV, sgp->outN );
i += sgp->outN;
}
printf("Frames:%i\n",smpCnt);
cmAudioFileWrFree(&awp);
cmSigGenFree( &sgp );
cmCtxFree(&c);
cmAudioFileReportFn( fn, 0, 20, rpt );
}
//------------------------------------------------------------------------------------------------------------
cmMatrixBuf* cmMatrixBufAllocFile( cmCtx* c, cmMatrixBuf* p, const char* fn )
{
cmRC_t rc;
cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
if( fn != NULL )
if((rc = cmMatrixBufInitFile(op,fn)) != cmOkRC )
cmObjFree(&op);
return op;
}
cmMatrixBuf* cmMatrixBufAllocCopy(cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
{
cmRC_t rc;
cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
if( sp != NULL && rn > 0 && cn > 0 )
if((rc = cmMatrixBufInitCopy(op,rn,cn,sp)) != cmOkRC )
cmObjFree(&op);
return op;
}
cmMatrixBuf* cmMatrixBufAlloc( cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn )
{
cmRC_t rc;
cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
if( rn > 0 && cn > 0 )
if((rc = cmMatrixBufInit(op,rn,cn)) != cmOkRC )
cmObjFree(&op);
return op;
}
cmRC_t cmMatrixBufFree( cmMatrixBuf** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmMatrixBuf* p = *pp;
if((rc = cmMatrixBufFinal(p)) == cmOkRC )
{
cmMemPtrFree(&p->bufPtr);
cmObjFree(pp);
}
}
return rc;
}
void _cmMatrixBufGetFileSize( FILE* fp, unsigned* lineCharCntPtr, unsigned* lineCntPtr )
{
*lineCharCntPtr = 0;
*lineCntPtr = 0;
while( !feof(fp) )
{
char ch;
unsigned charCnt = 0;
while( (ch = getc(fp)) != EOF )
{
charCnt++;
if( ch == '\n' )
break;
}
*lineCntPtr += 1;
if(charCnt > *lineCharCntPtr )
*lineCharCntPtr = charCnt;
}
*lineCharCntPtr += 5; // add a safety margin
}
cmRC_t _cmMatrixBufGetMatrixSize( cmObj* op, FILE* fp, unsigned lineCharCnt, unsigned lineCnt, unsigned* rowCntPtr, unsigned * colCntPtr, const char* fn )
{
unsigned i;
char lineBuf[ lineCharCnt + 1 ];
*rowCntPtr = 0;
*colCntPtr = 0;
for(i=0; i<lineCnt; ++i)
{
if(fgets(lineBuf,lineCharCnt,fp)==NULL)
{
// if the last line is blank then return from here
if( feof(fp) )
return cmOkRC;
return cmCtxRtCondition( op, cmSystemErrorRC, "A read error occured on the matrix file:'%s'.",fn);
}
assert( strlen(lineBuf) < lineCharCnt );
char* lp = lineBuf;
char* tp;
// eat any leading white space
while( (*lp) && isspace(*lp) )
++lp;
// if the line was blank then skip it
if( strlen(lp) == 0 || *lp == '#' )
continue;
(*rowCntPtr) += 1;
unsigned colCnt;
for(colCnt=0; (tp = strtok(lp," ")) != NULL; ++colCnt )
lp = NULL;
if( colCnt > *colCntPtr )
*colCntPtr = colCnt;
}
return cmOkRC;
}
double _cmMatrixBufStrToNum( cmObj* op, const char* cp )
{
double v;
if( sscanf(cp,"%le ",&v) != 1 )
cmCtxRtCondition( op, cmArgAssertRC, "Parse error reading matrix file.");
return v;
}
cmRC_t _cmMatrixBufReadFile(cmObj* op, FILE* fp, cmSample_t* p, unsigned lineCharCnt, unsigned rn, unsigned cn)
{
char lineBuf[ lineCharCnt+1 ];
unsigned ci = 0;
unsigned ri = 0;
while( fgets(lineBuf,lineCharCnt,fp) != NULL )
{
char* lp = lineBuf;
char* tp;
while( (*lp) && isspace(*lp) )
lp++;
if( strlen(lp) == 0 || *lp == '#' )
continue;
for(ci=0; (tp = strtok(lp," ")) != NULL; ++ci )
{
p[ (ci*rn) + ri ] = _cmMatrixBufStrToNum(op,tp); //atof(tp);
lp = NULL;
}
++ri;
}
return cmOkRC;
}
cmRC_t cmMatrixBufInitFile( cmMatrixBuf* p, const char* fn )
{
cmRC_t rc;
FILE* fp;
unsigned lineCharCnt;
unsigned lineCnt;
unsigned rn;
unsigned cn;
if((fp = fopen(fn,"rt")) == NULL )
return cmCtxRtCondition( &p->obj, cmSystemErrorRC, "Unable to open the matrix file:'%s'", fn );
// get the length of the longest line in the file
_cmMatrixBufGetFileSize(fp,&lineCharCnt,&lineCnt);
rewind(fp);
// get the count of matrix rows and columns
if((rc=_cmMatrixBufGetMatrixSize( &p->obj, fp, lineCharCnt, lineCnt, &rn, &cn, fn )) != cmOkRC )
goto errLabel;
rewind(fp);
// allocate the matrix memory
cmMatrixBufInit(p,rn,cn);
// fill the matrix from the file
rc = _cmMatrixBufReadFile(&p->obj,fp,p->bufPtr,lineCharCnt,rn,cn);
errLabel:
if( rc != cmOkRC )
cmMatrixBufFinal(p);
fclose(fp);
return rc;
}
cmRC_t cmMatrixBufInitCopy( cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
{
cmRC_t rc;
if((rc = cmMatrixBufInit(p,rn,cn)) != cmOkRC )
return rc;
cmVOS_Copy(p->bufPtr,(rn*cn),sp);
return rc;
}
cmRC_t cmMatrixBufInit( cmMatrixBuf* p, unsigned rn, unsigned cn )
{
cmRC_t rc;
if((rc = cmMatrixBufFinal(p)) != cmOkRC )
return rc;
p->rn = rn;
p->cn = cn;
p->bufPtr = cmMemResize( cmSample_t, p->bufPtr, rn*cn );
return cmOkRC;
}
cmRC_t cmMatrixBufFinal( cmMatrixBuf* p )
{ return cmOkRC; }
cmSample_t* cmMatrixBufColPtr( cmMatrixBuf* p, unsigned ci )
{ assert(ci<p->cn); return p->bufPtr + (ci * p->rn); }
cmSample_t* cmMatrixBufRowPtr( cmMatrixBuf* p, unsigned ri )
{ assert(ri<p->rn); return p->bufPtr + ri; }
void cmMatrixBufTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
cmSample_t v[] = {1,2,2,3};
cmCtx* c = cmCtxAlloc(NULL,rpt,lhH,stH);
cmMatrixBuf* mbp = cmMatrixBufAllocFile(c, NULL, "temp.mat" );
cmMatrixBuf* vbp = cmMatrixBufAllocCopy(c, NULL, 4,1,v);
unsigned i;
printf("rn:%i cn:%i\n",mbp->rn,mbp->cn);
//cmVOS_Print( stdout, 10, 10, mbp->bufPtr );
printf("%.1f\n ",cmVOS_Median( cmMatrixBufColPtr(vbp,0),vbp->rn));
for(i=0; i<mbp->cn; ++i)
{
//cmVOS_Print( stdout, 1, mbp->cn, cmMatrixBufColPtr(c,mbp,i) );
printf("%.1f, ",cmVOS_Median( cmMatrixBufColPtr(mbp,i),mbp->rn));
}
printf("\n");
cmMatrixBufFree(&mbp);
cmMatrixBufFree(&vbp);
cmCtxFree(&c);
}
//------------------------------------------------------------------------------------------------------------
cmSigGen* cmSigGenAlloc( cmCtx* c, cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
{
cmSigGen* op = cmObjAlloc( cmSigGen, c, p );
if( procSmpCnt > 0 && srate > 0 && wfId != kInvalidWfId )
if( cmSigGenInit( op, procSmpCnt, srate, wfId, fundFrqHz, overToneCnt ) != cmOkRC )
cmObjFree(&op);
return op;
}
cmRC_t cmSigGenFree( cmSigGen** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmSigGen* p = *pp;
if((rc = cmSigGenFinal(p)) == cmOkRC )
{
cmMemPtrFree(&p->outV);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmSigGenInit( cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
{
assert( srate > 0 && procSmpCnt > 0 );
p->outV = cmMemResize( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->wfId = wfId;
p->overToneCnt = overToneCnt;
p->fundFrqHz = fundFrqHz;
p->phase = 0;
p->delaySmp = 0;
p->srate = srate;
return cmOkRC;
}
cmRC_t cmSigGenFinal( cmSigGen* p )
{ return cmOkRC; }
cmRC_t cmSigGenExec( cmSigGen* p )
{
switch( p->wfId )
{
case kSineWfId: p->phase = cmVOS_SynthSine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kCosWfId: p->phase = cmVOS_SynthCosine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kSquareWfId: p->phase = cmVOS_SynthSquare( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kTriangleWfId: p->phase = cmVOS_SynthTriangle( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kSawtoothWfId: p->phase = cmVOS_SynthSawtooth( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kWhiteWfId: cmVOS_Random( p->outV, p->outN, -1.0, 1.0 ); break;
case kPinkWfId: p->delaySmp = cmVOS_SynthPinkNoise(p->outV, p->outN, p->delaySmp ); break;
case kPulseWfId: p->phase = cmVOS_SynthPulseCos( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
case kImpulseWfId: p->phase = cmVOS_SynthImpulse( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kSilenceWfId: cmVOS_Fill( p->outV, p->outN, 0 ); break;
case kPhasorWfId: p->phase = cmVOS_SynthPhasor( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
case kSeqWfId: p->phase = cmVOS_Seq( p->outV, p->outN, p->phase, 1 ); break;
case kInvalidWfId:
default:
return cmCtxRtAssertFailed( &p->obj, 0, "Invalid waveform shape.");
}
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmDelay* cmDelayAlloc( cmCtx* c, cmDelay* ap, unsigned procSmpCnt, unsigned delaySmpCnt )
{
cmDelay* p = cmObjAlloc( cmDelay, c, ap );
if( procSmpCnt > 0 && delaySmpCnt > 0 )
if( cmDelayInit( p,procSmpCnt,delaySmpCnt) != cmOkRC && ap == NULL )
cmObjFree(&p);
return p;
}
cmRC_t cmDelayFree( cmDelay** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL )
{
cmDelay* p = *pp;
if((rc = cmDelayFinal(*pp)) == cmOkRC )
{
cmMemPtrFree(&p->bufPtr);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmDelayInit( cmDelay* p, unsigned procSmpCnt, unsigned delaySmpCnt )
{
p->procSmpCnt = procSmpCnt;
p->delaySmpCnt = delaySmpCnt;
p->bufSmpCnt = delaySmpCnt + procSmpCnt;
p->bufPtr = cmMemResizeZ( cmSample_t, p->bufPtr, p->bufSmpCnt);
p->delayInIdx = 0;
p->outCnt = 1;
p->outV[0] = p->bufPtr;
p->outN[0] = p->procSmpCnt;
p->outV[1] = NULL;
p->outN[1] = 0;
return cmOkRC;
}
cmRC_t cmDelayFinal( cmDelay* p )
{ return cmOkRC; }
cmRC_t cmDelayCopyIn( cmDelay* p, const cmSample_t* sp, unsigned sn )
{
assert(sn<=p->procSmpCnt);
unsigned n0 = cmMin(sn,p->bufSmpCnt - p->delayInIdx);
// copy as many samples as possible from the input to the delayInIdx
cmVOS_Copy(p->bufPtr + p->delayInIdx, n0, sp);
p->delayInIdx = (p->delayInIdx + n0) % p->bufSmpCnt;
// if there was not enough room to copy all the samples into the end of the buffer ....
if( n0 < sn )
{
assert( p->delayInIdx == 0 );
// ... then copy the rest to the beginning of the buffer
unsigned n1 = sn - n0;
cmVOS_Copy(p->bufPtr,n1, sp + n0 );
p->delayInIdx = (p->delayInIdx + n1) % p->bufSmpCnt;
}
return cmOkRC;
}
cmRC_t cmDelayAdvance( cmDelay* p, unsigned sn )
{
// advance the output by sn and make sn samples available
int delayOutIdx = ((p->outV[0] - p->bufPtr) + sn) % p->bufSmpCnt;
p->outV[0] = p->bufPtr + delayOutIdx;
p->outN[0] = cmMin(p->bufSmpCnt - delayOutIdx , sn );
p->outCnt = p->outN[0] == sn ? 1 : 2 ;
p->outV[1] = p->outCnt == 1 ? NULL : p->bufPtr;
p->outN[1] = p->outCnt == 1 ? 0 : sn - p->outN[0];
return cmOkRC;
}
cmRC_t cmDelayExec( cmDelay* p, const cmSample_t* sp, unsigned sn, bool bypassFl )
{
cmRC_t rc = cmOkRC;
if( bypassFl )
memcpy(p->outV,sp,sn*sizeof(cmSample_t));
else
{
cmDelayCopyIn(p,sp,sn);
rc = cmDelayAdvance(p,sn);
}
return rc;
}
void cmDelayTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
cmCtx ctx;
cmDelay delay;
cmSigGen sigGen;
unsigned procCnt = 4;
unsigned procSmpCnt = 5;
unsigned delaySmpCnt = 3;
unsigned i;
cmCtx* c = cmCtxAlloc( &ctx, rpt, lhH, stH );
cmDelay* dlp = cmDelayAlloc( c, &delay, procSmpCnt, delaySmpCnt );
cmSigGen* sgp = cmSigGenAlloc( c, &sigGen, procSmpCnt, 0, kSeqWfId,0, 0);
for(i=0; i<procCnt; ++i)
{
cmSigGenExec(sgp);
cmDelayExec(dlp,sgp->outV,sgp->outN,false);
//cmVOS_Print( c->outFp, 1, sgp->outN, sgp->outV, 5, 0 );
cmCtxPrint(c,"%i %i : ",i,0);
cmVOS_PrintE( rpt, 1, dlp->outN[0], dlp->outV[0] );
if( dlp->outN[1] > 0 )
{
cmCtxPrint(c,"%i %i : ",i,1);
cmVOS_PrintE( rpt, 1, dlp->outN[1], dlp->outV[1] );
}
}
cmSigGenFinal(sgp);
cmDelayFinal(dlp);
cmCtxFinal(c);
}
//------------------------------------------------------------------------------------------------------------
cmFIR* cmFIRAllocKaiser(cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
{
cmFIR* op = cmObjAlloc( cmFIR, c, p );
if( procSmpCnt > 0 && srate > 0 )
if( cmFIRInitKaiser(op,procSmpCnt,srate,passHz,stopHz,passDb,stopDb,flags) != cmOkRC )
cmObjFree(&op);
return op;
}
cmFIR* cmFIRAllocSinc( cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
{
cmFIR* op = cmObjAlloc( cmFIR, c, p );
if( srate > 0 && sincSmpCnt > 0 )
if( cmFIRInitSinc(op,procSmpCnt,srate,sincSmpCnt,fcHz,flags,wndV) != cmOkRC )
cmObjFree(&op);
return op;
}
cmRC_t cmFIRFree( cmFIR** pp )
{
cmRC_t rc = cmOkRC;
if( pp != NULL && *pp != NULL)
{
cmFIR* p = *pp;
if((rc = cmFIRFinal(*pp)) == cmOkRC )
{
cmMemPtrFree(&p->coeffV);
cmMemPtrFree(&p->outV);
cmMemPtrFree(&p->delayV);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmFIRInitKaiser( cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
{
// pass/stop frequencies above nyquist produce incorrect results
assert( passHz <= srate/2 && stopHz<=srate/2);
// based on Orfandis, Introduction to Signal Processing, p.551 Prentice Hall, 1996
double fcHz = (passHz + stopHz) / 2; // fc is half way between passHz and stopHz
double dHz = fabs(stopHz-passHz);
// convert ripple spec from db to linear
double dPass = (pow(10,passDb/20)-1) / (pow(10,passDb/20)+1);
double dStop = pow(10,-stopDb/20);
// in practice the ripple must be equal in the stop and pass band - so take the minimum between the two
double d = cmMin(dPass,dStop);
// convert the ripple back to db
double A = -20 * log10(d);
// compute the kaiser alpha coeff
double alpha = 0;
if( A >= 50.0 ) // for ripple > 50
alpha = 0.1102 * (A-8.7);
else // for ripple <= 21
{
if( A > 21 )
alpha = (0.5842 * (pow(A-21.0,0.4))) + (0.07886*(A-21));
}
double D = 0.922;
if( A > 21 )
D = (A - 7.95) / 14.36;
// compute the filter order
unsigned N = (unsigned)(floor(D * srate / dHz) + 1);
//if N is even
if( cmIsEvenU(N) )
N = N + 1;
//printf("fc=%f df=%f dPass=%f dStop=%f d=%f alpha=%f A=%f D=%f N=%i\n",fcHz,dHz,dPass,dStop,d,alpha,A,D,N);
// compute a kaiser function to truncate the sinc
double wnd[ N ];
cmVOD_Kaiser( wnd, N, alpha );
// form an ideal FIR LP impulse response based on a sinc function
cmFIRInitSinc(p,procSmpCnt,srate,N,fcHz,flags, wnd);
//cmVOD_Print(stdout,1,p->coeffCnt,p->coeffV);
return cmOkRC;
}
cmRC_t cmFIRInitSinc( cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
{
cmRC_t rc;
if((rc = cmFIRFinal(p)) != cmOkRC )
return rc;
p->coeffCnt = sincSmpCnt;
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->coeffV = cmMemResizeZ( double, p->coeffV, p->coeffCnt );
p->delayV = cmMemResizeZ( double, p->delayV, p->coeffCnt-1 ); // there is always one less delay than coeff
p->delayIdx = 0;
unsigned lp_flags = kNormalize_LPSincFl;
lp_flags |= cmIsFlag(flags,kHighPassFIRFl) ? kHighPass_LPSincFl : 0;
cmVOD_LP_Sinc(p->coeffV, p->coeffCnt, wndV, srate, fcHz, lp_flags );
return cmOkRC;
}
cmRC_t cmFIRFinal( cmFIR* p )
{ return cmOkRC; }
cmRC_t cmFIRExec( cmFIR* p, const cmSample_t* sbp, unsigned sn )
{
unsigned delayCnt = p->coeffCnt-1;
int di = p->delayIdx;
const cmSample_t* sep = sbp + sn;
cmSample_t* op = p->outV;
assert( di < delayCnt );
assert( sn <= p->outN );
// for each input sample
while( sbp < sep )
{
// advance the delay line
p->delayIdx = (p->delayIdx + 1) % delayCnt;
const double* cbp = p->coeffV;
const double* cep = cbp + p->coeffCnt;
// mult input sample by coeff[0]
double v = *sbp * *cbp++;
// calc the output sample
while( cbp<cep)
{
// note that the delay is being iterated backwards
if( di == -1 )
di=delayCnt-1;
v += *cbp++ * p->delayV[di];
--di;
}
// store the output sample
*op++ = v;
// insert the input sample
p->delayV[ p->delayIdx ] = *sbp++;
// store the position of the newest ele in the delay line
di = p->delayIdx;
}
return cmOkRC;
}
void cmFIRTest0( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
unsigned N = 512;
cmKbRecd kb;
cmCtx c;
cmCtxInit(&c,rpt,lhH,stH);
double srate = N;
unsigned procSmpCnt = N;
cmPlotSetup("Test Proc Impl",2,1);
cmSample_t in[ procSmpCnt ];
cmVOS_Fill(in,procSmpCnt,0);
in[0] = 1;
cmVOS_Random(in,procSmpCnt, -1.0, 1.0 );
cmFIR* ffp = cmFIRAllocKaiser( &c, NULL, procSmpCnt,srate, srate*0.025, srate/2, 10, 60, 0 );
//cmFIR* ffp = cmFIRAllocSinc( &c, NULL, 32, 1000, 0 );
cmFftSR* ftp = cmFftAllocSR( &c, NULL, ffp->outV, ffp->outN, kToPolarFftFl );
cmFIRExec( ffp, in, procSmpCnt );
cmFftExecSR( ftp, NULL, 0 );
cmVOR_AmplitudeToDb(ftp->magV,ftp->binCnt,ftp->magV);
printf("coeff cnt:%i\n",ffp->coeffCnt );
cmPlotClear();
cmPlotLineR( "test", NULL, ftp->magV, NULL, ftp->binCnt, NULL, kSolidPlotLineId );
cmPlotDraw();
cmKeyPress(&kb);
cmFftFreeSR(&ftp);
cmFIRFree(&ffp);
}
void cmFIRTest1( cmCtx* ctx )
{
const char* sfn = "/home/kevin/temp/sig.va";
const char* ffn = "/home/kevin/temp/fir.va";
unsigned N = 44100;
unsigned srate = N;
unsigned procSmpCnt = N;
double passHz = 15000;
double stopHz = 14000;
double passDb = 1.0;
double stopDb = 60.0;
unsigned flags = kHighPassFIRFl;
cmSample_t x[ procSmpCnt ];
cmVOS_Fill(x,procSmpCnt,0);
x[0] = 1;
cmVOS_Random(x,procSmpCnt, -1.0, 1.0 );
cmFIR* f = cmFIRAllocKaiser( ctx, NULL, procSmpCnt, srate, passHz, stopHz, stopDb, passDb, flags );
cmFIRExec( f, x, procSmpCnt );
cmVectArrayWriteMatrixS(ctx, ffn, f->outV, 1, f->outN );
cmVectArrayWriteMatrixS(ctx, sfn, x, 1, N );
cmFIRFree(&f);
}
//------------------------------------------------------------------------------------------------------------
cmFuncFilter* cmFuncFilterAlloc( cmCtx* c, cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
{
cmRC_t rc;
cmFuncFilter* op = cmObjAlloc( cmFuncFilter,c, p );
if( procSmpCnt > 0 && funcPtr != NULL && wndSmpCnt > 0 )
{
if( cmShiftBufAlloc(c,&p->shiftBuf,0,0,0) != NULL )
if((rc = cmFuncFilterInit(op,procSmpCnt,funcPtr,userPtr,wndSmpCnt)) != cmOkRC )
{
cmShiftBuf* sbp = &p->shiftBuf;
cmShiftBufFree(&sbp);
cmObjFree(&op);
}
}
return op;
}
cmRC_t cmFuncFilterFree( cmFuncFilter** pp )
{
cmRC_t rc = cmOkRC;
if( pp!=NULL && *pp != NULL )
{
cmFuncFilter* p = *pp;
if((rc = cmFuncFilterFinal(*pp)) == cmOkRC )
{
cmShiftBuf* sbp = &p->shiftBuf;
cmShiftBufFree(&sbp);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
}
}
return rc;
}
cmRC_t cmFuncFilterInit( cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
{
cmRC_t rc;
if(( rc = cmFuncFilterFinal(p)) != cmOkRC )
return rc;
// The shift buffer always consits of the p->wndSmpCnt-1 samples from the previous
// exec followed by the latest procSmpCnt samples at the end of the buffer
cmShiftBufInit( &p->shiftBuf, procSmpCnt, wndSmpCnt + procSmpCnt - 1, procSmpCnt );
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt);
p->outN = procSmpCnt;
p->funcPtr = funcPtr;
p->curWndSmpCnt = 1;
p->wndSmpCnt = wndSmpCnt;
return rc;
}
cmRC_t cmFuncFilterFinal( cmFuncFilter* p )
{ return cmOkRC; }
cmRC_t cmFuncFilterExec( cmFuncFilter* p, const cmSample_t* sp, unsigned sn )
{
assert( sn <= p->outN);
// The window used by this function is always causal. At the very beginning of the signal
// the window length begins at 1 and increases until is has the length p->wndSmpCnt.
// Note that this approach ignores any zeros automatically prepended to the beginning of the
// signal by the shift buffer. The first window processed always has a length of 1 and
// begins with the first actual sample given to the shift buffer. Successive windows increase
// by one and start at the first actual sample until the full window length is available
// from the shift buffer. At this point the window length remains constant and it is hopped
// by one sample for each window.
while(cmShiftBufExec(&p->shiftBuf,sp,sn))
{
const cmSample_t* fsp = p->shiftBuf.outV;
cmSample_t* dp = p->outV;
cmSample_t* ep = p->outV + sn; // produce as many output values as there are input samples
// for each output sample
while( dp < ep )
{
// the source range should never extend outside the shift buffer
assert( fsp + p->curWndSmpCnt <= p->shiftBuf.outV + p->shiftBuf.wndSmpCnt );
// calc the next output value
*dp++ = p->funcPtr( fsp, p->curWndSmpCnt, p->userPtr );
// if the window has not yet achieved its full length ...
if( p->curWndSmpCnt < p->wndSmpCnt )
++p->curWndSmpCnt; // ... then increase its length by 1
else
++fsp; // ... otherwise shift it ahead by 1
}
}
return cmOkRC;
}
cmSample_t cmFuncFiltTestFunc( const cmSample_t* sp, unsigned sn, void* vp )
{
//printf("% f % f %p % i\n",*sp,*sp+(sn-1),sp,sn);
cmSample_t v = cmVOS_Median(sp,sn);
printf("%f ",v);
return v;
//return *sp;
}
void cmFuncFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
unsigned procSmpCnt = 1;
unsigned N = 32;
cmSample_t v[N];
cmCtx c;
unsigned i;
cmCtxAlloc(&c,rpt,lhH,stH);
cmVOS_Seq(v,N,0,1);
cmVOS_Print(rpt,1,32,v);
cmFuncFilter* ffp = NULL;
ffp = cmFuncFilterAlloc( &c, NULL, procSmpCnt, cmFuncFiltTestFunc, NULL, 5 );
for(i=0; i<N; ++i)
cmFuncFilterExec(ffp,v+(i*procSmpCnt),procSmpCnt);
cmFuncFilterFree( &ffp );
cmCtxFinal(&c);
//unsigned v1n = 9;
//cmSample_t v1[9] = { 1, 75, 91, 35, 6, 80, 40, 91, 79};
//cmSample_t v1[10] = {53, 64, 48, 78, 30, 59, 7, 50, 71, 53 };
//printf("Median: %f \n",cmVOS_Median(v1,v1+v1n));
}
//------------------------------------------------------------------------------------------------------------
cmDhmm* cmDhmmAlloc( cmCtx* c, cmDhmm* ap, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
{
cmDhmm* p = cmObjAlloc( cmDhmm, c, ap );
if( stateN > 0 && symN > 0 )
if( cmDhmmInit(p, stateN, symN, initV, transM, stsM ) != cmOkRC )
cmObjFree(&p);
return p;
}
cmRC_t cmDhmmFree( cmDhmm** pp )
{
cmRC_t rc = cmOkRC;
cmDhmm* p = *pp;
if( pp==NULL || *pp==NULL )
return cmOkRC;
if((rc = cmDhmmFinal(p)) != cmOkRC )
return cmOkRC;
cmObjFree(pp);
return rc;
}
cmRC_t cmDhmmInit( cmDhmm* p, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
{
cmRC_t rc;
if((rc = cmDhmmFinal(p)) != cmOkRC )
return rc;
p->stateN = stateN;
p->symN = symN;
p->initV = initV;
p->transM = transM;
p->stsM = stsM;
return cmOkRC;
}
cmRC_t cmDhmmFinal( cmDhmm* p )
{ return cmOkRC; }
cmRC_t cmDhmmExec( cmDhmm* p )
{
return cmOkRC;
}
// Generate a random matrix with rows that sum to 1.0.
void _cmDhmmGenRandMatrix( cmReal_t* dp, unsigned rn, unsigned cn )
{
cmReal_t v[ cn ];
unsigned i,j;
for(i=0; i<rn; ++i)
{
cmVOR_Random( v, cn, 0.0, 1.0 );
cmVOR_NormalizeProbability( v, cn);
for(j=0; j<cn; ++j)
dp[ (j * rn) + i ] = v[j];
}
}
enum { kEqualProbHmmFl=0x01, kRandProbHmmFl=0x02, kManualProbHmmFl=0x04 };
void _cmDhmmGenProb( cmReal_t* dp, unsigned rn, unsigned cn, unsigned flags, const cmReal_t* sp )
{
switch( flags )
{
case kRandProbHmmFl:
_cmDhmmGenRandMatrix( dp, rn, cn );
break;
case kEqualProbHmmFl:
{
// equal prob
cmReal_t pr = 1.0/cn;
unsigned i,j;
for(i=0; i<rn; ++i)
for(j=0; j<cn; ++j)
dp[ (j*rn) + i ] = pr;
}
break;
case kManualProbHmmFl:
cmVOR_Copy( dp, (rn*cn), sp );
break;
default:
assert(0);
}
}
// generate a random integer in the range 0 to probN-1 where probV[ probN ] contains
// the probability of generating each of the possible values.
unsigned _cmDhmmGenRandInt( const cmReal_t* probV, unsigned probN, unsigned stride )
{
cmReal_t tmp[ probN ];
cmReal_t cumSumV[ probN+1 ];
const cmReal_t* sp = probV;
cumSumV[0] = 0;
if( stride > 1 )
{
cmVOR_CopyStride( tmp, probN, probV, stride );
sp = tmp;
}
cmVOR_CumSum( cumSumV+1, probN, sp );
return cmVOR_BinIndex( cumSumV, probN+1, (cmReal_t)rand()/RAND_MAX );
}
cmRC_t cmDhmmGenObsSequence( cmDhmm* p, unsigned* dbp, unsigned dn )
{
const unsigned* dep = dbp + dn;
// generate the first state based on the init state prob. vector
unsigned state = _cmDhmmGenRandInt( p->initV, p->stateN, 1 );
// generate an observation from the state based on the symbol prob. vector
*dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
while( dbp < dep )
{
// get the next state based on the previous state
state = _cmDhmmGenRandInt( p->transM + state, p->stateN, p->stateN );
// given a state generate an observation
*dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
}
return cmOkRC;
}
/// Perform a forward evaluation of the model given a set of observations.
/// initPrV[ stateN ] is the probability of the model being in each state at the start of the evaluation.
/// alphaM[ stateN, obsN ] is a return value and represents the probability of seeing each symbol at each time step.
enum { kNoLogScaleHmmFl = 0x00, kLogScaleHmmFl = 0x01 };
cmRC_t cmDHmmForwardEval( cmDhmm* p, const cmReal_t* initPrV, const unsigned* obsV, unsigned obsN, cmReal_t* alphaM, unsigned flags, cmReal_t* logProbPtr )
{
bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
cmReal_t logProb = 0;
cmReal_t* abp = alphaM; // define first dest. column
const cmReal_t* aep = abp + p->stateN;
const cmReal_t* sts = p->stsM + (obsV[0] * p->stateN); // stsM[] column for assoc'd with first obs. symbol
unsigned i;
// calc the prob of begining in each state given the obs. symbol
for(i=0; abp < aep; ++i )
*abp++ = *initPrV++ * *sts++;
// scale to prevent underflow
if( scaleFl )
{
cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
if( sum > 0 )
{
cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
logProb += log(sum);
}
}
// for each time step
for(i=1; i<obsN; ++i)
{
// next state 0 (first col, first row) is calc'd first
const cmReal_t* tm = p->transM;
// pick the stsM[] column assoc'd with ith observation symbol
const cmReal_t* sts = p->stsM + (obsV[i] * p->stateN);
// store a pointer to the alpha column assoc'd with obsV[i-1]
const cmReal_t* app0 = abp - p->stateN;
aep = abp + p->stateN;
// for each dest state
while( abp < aep )
{
// prob of being in each state on the previous time step
const cmReal_t* app = app0;
const cmReal_t* ape = app + p->stateN;
*abp = 0;
// for each src state - calc prob. of trans from src to dest
while( app<ape )
*abp += *app++ * *tm++;
// calc prob of obs symbol in dest state
*abp++ *= *sts++;
}
// scale to prevent underflow
if( scaleFl )
{
cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
if( sum > 0 )
{
cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
logProb += log(sum);
}
}
}
if( logProbPtr != NULL )
*logProbPtr = logProb;
return cmOkRC;
}
cmRC_t cmDHmmBcmkwardEval( cmDhmm* p, const unsigned* obsV, unsigned obsN, cmReal_t* betaM, unsigned flags )
{
bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
int i,j,t;
cmVOR_Fill(betaM+((obsN-1)*p->stateN),p->stateN,1.0);
// for each time step
for(t=obsN-2; t>=0; --t)
{
// for each state at t
for(i=0; i<p->stateN; ++i)
{
double Bt = 0;
// for each state at t+1
for(j=0; j<p->stateN; ++j)
{
double aij = p->transM[ (j * p->stateN) + i ];
double bj = p->stsM[ (obsV[t+1] * p->stateN) + j ];
double Bt1 = betaM[ ((t+1) * p->stateN) + j ];
Bt += aij * bj * Bt1;
}
betaM[ (t * p->stateN) + i ] = Bt;
}
if( scaleFl )
{
double* bp = betaM + (t * p->stateN);
double sum = cmVOR_Sum(bp, p->stateN );
if( sum > 0 )
cmVOR_DivVS( bp, p->stateN, sum );
}
}
return cmOkRC;
}
void _cmDhmmNormRow( cmReal_t* p, unsigned pn, unsigned stride, const cmReal_t* sp )
{
if( sp == NULL )
sp = p;
cmReal_t sum = 0;
unsigned n = pn * stride;
const cmReal_t* bp = sp;
const cmReal_t* ep = bp + n;
for(; bp<ep; bp+=stride)
sum += *bp;
for(ep = p+n; p<ep; p+=stride,sp+=stride)
*p = *sp / sum;
}
void _cmDhmmNormMtxRows( cmReal_t* dp, unsigned rn, unsigned cn, const cmReal_t* sp )
{
const cmReal_t* erp = sp + rn;
while( sp < erp )
_cmDhmmNormRow( dp++, cn, rn, sp++ );
}
cmRC_t cmDhmmTrainEM( cmDhmm* p, const unsigned* obsV, unsigned obsN, unsigned iterCnt, unsigned flags )
{
unsigned i,j,k,t;
cmReal_t alphaM[ p->stateN * obsN ];
cmReal_t betaM[ p->stateN * obsN ];
cmReal_t g[ p->stateN * obsN ];
cmReal_t q[ p->stateN * p->symN ];
cmReal_t E[ p->stateN * p->stateN ];
cmReal_t logProb = 0;
//cmDhmmReport(p->obj.ctx,p);
for(k=0; k<iterCnt; ++k)
{
cmVOR_Fill( q, (p->stateN * p->symN), 0 );
cmVOR_Fill( E, (p->stateN * p->stateN), 0 );
// calculate alpha and beta
cmDHmmForwardEval( p, p->initV, obsV, obsN, alphaM, flags, &logProb);
cmDHmmBcmkwardEval( p, obsV, obsN, betaM, flags );
// gamma[ stateN, obsN ] = alphaM .* betaM - gamma is the probability of being in each state at each time step
cmVOR_MultVVV( g,(p->stateN*obsN), alphaM, betaM );
// normalize gamma
for(i=0; i<obsN; ++i)
cmVOR_NormalizeProbability( g + (i*p->stateN), p->stateN );
//printf("ITER:%i logProb:%f\n",k,logProb);
// count the number of times state i emits obsV[0] in the starting location
cmVOR_Copy( q + (obsV[0] * p->stateN), p->stateN, g );
for(t=0; t<obsN-1; ++t)
{
// point to alpha[:,t] and beta[:,t+1]
const cmReal_t* alpha_t0 = alphaM + (t*p->stateN);
const cmReal_t* beta_t1 = betaM + ((t+1)*p->stateN);
cmReal_t Et[ p->stateN * p->stateN ];
cmReal_t Esum = 0;
// for each source state
for(i=0; i<p->stateN; ++i)
{
// for each dest state
for(j=0; j<p->stateN; ++j)
{
// prob of transitioning from state i to j and emitting obs[t] at time t
cmReal_t Eps = alpha_t0[i] * p->transM[ (j*p->stateN) + i ] * p->stsM[ (obsV[t+1]*p->stateN) + j ] * beta_t1[j];
// count the number of transitions from i to j
Et[ (j*p->stateN) + i ] = Eps;
Esum += Eps;
}
// count the number of times state i emits obsV[t]
q[ (obsV[t+1] * p->stateN) + i ] += g[ ((t+1)*p->stateN) + i ];
}
// normalize Et and sum it into E
cmVOR_DivVS( Et, (p->stateN*p->stateN), Esum );
cmVOR_AddVV( E, (p->stateN*p->stateN), Et );
}
// update the model
_cmDhmmNormMtxRows( p->initV, 1, p->stateN, g );
_cmDhmmNormMtxRows( p->transM, p->stateN, p->stateN, E );
_cmDhmmNormMtxRows( p->stsM, p->stateN, p->symN, q );
}
return cmOkRC;
}
cmRC_t cmDhmmReport( cmDhmm* p )
{
cmVOR_PrintL("initV:\n", p->obj.err.rpt, 1, p->stateN, p->initV );
cmVOR_PrintL("transM:\n", p->obj.err.rpt, p->stateN, p->stateN, p->transM );
cmVOR_PrintL("symM:\n", p->obj.err.rpt, p->stateN, p->symN, p->stsM );
return cmOkRC;
}
void cmDhmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
unsigned stateN = 2;
unsigned symN = 3;
unsigned obsN = 4;
unsigned iterN = 10;
cmReal_t initV0[ stateN ];
cmReal_t transM0[ stateN * stateN ];
cmReal_t stsM0[ symN * stateN ];
cmReal_t initV1[ stateN ];
cmReal_t transM1[ stateN * stateN ];
cmReal_t stsM1[ symN * stateN ];
unsigned obsV[ obsN ];
unsigned hist[ symN ];
unsigned genFl = kManualProbHmmFl;
cmReal_t initV[] =
{
0.44094,
0.55906
};
cmReal_t transM[] =
{
0.48336,
0.81353,
0.51664,
0.18647,
};
cmReal_t stsM[] =
{
0.20784,
0.18698,
0.43437,
0.24102,
0.35779,
0.57199
};
unsigned obsM[] = { 2, 2, 2, 0 };
cmReal_t initV2[] = { 0.79060, 0.20940 };
cmReal_t transM2[] = { 0.508841, 0.011438, 0.491159, 0.988562 };
cmReal_t stsM2[] = { 0.25789, 0.35825, 0.61981, 0.42207, 0.12230, 0.21969 };
//srand( time(NULL) );
// generate a random HMM
_cmDhmmGenProb( initV0, 1, stateN, genFl, initV );
_cmDhmmGenProb( transM0, stateN, stateN, genFl, transM );
_cmDhmmGenProb( stsM0, stateN, symN, genFl, stsM );
cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH);
cmDhmm* h0p = cmDhmmAlloc( c, NULL, stateN, symN, initV0, transM0, stsM0 );
// generate an observation sequence based on the random HMM
//cmDhmmGenObsSequence(c, h0p, obsV, obsN );
memcpy(obsV,obsM,obsN*sizeof(unsigned));
if( 0 )
{
// print the HMM
cmDhmmReport( h0p);
// print the observation symbols
cmVOU_PrintL("obs:\n", rpt, 1, obsN, obsV );
// print the histogram of the obs. symbols
cmVOU_Hist( hist, symN, obsV, obsN );
cmVOU_PrintL("hist:\n", rpt, 1, symN, hist );
// calc alpha (the forward probabilities)
cmReal_t alphaM[ h0p->stateN*obsN ];
cmReal_t logProb=0;
cmDHmmForwardEval( h0p, h0p->initV, obsV, obsN, alphaM, kLogScaleHmmFl, &logProb);
printf("log prob:%f\n alpha:\n", logProb );
cmVOR_Print( rpt, h0p->stateN, obsN, alphaM );
// calc beta (the bcmkward probabilities)
cmReal_t betaM[ h0p->stateN*obsN ];
logProb=0;
cmDHmmBcmkwardEval( h0p, obsV, obsN, betaM, kLogScaleHmmFl);
printf("log prob:%f\n beta:\n", logProb );
cmVOR_Print( h0p->obj.err.rpt, h0p->stateN, obsN, betaM );
}
// initialize a second HMM with random probabilities
_cmDhmmGenProb( initV1, 1, stateN, kManualProbHmmFl, initV2 );
_cmDhmmGenProb( transM1, stateN, stateN, kManualProbHmmFl, transM2 );
_cmDhmmGenProb( stsM1, stateN, symN, kManualProbHmmFl, stsM2 );
cmDhmm* h1p = cmDhmmAlloc( c, NULL, stateN, symN, initV1, transM1, stsM1 );
cmDhmmTrainEM( h1p, obsV, obsN, iterN, kLogScaleHmmFl );
cmDhmmFree(&h1p);
cmDhmmFree(&h0p);
cmCtxFree(&c);
}
//------------------------------------------------------------------------------------------------------------
cmConvolve* cmConvolveAlloc( cmCtx* c, cmConvolve* ap, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
{
cmConvolve* p = cmObjAlloc( cmConvolve, c, ap);
p->fft = cmFftAllocSR( c,NULL,NULL,0,kNoConvertFftFl);
p->ifft= cmIFftAllocRS(c,NULL,p->fft->binCnt);
if( hn > 0 && procSmpCnt > 0 )
if( cmConvolveInit(p,h,hn,procSmpCnt) != cmOkRC )
cmObjFree(&p);
return p;
}
cmRC_t cmConvolveFree( cmConvolve** pp )
{
cmRC_t rc;
cmConvolve* p = *pp;
if( pp == NULL || *pp == NULL )
return cmOkRC;
if((rc = cmConvolveFinal(p)) != cmOkRC )
return cmOkRC;
cmFftFreeSR(&p->fft);
cmIFftFreeRS(&p->ifft);
cmMemPtrFree(&p->H);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmConvolveInit( cmConvolve* p, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
{
cmRC_t rc;
unsigned i;
unsigned cn = cmNextPowerOfTwo( hn + procSmpCnt - 1 );
if((rc = cmConvolveFinal(p)) != cmOkRC )
return rc;
cmFftInitSR( p->fft, NULL, cn, kNoConvertFftFl );
cmIFftInitRS( p->ifft, p->fft->binCnt);
p->H = cmMemResizeZ( cmComplexR_t,p->H, p->fft->binCnt );
p->outV = cmMemResizeZ( cmSample_t,p->outV, cn );
p->olaV = p->outV + procSmpCnt;
p->outN = procSmpCnt;
p->hn = hn;
// take the FFT of the impulse response
cmFftExecSR( p->fft, h, hn );
// copy the FFT of the impulse response to p->H[]
for(i=0; i<p->fft->binCnt; ++i)
p->H[i] = p->fft->complexV[i] / p->fft->wndSmpCnt;
return cmOkRC;
}
cmRC_t cmConvolveFinal( cmConvolve* p )
{ return cmOkRC; }
cmRC_t cmConvolveExec( cmConvolve* p, const cmSample_t* x, unsigned xn )
{
unsigned i;
// take FT of input signal
cmFftExecSR( p->fft, x, xn );
// multiply the signal spectra of the input signal and impulse response
for(i=0; i<p->fft->binCnt; ++i)
p->ifft->complexV[i] = p->H[i] * p->fft->complexV[i];
// take the IFFT of the convolved spectrum
cmIFftExecRS(p->ifft,NULL);
// sum with previous impulse response tail
cmVOS_AddVVV( p->outV, p->outN-1, p->olaV, p->ifft->outV );
// first sample of the impulse response tail is complete
p->outV[p->outN-1] = p->ifft->outV[p->outN-1];
// store the new impulse response tail
cmVOS_Copy(p->olaV,p->hn-1,p->ifft->outV + p->outN );
return cmOkRC;
}
cmRC_t cmConvolveSignal( cmCtx* c, const cmSample_t* h, unsigned hn, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn )
{
cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
cmConvolveExec(p,x,xn);
unsigned n = cmMin(p->outN,yn);
cmVOS_Copy(y,n,p->outV);
if( yn > p->outN )
{
unsigned m = cmMin(yn-p->outN,p->hn-1);
cmVOS_Copy(y+n,m,p->olaV);
}
cmConvolveFree(&p);
return cmOkRC;
}
cmRC_t cmConvolveTest(cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
cmCtx *c = cmCtxAlloc(NULL,rpt,lhH,stH);
cmSample_t h[] = { 1, .5, .25, 0, 0 };
unsigned hn = sizeof(h) / sizeof(h[0]);
cmSample_t x[] = { 1, 0, 0, 0, 1, 0, 0, 0 };
unsigned xn = sizeof(x) / sizeof(x[0]);
unsigned yn = xn+hn-1;
cmSample_t y[yn];
//cmVOS_Hann(h,5);
cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
cmConvolveExec(p,x,xn);
cmVOS_Print( rpt, 1, p->outN, p->outV );
cmVOS_Print( rpt, 1, p->hn-1, p->olaV );
cmConvolveFree(&p);
cmConvolveSignal(c,h,hn,x,xn,y,yn);
cmVOS_Print( rpt, 1, hn+xn-1, y );
cmCtxFree(&c);
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmBfcc* cmBfccAlloc( cmCtx* ctx, cmBfcc* ap, unsigned bandCnt, unsigned binCnt, double binHz )
{
cmBfcc* p = cmObjAlloc( cmBfcc, ctx, ap );
if( bandCnt > 0 )
if( cmBfccInit( p, bandCnt, binCnt, binHz ) != cmOkRC )
cmBfccFree(&p);
return p;
}
cmRC_t cmBfccFree( cmBfcc** pp )
{
cmRC_t rc;
if( pp== NULL || *pp==NULL)
return cmOkRC;
cmBfcc* p = *pp;
if((rc = cmBfccFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->dctMtx);
cmMemPtrFree(&p->filtMask);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return rc;
}
cmRC_t cmBfccInit( cmBfcc* p, unsigned bandCnt, unsigned binCnt, double binHz )
{
cmRC_t rc;
if((rc = cmBfccFinal(p)) != cmOkRC )
return rc;
p->dctMtx = cmMemResizeZ( cmReal_t, p->dctMtx, bandCnt*bandCnt);
p->filtMask = cmMemResizeZ( cmReal_t, p->filtMask, bandCnt*binCnt);
p->outV = cmMemResizeZ( cmReal_t, p->outV, bandCnt );
p->binCnt = binCnt;
p->bandCnt = bandCnt;
cmVOR_BarkMask( p->filtMask, bandCnt, binCnt, binHz );
cmVOR_DctMatrix(p->dctMtx, bandCnt, bandCnt );
return rc;
}
cmRC_t cmBfccFinal( cmBfcc* p )
{ return cmOkRC; }
cmRC_t cmBfccExec( cmBfcc* p, const cmReal_t* magV, unsigned binCnt )
{
assert( binCnt <= p->binCnt );
cmReal_t t[ p->bandCnt ];
cmReal_t v[ binCnt ];
// convert magnitude to power
cmVOR_PowVVS(v,binCnt,magV,2.0);
// apply the filter mask to the power spectrum
cmVOR_MultVMV( t, p->bandCnt, p->filtMask, binCnt, v );
//cmVOR_PrintL("\t:\n", p->obj.ctx->outFuncPtr, 1, p->bandCnt, t);
cmVOR_ReplaceLte( t, p->bandCnt, t, 0, 0.1e-5 );
cmVOR_LogV( t, p->bandCnt, t );
// decorellate the bands with a DCT
cmVOR_MultVMV( p->outV, p->bandCnt, p->dctMtx, p->bandCnt, t );
return cmOkRC;
}
void cmBfccTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
{
double srate = 11025;
unsigned binCnt = 129;
double binHz = srate/(binCnt-1);
unsigned bandCnt = kDefaultBarkBandCnt;
cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
cmBfcc* b = cmBfccAlloc( c, NULL, bandCnt, binCnt, binHz );
cmReal_t powV[] = {
0.8402, 0.3944, 0.7831, 0.7984, 0.9116, 0.1976, 0.3352, 0.7682, 0.2778, 0.5540,
0.4774, 0.6289, 0.3648, 0.5134, 0.9522, 0.9162, 0.6357, 0.7173, 0.1416, 0.6070,
0.0163, 0.2429, 0.1372, 0.8042, 0.1567, 0.4009, 0.1298, 0.1088, 0.9989, 0.2183,
0.5129, 0.8391, 0.6126, 0.2960, 0.6376, 0.5243, 0.4936, 0.9728, 0.2925, 0.7714,
0.5267, 0.7699, 0.4002, 0.8915, 0.2833, 0.3525, 0.8077, 0.9190, 0.0698, 0.9493,
0.5260, 0.0861, 0.1922, 0.6632, 0.8902, 0.3489, 0.0642, 0.0200, 0.4577, 0.0631,
0.2383, 0.9706, 0.9022, 0.8509, 0.2667, 0.5398, 0.3752, 0.7602, 0.5125, 0.6677,
0.5316, 0.0393, 0.4376, 0.9318, 0.9308, 0.7210, 0.2843, 0.7385, 0.6400, 0.3540,
0.6879, 0.1660, 0.4401, 0.8801, 0.8292, 0.3303, 0.2290, 0.8934, 0.3504, 0.6867,
0.9565, 0.5886, 0.6573, 0.8587, 0.4396, 0.9240, 0.3984, 0.8148, 0.6842, 0.9110,
0.4825, 0.2158, 0.9503, 0.9201, 0.1477, 0.8811, 0.6411, 0.4320, 0.6196, 0.2811,
0.7860, 0.3075, 0.4470, 0.2261, 0.1875, 0.2762, 0.5564, 0.4165, 0.1696, 0.9068,
0.1032, 0.1261, 0.4954, 0.7605, 0.9848, 0.9350, 0.6844, 0.3832, 0.7498 };
//cmVOR_Random(powV, binCnt, 0.0, 1.0 );
cmBfccExec(b,powV,binCnt);
//cmVOR_PrintL("\nin:\n", rpt, 1, binCnt, powV);
//cmVOR_PrintL("\nfilt:\n", rpt, bandCnt, binCnt, b->filtMask);
//cmVOR_PrintL("\ndct:\n", rpt, bandCnt, bandCnt,b->dctMtx);
cmVOR_PrintL("\nbfcc:\n", rpt, 1, bandCnt, b->outV);
cmBfccFree(&b);
cmCtxFree(&c);
}
//------------------------------------------------------------------------------------------------------------
cmCeps* cmCepsAlloc( cmCtx* ctx, cmCeps* ap, unsigned binCnt, unsigned outN )
{
cmCeps* p = cmObjAlloc( cmCeps, ctx, ap );
//cmIFftAllocRR( ctx, &p->ft, 0 );
if( binCnt > 0 )
if( cmCepsInit( p, binCnt, outN ) != cmOkRC )
cmCepsFree(&p);
return p;
}
cmRC_t cmCepsFree( cmCeps** pp )
{
cmRC_t rc;
if( pp== NULL || *pp==NULL)
return cmOkRC;
cmCeps* p = *pp;
if((rc = cmCepsFinal(p)) != cmOkRC )
return rc;
//cmObjFreeStatic( cmIFftFreeRR, cmIFftRR, p->ft );
cmMemPtrFree(&p->dctM);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return rc;
}
cmRC_t cmCepsInit( cmCeps* p, unsigned binCnt, unsigned outN )
{
cmRC_t rc;
if((rc = cmCepsFinal(p)) != cmOkRC )
return rc;
//cmIFftInitRR( &p->ft, binCnt );
p->dct_cn = (binCnt-1)*2;
p->dctM = cmMemResize( cmReal_t, p->dctM, outN*p->dct_cn );
p->outN = outN; //p->ft.outN;
p->outV = cmMemResizeZ( cmReal_t, p->outV, outN ); //p->ft.outV;
p->binCnt = binCnt;
assert( outN <= p->dct_cn );
cmVOR_DctMatrix( p->dctM, outN, p->dct_cn );
return rc;
}
cmRC_t cmCepsFinal( cmCeps* p )
{ return cmOkRC; }
cmRC_t cmCepsExec( cmCeps* p, const cmReal_t* magV, const cmReal_t* phsV, unsigned binCnt )
{
assert( binCnt == p->binCnt );
cmReal_t v[ p->dct_cn ];
// guard against zeros in the magn spectrum
cmVOR_ReplaceLte(v,binCnt,magV,0.0,0.00001);
// take the log of the spectrum
cmVOR_LogV(v,binCnt,v);
// reconstruct the negative frequencies
int i,j;
for(i=1,j=p->dct_cn-1; i<binCnt; ++i,--j)
v[j] = v[i];
// take the DCT
cmVOR_MultVMV( p->outV, p->outN, p->dctM, p->dct_cn, v );
//cmIFftExecPolarRR( &p->ft, v, phsV );
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmOla* cmOlaAlloc( cmCtx* ctx, cmOla* ap, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
{
cmOla* p = cmObjAlloc( cmOla, ctx, ap );
cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
if( wndSmpCnt > 0 )
if( cmOlaInit(p,wndSmpCnt,hopSmpCnt,procSmpCnt,wndTypeId) != cmOkRC )
cmOlaFree(&p);
return p;
}
cmRC_t cmOlaFree( cmOla** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmOla* p = *pp;
if(( rc = cmOlaFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->bufV);
cmMemPtrFree(&p->outV);
cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
cmObjFree(pp);
return rc;
}
cmRC_t cmOlaInit( cmOla* p, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
{
cmRC_t rc;
if((rc = cmOlaFinal(p)) != cmOkRC )
return rc;
if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
return rc;
p->bufV = cmMemResizeZ( cmSample_t, p->bufV, wndSmpCnt );
p->outV = cmMemResizeZ( cmSample_t, p->outV, hopSmpCnt );
p->outPtr = p->outV + hopSmpCnt;
// hopSmpCnt must be an even multiple of procSmpCnt
assert( hopSmpCnt % procSmpCnt == 0 );
assert( wndSmpCnt >= hopSmpCnt );
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = hopSmpCnt;
p->procSmpCnt= procSmpCnt;
p->idx = 0;
return rc;
}
cmRC_t cmOlaFinal( cmOla* p )
{ return cmOkRC; }
// The incoming buffer and the ola buf (bufV)
// can be divided into three logical parts:
//
// [head][middle][tail]
//
// head = hopSmpCnt values
// tail = hopSmpCnt values
// middle = wndSmpCnt - (2*hopSmpCnt) values
//
// Each exec can be broken into three phases:
//
// outV = bufV[tail] + in[head]
// bufV[middle] += in[middle]
// bufV[tail] = in[tail]
//
cmRC_t cmOlaExecS( cmOla* p, const cmSample_t* sp, unsigned sN )
{
assert( sN == p->wndSmpCnt );
cmRC_t rc = cmOkRC;
const cmSample_t* ep = sp + sN;
const cmSample_t* wp = p->wf.wndV;
int i,j,k,n;
// [Sum head of incoming samples with tail of ola buf]
// fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
for(i=0; i<p->hopSmpCnt; ++i)
{
p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
if( p->idx == p->wndSmpCnt )
p->idx = 0;
}
// [Sum middle of incoming samples with middle of ola buf]
// sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
n = p->wndSmpCnt - (2*p->hopSmpCnt);
k = p->idx;
for(j=0; j<n; ++j)
{
p->bufV[k++] += (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
// [Assign tail of incoming to tail of ola buf]
// assign ending samples from sp[] into bufV[]
while( sp < ep )
{
p->bufV[k++] = (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
p->outPtr = p->outV;
return rc;
}
cmRC_t cmOlaExecR( cmOla* p, const cmReal_t* sp, unsigned sN )
{
assert( sN == p->wndSmpCnt );
cmRC_t rc = cmOkRC;
const cmReal_t* ep = sp + sN;
const cmSample_t* wp = p->wf.wndV;
int i,j,k,n;
// fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
for(i=0; i<p->hopSmpCnt; ++i)
{
p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
if( p->idx == p->wndSmpCnt )
p->idx = 0;
}
// sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
n = p->wndSmpCnt - (2*p->hopSmpCnt);
k = p->idx;
for(j=0; j<n; ++j)
{
p->bufV[k++] += (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
// assign ending samples from sp[] into bufV[]
while( sp < ep )
{
p->bufV[k++] = (*sp++ * *wp++);
if( k == p->wndSmpCnt )
k = 0;
}
p->outPtr = p->outV;
return rc;
}
const cmSample_t* cmOlaExecOut(cmOla* p)
{
const cmSample_t* sp = p->outPtr;
if( sp >= p->outV + p->hopSmpCnt )
return NULL;
p->outPtr += p->procSmpCnt;
return sp;
}
//------------------------------------------------------------------------------------------------------------
cmPhsToFrq* cmPhsToFrqAlloc( cmCtx* c, cmPhsToFrq* ap, double srate, unsigned binCnt, unsigned hopSmpCnt )
{
cmPhsToFrq* p = cmObjAlloc( cmPhsToFrq, c, ap );
if( srate != 0 )
if( cmPhsToFrqInit( p, srate, binCnt, hopSmpCnt ) != cmOkRC )
cmPhsToFrqFree(&p);
return p;
}
cmRC_t cmPhsToFrqFree( cmPhsToFrq** pp )
{
cmRC_t rc = cmOkRC;
cmPhsToFrq* p = *pp;
if( pp==NULL || *pp== NULL )
return rc;
if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->hzV);
cmMemPtrFree(&p->phsV);
cmMemPtrFree(&p->wV);
cmObjFree(pp);
return rc;
}
cmRC_t cmPhsToFrqInit( cmPhsToFrq* p, double srate, unsigned binCnt, unsigned hopSmpCnt )
{
cmRC_t rc;
unsigned i;
if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
return rc;
p->hzV = cmMemResizeZ( cmReal_t, p->hzV, binCnt );
p->phsV = cmMemResizeZ( cmReal_t, p->phsV, binCnt );
p->wV = cmMemResizeZ( cmReal_t, p->wV, binCnt );
p->srate = srate;
p->binCnt = binCnt;
p->hopSmpCnt = hopSmpCnt;
for(i=0; i<binCnt; ++i)
p->wV[i] = M_PI * i * hopSmpCnt / (binCnt-1);
return rc;
}
cmRC_t cmPhsToFrqFinal(cmPhsToFrq* p )
{ return cmOkRC; }
cmRC_t cmPhsToFrqExec( cmPhsToFrq* p, const cmReal_t* phsV )
{
cmRC_t rc = cmOkRC;
unsigned i;
double twoPi = 2.0 * M_PI;
double den = twoPi * p->hopSmpCnt;
for(i=0; i<p->binCnt; ++i)
{
cmReal_t dPhs = phsV[i] - p->phsV[i];
// unwrap phase - see phase_study.m for explanation
cmReal_t k = round( (p->wV[i] - dPhs) / twoPi);
// convert phase change to Hz
p->hzV[i] = (k * twoPi + dPhs) * p->srate / den;
// store phase for next iteration
p->phsV[i] = phsV[i];
}
return rc;
}
//------------------------------------------------------------------------------------------------------------
cmPvAnl* cmPvAnlAlloc( cmCtx* ctx, cmPvAnl* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
{
cmRC_t rc;
cmPvAnl* p = cmObjAlloc( cmPvAnl, ctx, ap );
cmShiftBufAlloc(ctx, &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt );
cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
cmFftAllocSR( ctx, &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl);
cmPhsToFrqAlloc(ctx, &p->pf, srate, p->ft.binCnt, hopSmpCnt );
if( procSmpCnt > 0 )
if((rc = cmPvAnlInit(p,procSmpCnt,srate,wndSmpCnt,hopSmpCnt,flags)) != cmOkRC )
cmPvAnlFree(&p);
return p;
}
cmRC_t cmPvAnlFree( cmPvAnl** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmPvAnl* p = *pp;
if((rc = cmPvAnlFinal(p) ) != cmOkRC )
return rc;
cmObjFreeStatic( cmPhsToFrqFree, cmPhsToFrq, p->pf );
cmObjFreeStatic( cmFftFreeSR, cmFftSR, p->ft );
cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
cmObjFreeStatic( cmShiftBufFree, cmShiftBuf, p->sb );
cmObjFree(pp);
return rc;
}
cmRC_t cmPvAnlInit( cmPvAnl* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
{
cmRC_t rc;
if((rc = cmPvAnlFinal(p)) != cmOkRC )
return rc;
if((rc = cmShiftBufInit( &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt )) != cmOkRC )
return rc;
if((rc = cmWndFuncInit( &p->wf, kHannWndId | kNormByLengthWndFl, wndSmpCnt, 0)) != cmOkRC )
return rc;
if((rc = cmFftInitSR( &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl)) != cmOkRC )
return rc;
if((rc = cmPhsToFrqInit( &p->pf, srate, p->ft.binCnt, hopSmpCnt)) != cmOkRC )
return rc;
// if the window was just initialized
// divide the window to indirectly apply the magnitude normalization
//if( p->wndSmpCnt != wndSmpCnt )
// cmVOS_DivVS( p->wf.wndV, p->wf.outN, wndSmpCnt );
p->flags = flags;
p->procSmpCnt = procSmpCnt;
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = hopSmpCnt;
p->binCnt = p->ft.binCnt;
p->magV = p->ft.magV;
p->phsV = p->ft.phsV;
p->hzV = p->pf.hzV;
return rc;
}
cmRC_t cmPvAnlFinal(cmPvAnl* p )
{ return cmOkRC; }
bool cmPvAnlExec( cmPvAnl* p, const cmSample_t* x, unsigned xN )
{
bool fl = false;
while( cmShiftBufExec(&p->sb,x,xN) )
{
cmWndFuncExec(&p->wf, p->sb.outV, p->sb.wndSmpCnt );
cmFftExecSR(&p->ft,NULL,0);
if( cmIsFlag(p->flags,kCalcHzPvaFl) )
cmPhsToFrqExec(&p->pf,p->phsV);
fl = true;
}
return fl;
}
//------------------------------------------------------------------------------------------------------------
cmPvSyn* cmPvSynAlloc( cmCtx* ctx, cmPvSyn* ap, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
{
cmRC_t rc;
cmPvSyn* p = cmObjAlloc( cmPvSyn, ctx, ap );
cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
cmIFftAllocRS( ctx, &p->ft, wndSmpCnt/2+1 );
cmOlaAlloc( ctx, &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId );
if( procSmpCnt )
if((rc = cmPvSynInit(p,procSmpCnt,outSrate,wndSmpCnt,hopSmpCnt,wndTypeId)) != cmOkRC )
cmPvSynFree(&p);
return p;
}
cmRC_t cmPvSynFree( cmPvSyn** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmPvSyn* p = *pp;
if((rc = cmPvSynFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->minRphV);
cmMemPtrFree(&p->maxRphV);
cmMemPtrFree(&p->itrV);
cmMemPtrFree(&p->phs0V);
cmMemPtrFree(&p->phsV);
cmMemPtrFree(&p->mag0V);
cmMemPtrFree(&p->magV);
cmObjFreeStatic( cmOlaFree, cmOla, p->ola);
cmObjFreeStatic( cmIFftFreeRS, cmIFftRS, p->ft );
cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmPvSynInit( cmPvSyn* p, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
{
cmRC_t rc;
int k;
double twoPi = 2.0 * M_PI;
bool useHannFl = true;
int m = useHannFl ? 2 : 1;
if((rc = cmPvSynFinal(p)) != cmOkRC )
return rc;
p->outSrate = outSrate;
p->procSmpCnt = procSmpCnt;
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = hopSmpCnt;
p->binCnt = wndSmpCnt / 2 + 1;
p->minRphV = cmMemResizeZ( cmReal_t, p->minRphV, p->binCnt );
p->maxRphV = cmMemResizeZ( cmReal_t, p->maxRphV, p->binCnt );
p->itrV = cmMemResizeZ( cmReal_t, p->itrV, p->binCnt );
p->phs0V = cmMemResizeZ( cmReal_t, p->phs0V, p->binCnt );
p->phsV = cmMemResizeZ( cmReal_t, p->phsV, p->binCnt );
p->mag0V = cmMemResizeZ( cmReal_t, p->mag0V, p->binCnt );
p->magV = cmMemResizeZ( cmReal_t, p->magV, p->binCnt );
if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
return rc;
if((rc = cmIFftInitRS( &p->ft, p->binCnt )) != cmOkRC )
return rc;
if((rc = cmOlaInit( &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId )) != cmOkRC )
return rc;
for(k=0; k<p->binCnt; ++k)
{
// complete revolutions per hop in radians
p->itrV[k] = twoPi * floor((double)k * hopSmpCnt / wndSmpCnt );
p->minRphV[k] = ((cmReal_t)(k-m)) * hopSmpCnt * twoPi / wndSmpCnt;
p->maxRphV[k] = ((cmReal_t)(k+m)) * hopSmpCnt * twoPi / wndSmpCnt;
//printf("%f %f %f\n",p->itrV[k],p->minRphV[k],p->maxRphV[k]);
}
return rc;
}
cmRC_t cmPvSynFinal(cmPvSyn* p )
{ return cmOkRC; }
cmRC_t cmPvSynExec( cmPvSyn* p, const cmReal_t* magV, const cmReal_t* phsV )
{
double twoPi = 2.0 * M_PI;
unsigned k;
for(k=0; k<p->binCnt; ++k)
{
// phase dist between cur and prv frame
cmReal_t dp = phsV[k] - p->phs0V[k];
// dist must be positive (accum phase always increases)
if( dp < -0.00001 )
dp += twoPi;
// add in complete revolutions based on the bin frequency
// (these would have been lost from 'dp' due to phase wrap)
dp += p->itrV[k];
// constrain the phase change to lie within the range of the kth bin
if( dp < p->minRphV[k] )
dp += twoPi;
if( dp > p->maxRphV[k] )
dp -= twoPi;
p->phsV[k] = p->phs0V[k] + dp;
p->magV[k] = p->mag0V[k];
p->phs0V[k] = phsV[k];
p->mag0V[k] = magV[k];
}
cmIFftExecPolarRS( &p->ft, magV, phsV );
cmOlaExecS( &p->ola, p->ft.outV, p->ft.outN );
//printf("%i %i\n",p->binCnt,p->ft.binCnt );
//cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, magV );
//cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, p->phsV );
//cmVOS_Print( p->obj.ctx->outFuncPtr, 1, 10, p->ft.outV );
return cmOkRC;
}
cmRC_t cmPvSynDoIt( cmPvSyn* p, const cmSample_t* v )
{
cmOlaExecS( &p->ola, v, p->wndSmpCnt );
//printf("%f\n",cmVOS_RMS(s,p->wndSmpCnt,p->wndSmpCnt));
return cmOkRC;
}
const cmSample_t* cmPvSynExecOut(cmPvSyn* p )
{ return cmOlaExecOut(&p->ola); }
//------------------------------------------------------------------------------------------------------------
cmMidiSynth* cmMidiSynthAlloc( cmCtx* ctx, cmMidiSynth* ap, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
{
cmMidiSynth* p = cmObjAlloc( cmMidiSynth, ctx, ap );
if( pgmArray != NULL )
if( cmMidiSynthInit( p, pgmArray, pgmCnt, voiceCnt, procSmpCnt, outChCnt, srate ) != cmOkRC )
cmMidiSynthFree(&p);
return p;
}
cmRC_t cmMidiSynthFree( cmMidiSynth** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL)
return cmOkRC;
cmMidiSynth* p = *pp;
if((rc = cmMidiSynthFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->voiceArray);
cmMemPtrFree(&p->outM);
cmMemPtrFree(&p->outChArray);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmMidiSynthInit( cmMidiSynth* p, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
{
// at least one pgm must be given
assert( pgmCnt > 0 );
unsigned i;
cmRC_t rc;
if((rc = cmMidiSynthFinal(p)) != cmOkRC )
return rc;
p->voiceArray = cmMemResizeZ( cmMidiVoice, p->voiceArray, voiceCnt );
p->outM = cmMemResizeZ( cmSample_t, p->outM, outChCnt * procSmpCnt );
p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
p->avail = p->voiceArray;
p->voiceCnt = voiceCnt;
p->activeVoiceCnt = 0;
p->voiceStealCnt = 0;
p->procSmpCnt = procSmpCnt;
p->outChCnt = outChCnt;
p->srate = srate;
for(i=0; i<outChCnt; ++i)
p->outChArray[i] = p->outM + (i*procSmpCnt);
for(i=0; i<kMidiChCnt; ++i)
{
p->chArray[i].pgm = 0;
p->chArray[i].active = NULL;
p->chArray[i].pitchBend = 0;
p->chArray[i].synthPtr = p;
memset(p->chArray[i].midiCtl, 0, kMidiCtlCnt * sizeof(cmMidiByte_t));
}
for(i=0; i<voiceCnt; ++i)
{
p->voiceArray[i].index = i;
p->voiceArray[i].flags = 0;
p->voiceArray[i].pitch = kInvalidMidiPitch;
p->voiceArray[i].velocity = kInvalidMidiVelocity;
p->voiceArray[i].pgm.pgm = kInvalidMidiPgm;
p->voiceArray[i].pgm.cbPtr = NULL;
p->voiceArray[i].pgm.cbDataPtr = NULL;
p->voiceArray[i].chPtr = NULL;
p->voiceArray[i].link = i<voiceCnt-1 ? p->voiceArray + i + 1 : NULL;
}
for(i=0; i<pgmCnt; ++i)
{
unsigned idx = pgmArray[i].pgm;
if( idx >= kMidiPgmCnt )
rc = cmCtxRtCondition( &p->obj, cmArgAssertRC, "MIDI program change values must be less than %i.",kMidiPgmCnt);
else
{
p->pgmArray[ idx ].cbPtr = pgmArray[i].cbPtr;
p->pgmArray[ idx ].cbDataPtr = pgmArray[i].cbDataPtr;
p->pgmArray[ idx ].pgm = idx;
}
}
return rc;
}
cmRC_t cmMidiSynthFinal( cmMidiSynth* p )
{ return cmOkRC; }
cmRC_t _cmMidiSynthOnNoteOn( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
{
assert( ch < kMidiChCnt );
if( p->activeVoiceCnt == p->voiceCnt )
{
++p->voiceStealCnt;
return cmOkRC;
}
assert( p->avail != NULL );
cmMidiSynthCh* chPtr = p->chArray + ch;
cmMidiVoice* vp = p->avail;
++p->activeVoiceCnt;
// update avail
p->avail = p->avail->link;
// update active
vp->flags |= kActiveMsFl | kKeyGateMsFl;
vp->pitch = pitch;
vp->velocity = vel;
vp->pgm = p->pgmArray[ chPtr->pgm ];
vp->chPtr = chPtr;
vp->link = chPtr->active;
chPtr->active = vp;
vp->pgm.cbPtr( vp, kAttackMsId, NULL, 0 );
return cmOkRC;
}
cmRC_t _cmMidiSynthOnNoteOff( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
{
assert( ch < kMidiChCnt );
cmMidiSynthCh* cp = p->chArray + ch;
cmMidiVoice* vp = cp->active;
// find the voice for the given pitch
while( vp != NULL )
{
if( (vp->pitch == pitch) && (cmIsFlag(vp->flags,kKeyGateMsFl)==true) )
break;
vp = vp->link;
}
// if no voice had a key down on this pitch
if( vp == NULL )
{
return cmOkRC;
}
// mark the key as 'up'
vp->flags = cmClrFlag(vp->flags,kKeyGateMsFl);
// if the sustain pedal is up
if( cp->midiCtl[ kSustainCtlMdId ] == 0 )
vp->pgm.cbPtr( vp, kReleaseMsId, NULL, 0 );
return cmOkRC;
}
cmRC_t _cmMidiSynthOnCtl( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t ctlId, cmMidiByte_t ctlValue )
{
assert( ch < kMidiChCnt && ctlId < kMidiCtlCnt );
cmMidiSynthCh* cp = p->chArray + ch;
cp->midiCtl[ ctlId ] = ctlValue;
// if the sustain pedal is going up
if( ctlId == kSustainCtlMdId && ctlValue == 0 )
{
cmMidiVoice* vp = cp->active;
while(vp != NULL)
{
if( cmIsFlag(vp->flags,kKeyGateMsFl)==false )
vp->pgm.cbPtr(vp, kReleaseMsId, NULL, 0 );
vp = vp->link;
}
}
//printf("%i %i %f\n",ctlId,ctlValue,ctlValue/127.0);
return cmOkRC;
}
cmRC_t cmMidiSynthOnMidi( cmMidiSynth* p, const cmMidiPacket_t* pktArray, unsigned pktCnt )
{
unsigned i=0;
for(i=0; i<pktCnt; ++i)
if( pktArray[i].msgArray != NULL )
{
unsigned j;
for(j=0; j<pktArray[i].msgCnt; ++j)
{
const cmMidiMsg* mp = pktArray[i].msgArray + j;
cmMidiByte_t ch = mp->status & 0x0f;
cmMidiByte_t status = mp->status & 0xf0;
switch( status )
{
case kNoteOnMdId:
if( mp->d1 != 0 )
{
_cmMidiSynthOnNoteOn(p,ch,mp->d0,mp->d1);
break;
}
// fall through
case kNoteOffMdId:
_cmMidiSynthOnNoteOff(p,ch,mp->d0,mp->d1);
break;
case kPolyPresMdId:
break;
case kCtlMdId:
_cmMidiSynthOnCtl( p, ch, mp->d0, mp->d1 );
break;
case kPgmMdId:
break;
case kChPresMdId:
break;
case kPbendMdId:
break;
default:
printf("Unknown MIDI status:%i %i\n",(int)status,(int)mp->status);
break;
}
}
}
return cmOkRC;
}
cmRC_t cmMidiSynthExec( cmMidiSynth* p, cmSample_t* outChArray[], unsigned outChCnt )
{
unsigned i;
cmSample_t** chArray = outChArray == NULL ? p->outChArray : outChArray;
unsigned chCnt = outChArray == NULL ? p->outChCnt : outChCnt;
// FIX: make one active chain attached to cmMidiSynth rather than many
// active chains attached to each channel - this will avoid the extra
// iterations below.
// for each channel
for(i=0; i<kMidiChCnt; ++i)
{
cmMidiVoice* vp = p->chArray[i].active;
cmMidiVoice* prv = NULL;
// for each voice assigned to this channel
while(vp != NULL)
{
// tell the voice to perform its DSP function - returns 0 if the voice is no longer active
if( vp->pgm.cbPtr( vp, kDspMsId, chArray, chCnt ) )
{
prv = vp;
vp = vp->link;
}
else
{
cmMidiVoice* nvp = vp->link;
// remove vp from the active chain
if( prv != NULL )
prv->link = vp->link;
else
{
assert( vp == p->chArray[i].active );
// vp is first recd on active chain, nvp becomes first ...
p->chArray[i].active = vp->link;
prv = NULL; // ... so prv must be NULL
}
// insert this voice on the available chain
vp->link = p->avail;
p->avail = vp;
--p->activeVoiceCnt;
vp = nvp;
}
}
}
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmWtVoice* cmWtVoiceAlloc( cmCtx* ctx, cmWtVoice* ap, unsigned procSmpCnt, cmReal_t hz )
{
cmWtVoice* p = cmObjAlloc( cmWtVoice, ctx, ap );
if( procSmpCnt != 0 )
if( cmWtVoiceInit( p, procSmpCnt, hz ) != cmOkRC )
cmWtVoiceFree(&p);
return p;
}
cmRC_t cmWtVoiceFree( cmWtVoice** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return cmOkRC;
cmWtVoice* p = *pp;
if((rc = cmWtVoiceFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return rc;
}
cmRC_t cmWtVoiceInit( cmWtVoice* p, unsigned procSmpCnt, cmReal_t hz )
{
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->hz = hz;
p->level = 0;
p->durSmpCnt = 0;
p->phase = 0;
p->state = kOffWtId;
return cmOkRC;
}
cmRC_t cmWtVoiceFinal( cmWtVoice* p )
{ return cmOkRC; }
int cmWtVoiceExec( cmWtVoice* p, struct cmMidiVoice_str* mvp, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
{
switch( sel )
{
case kAttackMsId:
p->state = kAtkWtId;
p->hz = (13.75 * pow(2,(-9.0/12.0))) * pow(2,((double)mvp->pitch / 12));
//printf("%fhz\n",p->hz);
break;
case kReleaseMsId:
p->state = kRlsWtId;
//printf("rls:%f\n",p->phase);
break;
case kDspMsId:
{
if( p->state == kRlsWtId )
{
p->state = kOffWtId;
return 0;
}
cmMidiSynth* sp = mvp->chPtr->synthPtr;
cmSample_t* dp = outChCnt == 0 ? p->outV : outChArray[0];
cmSample_t* ep = dp + p->outN;
cmReal_t rps = (2.0 * M_PI * p->hz) / sp->srate;
cmReal_t sum=0;
unsigned i=0;
for(; dp < ep; ++dp)
{
*dp += (cmSample_t)(0.5 * sin( p->phase ));
sum += *dp;
++i;
p->phase += rps;
}
//printf("(%f %f %i %i %p) ",p->phase,sum,i,p->outN,outChArray[0] );
}
break;
default:
assert(0);
break;
}
return 1;
}
//------------------------------------------------------------------------------------------------------------
cmWtVoiceBank* cmWtVoiceBankAlloc( cmCtx* ctx, cmWtVoiceBank* ap, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
{
cmWtVoiceBank* p = cmObjAlloc( cmWtVoiceBank, ctx, ap );
if( srate != 0 )
if( cmWtVoiceBankInit( p, srate, procSmpCnt, voiceCnt, chCnt ) != cmOkRC )
cmWtVoiceBankFree(&p);
return p;
}
cmRC_t cmWtVoiceBankFree( cmWtVoiceBank** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL)
return cmOkRC;
cmWtVoiceBank* p = *pp;
if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->voiceArray);
cmMemPtrFree(&p->chArray);
cmMemPtrFree(&p->buf);
cmObjFree(pp);
return rc;
}
cmRC_t cmWtVoiceBankInit( cmWtVoiceBank* p, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
{
cmRC_t rc;
unsigned i;
if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
return rc;
p->voiceArray = cmMemResizeZ( cmWtVoice*, p->voiceArray, voiceCnt );
for(i=0; i<voiceCnt; ++i)
p->voiceArray[i] = cmWtVoiceAlloc(p->obj.ctx,NULL,procSmpCnt,0);
p->voiceCnt = voiceCnt;
p->buf = cmMemResizeZ( cmSample_t, p->buf, chCnt * procSmpCnt );
p->chArray = cmMemResizeZ( cmSample_t*, p->chArray, chCnt );
for(i=0; i<chCnt; ++i)
p->chArray[i] = p->buf + (i*procSmpCnt);
p->chCnt = chCnt;
p->procSmpCnt = procSmpCnt;
return cmOkRC;
}
cmRC_t cmWtVoiceBankFinal( cmWtVoiceBank* p )
{
unsigned i;
for(i=0; i<p->voiceCnt; ++i)
cmWtVoiceFree(&p->voiceArray[i]);
return cmOkRC;
}
int cmWtVoiceBankExec( cmWtVoiceBank* p, struct cmMidiVoice_str* voicePtr, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
{
cmWtVoice* vp = p->voiceArray[ voicePtr->index ];
bool fl = outChArray==NULL || outChCnt==0;
cmSample_t** chArray = fl ? p->chArray : outChArray;
unsigned chCnt = fl ? p->chCnt : outChCnt;
return cmWtVoiceExec( vp, voicePtr, sel, chArray, chCnt );
}
//------------------------------------------------------------------------------------------------------------
cmAudioFileBuf* cmAudioFileBufAlloc( cmCtx* ctx, cmAudioFileBuf* ap, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
{
cmAudioFileBuf* p = cmObjAlloc( cmAudioFileBuf, ctx, ap );
if( procSmpCnt != 0 )
if( cmAudioFileBufInit( p, procSmpCnt, fn, audioChIdx, begSmpIdx, durSmpCnt ) != cmOkRC )
cmAudioFileBufFree(&p);
return p;
}
cmRC_t cmAudioFileBufFree( cmAudioFileBuf** pp )
{
cmRC_t rc;
if( pp==NULL || *pp==NULL)
return cmOkRC;
cmAudioFileBuf* p = *pp;
if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
return rc;
cmMemPtrFree(&p->bufV);
cmMemPtrFree(&p->fn);
cmObjFree(pp);
return rc;
}
cmRC_t cmAudioFileBufInit( cmAudioFileBuf* p, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
{
cmAudioFileH_t afH;
cmRC_t rc;
if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
return rc;
// open the audio file for reading
if( cmAudioFileIsValid( afH = cmAudioFileNewOpen( fn, &p->info, &rc, p->obj.err.rpt ))==false || rc != kOkAfRC )
return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file '%s' could not be opend.",fn );
// validate the audio channel
if( audioChIdx >= p->info.chCnt )
return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file channel index %i is out of range for the audio file '%s'.",audioChIdx,fn);
// validate the start sample index
if( begSmpIdx > p->info.frameCnt )
return cmCtxRtCondition(&p->obj, cmOkRC, "The start sample index %i is past the end of the audio file '%s'.",begSmpIdx,fn);
if( durSmpCnt == cmInvalidCnt )
durSmpCnt = p->info.frameCnt - begSmpIdx;
// validate the duration
if( begSmpIdx + durSmpCnt > p->info.frameCnt )
{
unsigned newDurSmpCnt = p->info.frameCnt - begSmpIdx;
cmCtxRtCondition(&p->obj, cmOkRC, "The selected sample duration %i is past the end of the audio file '%s' and has been shorted to %i samples.",durSmpCnt,fn,newDurSmpCnt);
durSmpCnt = newDurSmpCnt;
}
// seek to the starting sample
if( cmAudioFileSeek( afH, begSmpIdx ) != kOkAfRC )
return cmCtxRtCondition(&p->obj, cmArgAssertRC,"Seek to sample index %i failed on the audio file '%s'.",begSmpIdx,fn);
// allocate the buffer memory
p->bufV = cmMemResizeZ( cmSample_t, p->bufV, durSmpCnt );
p->fn = cmMemResize( char, p->fn, strlen(fn)+1 );
p->bufN = durSmpCnt;
p->begSmpIdx = begSmpIdx;
p->chIdx = audioChIdx;
strcpy(p->fn,fn);
cmSample_t* outV = p->bufV;
// read the file into the buffer
unsigned rdSmpCnt = cmMin(4096,durSmpCnt);
unsigned cmc = 0;
while( cmc < durSmpCnt )
{
unsigned actualReadCnt = 0;
unsigned n = rdSmpCnt;
cmSample_t* chArray[] = {outV};
if( cmc + n > durSmpCnt )
n = durSmpCnt - cmc;
if((rc=cmAudioFileReadSample( afH, n, audioChIdx, 1, chArray, &actualReadCnt)) != kOkAfRC )
break;
cmc += actualReadCnt;
outV += actualReadCnt;
}
if( rc==kOkAfRC || (rc != kOkAfRC && cmAudioFileIsEOF(afH)))
rc = cmOkRC;
return rc;
}
cmRC_t cmAudioFileBufFinal(cmAudioFileBuf* p )
{ return cmOkRC; }
unsigned cmAudioFileBufExec( cmAudioFileBuf* p, unsigned smpIdx, cmSample_t* outV, unsigned outN, bool sumIntoOutFl )
{
if( outV == NULL || outN == 0 || smpIdx >= p->bufN )
return 0;
unsigned n = cmMin(outN,p->bufN-smpIdx);
if( sumIntoOutFl )
cmVOS_AddVV(outV,n,p->bufV + smpIdx);
else
cmVOS_Copy(outV,n,p->bufV + smpIdx );
if( n < outN )
memset(outV+n,0,(outN-n)*sizeof(cmSample_t));
return n;
}
//------------------------------------------------------------------------------------------------------------
cmMDelay* cmMDelayAlloc( cmCtx* ctx, cmMDelay* ap, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
{
cmMDelay* p = cmObjAlloc( cmMDelay, ctx, ap );
if( procSmpCnt != 0 )
if( cmMDelayInit( p, procSmpCnt, srate, fbCoeff, delayCnt, delayMsArray, delayGainArray ) != cmOkRC )
cmMDelayFree(&p);
return p;
}
cmRC_t cmMDelayFree( cmMDelay** pp )
{
cmRC_t rc;
if( pp == NULL || *pp==NULL)
return cmOkRC;
cmMDelay* p = *pp;
if((rc = cmMDelayFinal(p)) != cmOkRC )
return rc;
unsigned i;
for(i=0; i<p->delayCnt; ++i)
cmMemPtrFree(&p->delayArray[i].delayBuf);
cmMemPtrFree(&p->delayArray);
cmMemPtrFree(&p->outV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmMDelayInit( cmMDelay* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
{
cmRC_t rc;
if((rc = cmMDelayFinal(p)) != cmOkRC )
return rc;
if( delayCnt <= 0 )
return rc;
p->delayArray = cmMemResizeZ( cmMDelayHead, p->delayArray, delayCnt );
unsigned i;
for(i=0; i<delayCnt; ++i)
{
p->delayArray[i].delayGain = delayGainArray == NULL ? 1.0 : delayGainArray[i];
p->delayArray[i].delayMs = delayMsArray[i];
p->delayArray[i].delaySmpFrac = delayMsArray[i] * srate / 1000.0;
p->delayArray[i].delayBufSmpCnt = ceil(delayMsArray[i] * srate / 1000)+2;
p->delayArray[i].delayBuf = cmMemResizeZ( cmSample_t, p->delayArray[i].delayBuf, p->delayArray[i].delayBufSmpCnt );
p->delayArray[i].inIdx = 0;
}
p->delayCnt= delayCnt;
p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
p->outN = procSmpCnt;
p->fbCoeff = fbCoeff;
p->srate = srate;
return cmOkRC;
}
cmRC_t cmMDelayFinal( cmMDelay* p )
{ return cmOkRC; }
void _cmMDelayExec( cmMDelay* p, cmMDelayHead* hp, const cmSample_t inV[], cmSample_t outV[], unsigned sigN )
{
cmSample_t* dl = hp->delayBuf; // ptr to the base of the delay line
cmReal_t dfi = (cmReal_t)(hp->inIdx - hp->delaySmpFrac) + hp->delayBufSmpCnt; // fractional delay in samples
int dii0 = ((int)dfi) % hp->delayBufSmpCnt; // index to the sample just before the delay position
int dii1 = (dii0 + 1) % hp->delayBufSmpCnt; // index to the sample just after the delay position
//cmReal_t frac = 0; //dfi - dii0; // interpolation coeff.
unsigned i;
for(i=0; i<sigN; i++)
{
/*
outPtr[i] = -(((f+0)*(f-1)*(f-2)/6) * _wtPtr[iPhs0])
+(((f+1)*(f-1)*(f-2)/2) * _wtPtr[iPhs0+1])
-(((f+1)*(f-0)*(f-2)/2) * _wtPtr[iPhs0+2])
+(((f+1)*(f-0)*(f-1)/6) * _wtPtr[iPhs0+3]);
*/
cmSample_t outSmp = dl[dii0]; // + (frac * (dl[dii1]-dl[dii0]));
outV[i] += outSmp/p->delayCnt;
dl[hp->inIdx] = (p->fbCoeff * outSmp) + inV[i];
hp->inIdx = (hp->inIdx+1) % hp->delayBufSmpCnt;
dii0 = (dii0+1) % hp->delayBufSmpCnt;
dii1 = (dii1+1) % hp->delayBufSmpCnt;
}
}
cmRC_t cmMDelayExec( cmMDelay* p, const cmSample_t* inV, cmSample_t* outV, unsigned sigN, bool bypassFl )
{
assert( sigN <= p->outN);
if( outV == NULL )
{
outV = p->outV;
sigN = cmMin(sigN,p->outN);
cmVOS_Fill(outV,sigN,0);
}
else
{
cmVOS_Zero(outV,sigN);
}
if( inV == NULL )
return cmOkRC;
if( bypassFl )
{
memcpy(outV,inV,sigN*sizeof(cmSample_t));
return cmOkRC;
}
unsigned di;
for( di=0; di<p->delayCnt; ++di)
{
cmMDelayHead* hp = p->delayArray + di;
hp->delaySmpFrac = hp->delayMs * p->srate / 1000.0;
_cmMDelayExec(p,hp,inV,outV,sigN);
}
return cmOkRC;
}
void cmMDelaySetTapMs( cmMDelay* p, unsigned tapIdx, cmReal_t ms )
{
assert( tapIdx < p->delayCnt );
p->delayArray[tapIdx].delayMs = ms;
}
void cmMDelaySetTapGain(cmMDelay* p, unsigned tapIdx, cmReal_t gain )
{
assert( tapIdx < p->delayCnt );
p->delayArray[tapIdx].delayGain = gain;
}
void cmMDelayReport( cmMDelay* p, cmRpt_t* rpt )
{
cmRptPrintf(rpt,"tap cnt:%i fb:%f sr:%f\n",p->delayCnt,p->fbCoeff,p->srate);
}
//------------------------------------------------------------------------------------------------------------
cmAudioSegPlayer* cmAudioSegPlayerAlloc( cmCtx* ctx, cmAudioSegPlayer* ap, unsigned procSmpCnt, unsigned outChCnt )
{
cmAudioSegPlayer* p = cmObjAlloc( cmAudioSegPlayer, ctx, ap );
if( procSmpCnt != 0 )
if( cmAudioSegPlayerInit( p, procSmpCnt, outChCnt ) != cmOkRC )
cmAudioSegPlayerFree(&p);
return p;
}
cmRC_t cmAudioSegPlayerFree( cmAudioSegPlayer** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmAudioSegPlayer* p = *pp;
cmMemPtrFree(&p->segArray);
cmMemPtrFree(&p->outM);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmAudioSegPlayerInit( cmAudioSegPlayer* p, unsigned procSmpCnt, unsigned outChCnt )
{
cmRC_t rc = cmOkRC;
if((rc = cmAudioSegPlayerFinal(p)) != cmOkRC )
return rc;
p->procSmpCnt = procSmpCnt;
p->outChCnt = outChCnt;
p->segCnt = 0;
if( outChCnt )
{
unsigned i;
p->outM = cmMemResizeZ( cmSample_t, p->outM, procSmpCnt * outChCnt );
p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
for(i=0; i<outChCnt; ++i)
p->outChArray[i] = p->outM + (i*procSmpCnt);
}
return rc;
}
cmRC_t cmAudioSegPlayerFinal( cmAudioSegPlayer* p )
{ return cmOkRC; }
cmRC_t _cmAudioSegPlayerSegSetup( cmAudioSeg* sp, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
{
sp->bufPtr = bufPtr;
sp->id = id;
sp->smpIdx = smpIdx;
sp->smpCnt = smpCnt;
sp->outChIdx = outChIdx;
sp->outSmpIdx = 0;
sp->flags = 0;
return cmOkRC;
}
cmAudioSeg* _cmAudioSegPlayerIdToSegPtr( cmAudioSegPlayer* p, unsigned id, bool ignoreErrFl )
{
unsigned i = 0;
for(i=0; i<p->segCnt; ++i)
if( p->segArray[i].id == id )
return p->segArray + i;
if( !ignoreErrFl )
cmCtxRtCondition(&p->obj, cmArgAssertRC,"Unable to locate an audio segment with id=%i.",id);
return NULL;
}
cmRC_t cmAudioSegPlayerInsert( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
{
cmRC_t rc;
assert( _cmAudioSegPlayerIdToSegPtr( p, id, true ) == NULL );
p->segArray = cmMemResizePZ( cmAudioSeg, p->segArray, p->segCnt + 1 );
cmAudioSeg* sp = p->segArray + p->segCnt;
if((rc = _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx )) == cmOkRC )
++p->segCnt;
return rc;
}
cmRC_t cmAudioSegPlayerEdit( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
{
cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
return _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx );
}
cmRC_t cmAudioSegPlayerRemove( cmAudioSegPlayer* p, unsigned id, bool delFl )
{
cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
if( sp == NULL )
return cmArgAssertRC;
sp->flags = cmEnaFlag( sp->flags, kDelAspFl, delFl );
return cmOkRC;
}
cmRC_t cmAudioSegPlayerEnable( cmAudioSegPlayer* p, unsigned id, bool enableFl, unsigned outSmpIdx )
{
cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
if( sp == NULL )
return cmArgAssertRC;
if( outSmpIdx != cmInvalidIdx )
sp->outSmpIdx = outSmpIdx;
sp->flags = cmEnaFlag( sp->flags, kEnableAspFl, enableFl );
return cmOkRC;
}
void _cmAudioSegPlayerResetSeg( cmAudioSeg* sp )
{
sp->outSmpIdx = 0;
sp->flags = cmClrFlag(sp->flags, kEnableAspFl );
}
cmRC_t cmAudioSegPlayerReset( cmAudioSegPlayer* p )
{
unsigned i;
for(i=0; i<p->segCnt; ++i)
{
cmAudioSeg* sp = p->segArray + i;
_cmAudioSegPlayerResetSeg(sp);
}
return cmOkRC;
}
cmRC_t cmAudioSegPlayerExec( cmAudioSegPlayer* p, cmSample_t** outChPtr, unsigned outChCnt, unsigned procSmpCnt )
{
unsigned i;
if( outChPtr == NULL || outChCnt == 0 )
{
assert( p->outChCnt > 0 );
outChPtr = p->outChArray;
outChCnt = p->outChCnt;
assert( p->procSmpCnt <= procSmpCnt );
}
for(i=0; i<p->segCnt; ++i)
{
cmAudioSeg* sp = p->segArray + i;
// if the output channel is valid and the segment is enabled and not deleted
if( sp->outChIdx < outChCnt && (sp->flags & (kEnableAspFl | kDelAspFl)) == kEnableAspFl )
{
unsigned bufSmpIdx = sp->smpIdx + sp->outSmpIdx;
unsigned bufSmpCnt = 0;
// if all the samples have been played
if( sp->bufPtr->bufN <= bufSmpIdx )
_cmAudioSegPlayerResetSeg(sp);
else
{
// prevent playing past the end of the buffer
bufSmpCnt = cmMin( procSmpCnt, sp->bufPtr->bufN - bufSmpIdx );
// limit the number of samples to the segment length
bufSmpCnt = cmMin( bufSmpCnt, sp->smpCnt - sp->outSmpIdx );
// sum the samples into the output channel
cmVOS_AddVV( outChPtr[ sp->outChIdx ], bufSmpCnt, sp->bufPtr->bufV + bufSmpIdx );
// incr the next output sample index
sp->outSmpIdx += bufSmpCnt;
}
if( bufSmpCnt < procSmpCnt )
cmVOS_Zero( outChPtr[ sp->outChIdx ] + bufSmpCnt, procSmpCnt - bufSmpCnt );
}
}
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
/*
cmCluster0* cmCluster0Alloc( cmCtx* ctx, cmCluster0* ap, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* dstUserPtr )
{
cmCluster0* p = cmObjAlloc( cmCluster0, ctx, ap );
if( stateCnt != 0 )
if( cmCluster0Init( p, stateCnt, binCnt, flags, distFunc, distUserPtr ) != cmOkRC )
cmCluster0Free(&p);
return p;
}
cmRC_t cmCluster0Free( cmCluster0** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmCluster0* p = *pp;
cmMemPtrFree(&p->oM);
cmMemPtrFree(&p->tM);
cmMemPtrFree(&p->dV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmCluster0Init( cmCluster0* p, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* distUserPtr )
{
cmRC_t rc;
if((rc = cmCluster0Final(p)) != cmOkRC )
return rc;
p->oM = cmMemResizeZ( cmReal_t, p->oM, binCnt * stateCnt );
p->tM = cmMemResizeZ( cmReal_t, p->tM, stateCnt * stateCnt );
p->stateCnt = stateCnt;
p->binCnt = binCnt;
p->flags = flags;
p->distFunc = distFunc;
p->distUserPtr = distUserPtr;
p->cnt = 0;
}
cmRC_t cmCluster0Final( cmCluster0* p )
{ return cmOkRC; }
cmRC_t cmCluster0Exec( cmCluster0* p, const cmReal_t* v, unsigned vn )
{
assert( vn <= p->binCnt );
++cnt;
if( cnt <= stateCnt )
{
cmVOR_Copy( p->oM + ((cnt-1)*binCnt), vn, v );
return cmOkRC;
}
return cmOkRC;
}
*/
cmNmf_t* cmNmfAlloc( cmCtx* ctx, cmNmf_t* ap, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
{
cmNmf_t* p = cmObjAlloc( cmNmf_t, ctx, ap );
if( n != 0 )
if( cmNmfInit( p, n, m, r, maxIterCnt, convergeCnt ) != cmOkRC )
cmNmfFree(&p);
return p;
}
cmRC_t cmNmfFree( cmNmf_t** pp )
{
if( pp== NULL || *pp == NULL )
return cmOkRC;
cmNmf_t* p = *pp;
cmMemPtrFree(&p->V);
cmMemPtrFree(&p->W);
cmMemPtrFree(&p->H);
cmMemPtrFree(&p->tr);
cmMemPtrFree(&p->x);
cmMemPtrFree(&p->t0nm);
cmMemPtrFree(&p->t1nm);
cmMemPtrFree(&p->Wt);
cmMemPtrFree(&p->trm);
cmMemPtrFree(&p->crm);
cmMemPtrFree(&p->c0);
cmMemPtrFree(&p->c1);
cmMemPtrFree(&p->idxV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmNmfInit( cmNmf_t* p, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
{
cmRC_t rc;
if((rc = cmNmfFinal(p)) != cmOkRC )
return rc;
p->n = n;
p->m = m;
p->r = r;
p->maxIterCnt = maxIterCnt;
p->convergeCnt= convergeCnt;
p->V = cmMemResizeZ(cmReal_t, p->V, n*m );
p->W = cmMemResize( cmReal_t, p->W, n*r );
p->H = cmMemResize( cmReal_t, p->H, r*m );
p->tr = cmMemResize( cmReal_t, p->tr, r );
p->x = cmMemResize( cmReal_t, p->x, r*cmMax(m,n) );
p->t0nm = cmMemResize( cmReal_t, p->t0nm, cmMax(r,n)*m );
p->Ht = p->t0nm;
p->t1nm = cmMemResize( cmReal_t, p->t1nm, n*m );
p->Wt = cmMemResize( cmReal_t, p->Wt, r*n );
p->trm = cmMemResize( cmReal_t, p->trm, r*cmMax(m,n) );
p->crm = cmMemResizeZ(unsigned, p->crm, r*m);
p->tnr = p->trm;
p->c0 = cmMemResizeZ(unsigned, p->c0, m*m);
p->c1 = cmMemResizeZ(unsigned, p->c1, m*m);
p->idxV = cmMemResizeZ(unsigned, p->idxV, m );
p->c0m = p->c0;
p->c1m = p->c1;
cmVOR_Random(p->W,n*r,0.0,1.0);
cmVOR_Random(p->H,r*m,0.0,1.0);
return rc;
}
cmRC_t cmNmfFinal(cmNmf_t* p )
{ return cmOkRC; }
// NMF base on: Lee and Seung, 2001, Algo's for Non-negative Matrix Fcmtorization
// Connectivity stopping technique based on: http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m
cmRC_t cmNmfExec( cmNmf_t* p, const cmReal_t* vM, unsigned cn )
{
cmRC_t rc = cmOkRC;
unsigned i,j,k;
unsigned n = p->n;
unsigned m = p->m;
unsigned r = p->r;
unsigned stopIter = 0;
assert(cn <= m );
// shift in the incoming columns of V[]
if( cn < m )
cmVOR_Shift(p->V, n*m, n*cn,0);
cmVOR_Copy( p->V, n*cn,vM );
// shift H[] by the same amount as V[]
if( cn < m )
cmVOR_Shift( p->H, r*m, r*cn,0);
cmVOR_Random(p->H, r*cn, 0.0, 1.0 );
cmVOU_Zero( p->c1m, m*m );
for(i=0,j=0; i<p->maxIterCnt && stopIter<p->convergeCnt; ++i)
{
// x[r,m] =repmat(sum(W,1)',1,m);
cmVOR_SumM( p->W, n, r, p->tr );
for(j=0; j<m; ++j)
cmVOR_Copy( p->x + (j*r), r, p->tr );
cmVOR_Transpose(p->Wt,p->W,n,r);
//H=H.*(W'*(V./(W*H)))./x;
cmVOR_MultMMM(p->t0nm,n,m,p->W,p->H,r); // t0nm[n,m] = W*H
cmVOR_DivVVV( p->t1nm,n*m,p->V,p->t0nm); // t1nm[n,m] = V./(W*H)
cmVOR_MultMMM(p->trm,r,m,p->Wt,p->t1nm,n); // trm[r,m] = W'*(V./(W*H))
cmVOR_MultVV(p->H,r*m,p->trm); // H[r,m] = H .* (W'*(V./(W*H)))
cmVOR_DivVV(p->H,r*m, p->x ); // H[r,m] = (H .* (W'*(V./(W*H)))) ./ x
// x[n,r]=repmat(sum(H,2)',n,1);
cmVOR_SumMN(p->H, r, m, p->tr );
for(j=0; j<n; ++j)
cmVOR_CopyN(p->x + j, r, n, p->tr, 1 );
cmVOR_Transpose(p->Ht,p->H,r,m);
// W=W.*((V./(W*H))*H')./x;
cmVOR_MultMMM(p->tnr,n,r,p->t1nm,p->Ht,m); // tnr[n,r] = (V./(W*H))*Ht
cmVOR_MultVV(p->W,n*r,p->tnr); // W[n,r] = W.*(V./(W*H))*Ht
cmVOR_DivVV(p->W,n*r,p->x); // W[n,r] = W.*(V./(W*H))*Ht ./x
if( i % 10 == 0 )
{
cmVOR_ReplaceLte( p->H, r*m, p->H, 2.2204e-16, 2.2204e-16 );
cmVOR_ReplaceLte( p->W, n*r, p->W, 2.2204e-16, 2.2204e-16 );
cmVOR_MaxIndexM( p->idxV, p->H, r, m );
unsigned mismatchCnt = 0;
for(j=0; j<m; ++j)
for(k=0; k<m; ++k)
{
unsigned c_idx = (j*m)+k;
p->c0m[ c_idx ] = p->idxV[j] == p->idxV[k];
mismatchCnt += p->c0m[ c_idx ] != p->c1m[ c_idx ];
}
if( mismatchCnt == 0 )
++stopIter;
else
stopIter = 0;
printf("%i %i %i\n",i,stopIter,mismatchCnt);
fflush(stdout);
unsigned* tcm = p->c0m;
p->c0m = p->c1m;
p->c1m = tcm;
}
}
return rc;
}
//------------------------------------------------------------------------------------------------------------
unsigned _cmVectArrayTypeByteCnt( cmVectArray_t* p, unsigned flags )
{
switch( flags & kVaMask )
{
case kFloatVaFl: return sizeof(float);
case kDoubleVaFl: return sizeof(double);
case kIntVaFl: return sizeof(int);
case kUIntVaFl: return sizeof(unsigned);
}
if( p != NULL )
cmCtxRtCondition(&p->obj,cmInvalidArgRC,"Unknown data type.");
return 0;
}
cmRC_t _cmVectArrayAppend( cmVectArray_t* p, const void* v, unsigned typeByteCnt, unsigned valCnt )
{
cmRC_t rc = cmSubSysFailRC;
cmVectArrayVect_t* ep = NULL;
unsigned byteCnt = typeByteCnt * valCnt;
if( byteCnt == 0 || v == NULL )
return rc;
// verify that all vectors written to this vector array contain the same data type.
if( typeByteCnt != _cmVectArrayTypeByteCnt(p,p->flags) )
return cmCtxRtCondition(&p->obj,cmInvalidArgRC,"All data stored to a cmVectArray_t must be a consistent type.");
// allocate space for the link record
if((ep = cmMemAllocZ(cmVectArrayVect_t,1)) == NULL )
goto errLabel;
// allocate space for the vector data
if((ep->u.v = cmMemAlloc(char,typeByteCnt*valCnt)) == NULL )
goto errLabel;
// append the link recd to the end of the element list
if( p->ep != NULL )
p->ep->link = ep;
else
{
p->bp = ep;
p->cur = p->bp;
}
p->ep = ep;
// store the length of the vector
ep->n = valCnt;
// copy in the vector data
memcpy(ep->u.v,v,byteCnt);
// track the number of vectors stored
p->vectCnt += 1;
// track the longest data vector
if( valCnt > p->maxEleCnt )
p->maxEleCnt = valCnt;
rc = cmOkRC;
errLabel:
if(rc != cmOkRC )
{
cmMemFree(ep->u.v);
cmMemFree(ep);
}
return rc;
}
cmVectArray_t* cmVectArrayAlloc( cmCtx* ctx, unsigned flags )
{
cmRC_t rc = cmOkRC;
cmVectArray_t* p = cmObjAlloc(cmVectArray_t,ctx,NULL);
assert(p != NULL);
switch( flags & kVaMask )
{
case kIntVaFl:
p->flags |= kIntVaFl;
p->typeByteCnt = sizeof(int);
break;
case kUIntVaFl:
p->flags |= kUIntVaFl;
p->typeByteCnt = sizeof(unsigned);
break;
case kFloatVaFl:
p->flags |= kFloatVaFl;
p->typeByteCnt = sizeof(float);
break;
case kDoubleVaFl:
p->flags |= kDoubleVaFl;
p->typeByteCnt = sizeof(double);
break;
default:
rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
}
if(rc != cmOkRC)
cmVectArrayFree(&p);
return p;
}
cmVectArray_t* cmVectArrayAllocFromFile(cmCtx* ctx, const char* fn )
{
cmRC_t rc = cmOkRC;
FILE* fp = NULL;
char* buf = NULL;
cmVectArray_t* p = NULL;
unsigned hn = 4;
unsigned hdr[hn];
// create the file
if((fp = fopen(fn,"rb")) == NULL )
{
rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file '%s' could not be opened.",cmStringNullGuard(fn));
goto errLabel;
}
if( fread(hdr,sizeof(unsigned),hn,fp) != hn )
{
rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file header could not be read from '%s'.",cmStringNullGuard(fn));
goto errLabel;
}
unsigned flags = hdr[0];
unsigned typeByteCnt = hdr[1];
unsigned vectCnt = hdr[2];
unsigned maxEleCnt = hdr[3];
unsigned i;
buf = cmMemAlloc(char,maxEleCnt*typeByteCnt);
if((p = cmVectArrayAlloc(ctx, flags )) == NULL )
goto errLabel;
for(i=0; i<vectCnt; ++i)
{
unsigned vn;
if( fread(&vn,sizeof(unsigned),1,fp) != 1 )
{
rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file element count read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
goto errLabel;
}
assert( vn <= maxEleCnt );
if( fread(buf,typeByteCnt,vn,fp) != vn )
{
rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array data read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
goto errLabel;
}
if((rc = _cmVectArrayAppend(p,buf, typeByteCnt, vn )) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,rc,"The vector array data store failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
goto errLabel;
}
}
errLabel:
if( fp != NULL )
fclose(fp);
cmMemFree(buf);
if(rc != cmOkRC && p != NULL)
cmVectArrayFree(&p);
return p;
}
cmRC_t cmVectArrayFree( cmVectArray_t** pp )
{
cmRC_t rc = cmOkRC;
if( pp == NULL || *pp == NULL )
return rc;
cmVectArray_t* p = *pp;
if((rc = cmVectArrayClear(p)) != cmOkRC )
return rc;
cmMemFree(p->tempV);
cmObjFree(pp);
return rc;
}
cmRC_t cmVectArrayClear( cmVectArray_t* p )
{
cmVectArrayVect_t* ep = p->bp;
while( ep!=NULL )
{
cmVectArrayVect_t* np = ep->link;
cmMemFree(ep->u.v);
cmMemFree(ep);
ep = np;
}
p->bp = NULL;
p->ep = NULL;
p->maxEleCnt = 0;
p->vectCnt = 0;
return cmOkRC;
}
unsigned cmVectArrayCount( const cmVectArray_t* p )
{ return p->vectCnt; }
unsigned cmVectArrayMaxRowCount( const cmVectArray_t* p )
{
const cmVectArrayVect_t* np = p->bp;
unsigned maxN = 0;
for(; np!=NULL; np=np->link)
if( np->n > maxN )
maxN = np->n;
return maxN;
}
cmRC_t cmVectArrayAppendV( cmVectArray_t* p, const void* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,_cmVectArrayTypeByteCnt(p,p->flags), vn); }
cmRC_t cmVectArrayAppendS( cmVectArray_t* p, const cmSample_t* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
cmRC_t cmVectArrayAppendR( cmVectArray_t* p, const cmReal_t* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
cmRC_t cmVectArrayAppendF( cmVectArray_t* p, const float* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
cmRC_t cmVectArrayAppendD( cmVectArray_t* p, const double* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
cmRC_t cmVectArrayAppendI( cmVectArray_t* p, const int* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
cmRC_t cmVectArrayAppendU( cmVectArray_t* p, const unsigned* v, unsigned vn )
{ return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
cmRC_t cmVectArrayWrite( cmVectArray_t* p, const char* fn )
{
cmRC_t rc = cmOkRC;
FILE* fp = NULL;
cmVectArrayVect_t* ep;
unsigned i;
unsigned hn = 4;
unsigned hdr[hn];
hdr[0] = p->flags;
hdr[1] = p->typeByteCnt;
hdr[2] = p->vectCnt;
hdr[3] = p->maxEleCnt;
// create the file
if((fp = fopen(fn,"wb")) == NULL )
return cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file '%s' could not be created.",cmStringNullGuard(fn));
// write the header
if( fwrite(hdr,sizeof(unsigned),hn,fp) != hn )
{
rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file header write failed in '%s'.",cmStringNullGuard(fn));
goto errLabel;
}
// write each vector element
for(ep=p->bp,i=0; ep!=NULL; ep=ep->link,++i)
{
// write the count of data values in the vector
if( fwrite(&ep->n,sizeof(ep->n),1,fp) != 1 )
{
rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on element header %i in '%s'.",i,cmStringNullGuard(fn));
goto errLabel;
}
// write the vector
if(fwrite(ep->u.v,p->typeByteCnt,ep->n,fp) != ep->n )
{
rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on data vector %i in '%s'.",i,cmStringNullGuard(fn));
goto errLabel;
}
}
errLabel:
if( fp != NULL )
fclose(fp);
return rc;
}
cmRC_t cmVectArrayWriteDirFn(cmVectArray_t* p, const char* dir, const char* fn )
{
assert( dir!=NULL && fn!=NULL );
const cmChar_t* path = cmFsMakeFn( dir, fn, NULL, NULL );
cmRC_t rc = cmVectArrayWrite(p,path);
cmFsFreeFn(path);
return rc;
}
cmRC_t cmVectArrayPrint( cmVectArray_t* p, cmRpt_t* rpt )
{
cmRC_t rc = cmOkRC;
cmVectArrayVect_t* rp = p->bp;
for(; rp!=NULL; rp=rp->link)
{
switch( p->flags & kVaMask )
{
case kFloatVaFl:
cmVOF_Print(rpt,1,rp->n,rp->u.fV);
break;
case kDoubleVaFl:
cmVOD_Print(rpt,1,rp->n,rp->u.dV);
break;
case kIntVaFl:
cmVOI_Print(rpt,1,rp->n,rp->u.iV);
break;
case kUIntVaFl:
cmVOU_Print(rpt,1,rp->n,rp->u.uV);
break;
default:
rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
break;
}
}
return rc;
}
unsigned cmVectArrayForEachS( cmVectArray_t* p, unsigned idx, unsigned cnt, cmVectArrayForEachFuncS_t func, void* arg )
{
cmVectArrayVect_t* ep = p->bp;
unsigned i = 0;
unsigned n = 0;
// for each sub-array
for(; ep!=NULL && n<cnt; ep=ep->link )
{
// if the cur sub-array is in the range of idx:idx+cnt
if( i <= idx && idx < i + ep->n )
{
unsigned j = idx - i; // starting idx into cur sub-array
assert(j<ep->n);
unsigned m = cmMin(ep->n - j,cnt-n); // cnt of ele's to send from cur sub-array
// do callback
if( func(arg, idx, ep->u.sV + j, m ) != cmOkRC )
break;
idx += m;
n += m;
}
i += ep->n;
}
return n;
}
cmRC_t _cmVectArrayWriteMatrix( cmCtx* ctx, const char* fn, unsigned flags, const void* m, unsigned rn, unsigned cn )
{
cmRC_t rc = cmOkRC;
cmVectArray_t* p;
const char* b = (const char*)m;
unsigned tbc = _cmVectArrayTypeByteCnt( NULL, flags );
unsigned ri = 0;
char* vv = cmMemAlloc(char,cn*tbc);
if((p = cmVectArrayAlloc(ctx,flags)) == NULL )
return cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to allocate a cmVectArray_t in %s().",__FUNCTION__);
for(ri=0; ri<rn; ++ri)
{
// get ptr to first element in row 'ri' or m[]
const char* v = b + ri*tbc;
unsigned ci;
// for each column in m[ri,:]
for(ci=0; ci<cn; ++ci)
memcpy(vv + ci*tbc, v + ci*rn*tbc, tbc );
// append the row to the VectArray
if((rc = cmVectArrayAppendV(p,vv,cn)) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,rc,"Vector append failed in %s().",__FUNCTION__);
goto errLabel;
}
}
if((rc = cmVectArrayWrite(p,fn)) != cmOkRC )
rc = cmCtxRtCondition(&p->obj,rc,"Vector array write failed in %s().",__FUNCTION__);
errLabel:
if((rc = cmVectArrayFree(&p)) != cmOkRC )
rc = cmCtxRtCondition(&ctx->obj,rc,"Vector array free failed in %s().",__FUNCTION__);
cmMemFree(vv);
return rc;
}
cmRC_t cmVectArrayWriteVectorV( cmCtx* ctx, const char* fn, const void* v, unsigned vn, unsigned flags )
{ return _cmVectArrayWriteMatrix( ctx, fn, flags, v, 1, vn ); }
cmRC_t cmVectArrayWriteVectorS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned vn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, 1, vn ); }
cmRC_t cmVectArrayWriteVectorR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned vn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, 1, vn ); }
cmRC_t cmVectArrayWriteVectorD( cmCtx* ctx, const char* fn, const double* v, unsigned vn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, 1, vn ); }
cmRC_t cmVectArrayWriteVectorF( cmCtx* ctx, const char* fn, const float* v, unsigned vn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, 1, vn ); }
cmRC_t cmVectArrayWriteVectorI( cmCtx* ctx, const char* fn, const int* v, unsigned vn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, 1, vn ); }
cmRC_t cmVectArrayWriteVectorU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned vn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, 1, vn ); }
cmRC_t cmVectArrayWriteMatrixV( cmCtx* ctx, const char* fn, const void* v, unsigned rn, unsigned cn, unsigned flags )
{ return _cmVectArrayWriteMatrix( ctx, fn, flags, v, rn, cn); }
cmRC_t cmVectArrayWriteMatrixS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned rn, unsigned cn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, rn, cn); }
cmRC_t cmVectArrayWriteMatrixR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned rn, unsigned cn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, rn, cn); }
cmRC_t cmVectArrayWriteMatrixD( cmCtx* ctx, const char* fn, const double* v, unsigned rn, unsigned cn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, rn, cn); }
cmRC_t cmVectArrayWriteMatrixF( cmCtx* ctx, const char* fn, const float* v, unsigned rn, unsigned cn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, rn, cn); }
cmRC_t cmVectArrayWriteMatrixI( cmCtx* ctx, const char* fn, const int* v, unsigned rn, unsigned cn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, rn, cn); }
cmRC_t cmVectArrayWriteMatrixU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned rn, unsigned cn )
{ return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, rn, cn); }
// Fill v[(*vnRef)*tbc] with the data from the current row of p.
// Return the count of elements copied to v[] in *vnRef.
cmRC_t _cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef, unsigned tbc )
{
assert( tbc == p->typeByteCnt );
if( cmVectArrayIsEOL(p) )
return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"%s failed because the state is EOL.",__FUNCTION__);
unsigned n = cmMin((*vnRef)*tbc, p->cur->n * p->typeByteCnt );
memcpy(v, p->cur->u.v, n );
*vnRef = n/tbc;
return cmOkRC;
}
cmRC_t _cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
{
assert( mRef != NULL );
assert( cnRef != NULL );
assert( rnRef != NULL );
*mRef = NULL;
*cnRef = 0;
*rnRef = 0;
cmRC_t rc = cmOkRC;
cmVectArray_t* va;
if((va = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the vectarray from the file '%s'.", cmStringNullGuard(fn));
else
{
unsigned rn = cmVectArrayCount(va); // count of rows
unsigned cn = cmVectArrayMaxRowCount(va); // max count of ele's among all rows
char* m = cmMemAllocZ(char,va->typeByteCnt*rn*cn); // allocate the matrix
unsigned ci = 0;
cmVectArrayRewind(va);
// read each vector into a column of m[]
for(; !cmVectArrayIsEOL(va); ++ci)
{
unsigned n = cmVectArrayEleCount(va);
assert( m+(ci*rn+n)*va->typeByteCnt <= m + rn*cn*va->typeByteCnt );
if( _cmVectArrayGetV(va, m + ci*rn*va->typeByteCnt, &n, va->typeByteCnt) != cmOkRC )
goto errLabel;
cmVectArrayAdvance(va,1);
}
*mRef = m;
*cnRef = cn;
*rnRef = rn;
}
errLabel:
if( va != NULL )
cmVectArrayFree(&va);
return rc;
}
cmRC_t cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayReadMatrixS( cmCtx* ctx, const char* fn, cmSample_t** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayReadMatrixR( cmCtx* ctx, const char* fn, cmReal_t** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayReadMatrixD( cmCtx* ctx, const char* fn, double** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayReadMatrixF( cmCtx* ctx, const char* fn, float** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayReadMatrixI( cmCtx* ctx, const char* fn, int** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayReadMatrixU( cmCtx* ctx, const char* fn, unsigned** mRef, unsigned* rnRef, unsigned* cnRef )
{ return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
cmRC_t cmVectArrayForEachTextFuncS( void* arg, unsigned idx, const cmSample_t* xV, unsigned xN )
{
assert(0);
return cmOkRC;
}
cmRC_t cmVectArrayRewind( cmVectArray_t* p )
{
p->cur = p->bp;
return cmOkRC;
}
cmRC_t cmVectArrayAdvance( cmVectArray_t* p, unsigned n )
{
unsigned i;
for(i=0; i<n; ++i)
{
if( p->cur == NULL )
break;
p->cur = p->cur->link;
}
return cmOkRC;
}
bool cmVectArrayIsEOL( const cmVectArray_t* p )
{ return p->cur == NULL; }
unsigned cmVectArrayEleCount( const cmVectArray_t* p )
{
if( p->cur == NULL )
return 0;
return p->cur->n;
}
cmRC_t cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef )
{ return _cmVectArrayGetV(p,v,vnRef,_cmVectArrayTypeByteCnt(p,p->flags)); }
cmRC_t cmVectArrayGetS( cmVectArray_t* p, cmSample_t* v, unsigned* vnRef )
{
assert( cmIsFlag(p->flags,kSampleVaFl) );
return _cmVectArrayGetV(p,v,vnRef,sizeof(cmSample_t));
}
cmRC_t cmVectArrayGetR( cmVectArray_t* p, cmReal_t* v, unsigned* vnRef )
{
assert( cmIsFlag(p->flags,kRealVaFl) );
return _cmVectArrayGetV(p,v,vnRef,sizeof(cmReal_t));
}
cmRC_t cmVectArrayGetD( cmVectArray_t* p, double* v, unsigned* vnRef )
{
assert( cmIsFlag(p->flags,kDoubleVaFl) );
return _cmVectArrayGetV(p,v,vnRef,sizeof(double));
}
cmRC_t cmVectArrayGetF( cmVectArray_t* p, float* v, unsigned* vnRef )
{
assert( cmIsFlag(p->flags,kFloatVaFl) );
return _cmVectArrayGetV(p,v,vnRef,sizeof(float));
}
cmRC_t cmVectArrayGetI( cmVectArray_t* p, int* v, unsigned* vnRef )
{
assert( cmIsFlag(p->flags,kIntVaFl) );
return _cmVectArrayGetV(p,v,vnRef,sizeof(int));
}
cmRC_t cmVectArrayGetU( cmVectArray_t* p, unsigned* v, unsigned* vnRef )
{
assert( cmIsFlag(p->flags,kUIntVaFl) );
return _cmVectArrayGetV(p,v,vnRef,sizeof(unsigned));
}
cmRC_t _cmVectArrayMatrixIsEqual( cmCtx* ctx, const char* fn, const void* mm, unsigned rn, unsigned cn, unsigned flags, bool* resultFlRef )
{
assert( resultFlRef != NULL );
cmRC_t rc = cmOkRC;
cmVectArray_t* p = NULL;
const char* m = (const char*)mm;
unsigned tbc = _cmVectArrayTypeByteCnt(NULL,flags);
unsigned ri = 0;
char* vv = cmMemAlloc(char,cn*tbc);
*resultFlRef = false;
// read the vector array
if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL)
{
rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the VectArray from the file '%s'.", cmStringNullGuard(fn));
goto errLabel;
}
// verify that the matrix type matches the vector array type
if( (p->flags & kVaMask) != (flags & kVaMask) )
{
rc = cmCtxRtCondition(&ctx->obj,cmInvalidArgRC,"Invalid type conversion in '%s'.",__FUNCTION__);
goto errLabel;
}
// the row count of the VectArray and m[] must be the same
if( cmVectArrayCount(p) != rn )
{
*resultFlRef = false;
goto errLabel;
}
// for each row in VectArray
for(; !cmVectArrayIsEOL(p); ++ri )
{
unsigned vn = cmVectArrayEleCount(p);
char v[ vn*p->typeByteCnt ];
unsigned ci;
// get the current row from the VectArray into v[vn]
if( _cmVectArrayGetV(p,v,&vn,p->typeByteCnt) != cmOkRC )
goto errLabel;
// if the size of the current row does not match the row element count of the matrix
if( vn != cn )
goto errLabel;
for(ci=0; ci<cn; ++ci)
memcpy(vv + ci*tbc, m + (ri*tbc) + (ci*rn*tbc), tbc );
// the current row does not match the matrix column vector
if( memcmp(v, vv, vn*p->typeByteCnt ) != 0 )
goto errLabel;
cmVectArrayAdvance(p,1);
}
*resultFlRef = true;
errLabel:
if( p != NULL )
cmVectArrayFree(&p);
cmMemFree(vv);
return rc;
}
cmRC_t cmVectArrayMatrixIsEqualV( cmCtx* ctx, const char* fn, const void* m, unsigned rn, unsigned cn, bool* resultFlRef, unsigned flags )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, flags, resultFlRef); }
cmRC_t cmVectArrayMatrixIsEqualS( cmCtx* ctx, const char* fn, const cmSample_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kSampleVaFl, resultFlRef ); }
cmRC_t cmVectArrayMatrixIsEqualR( cmCtx* ctx, const char* fn, const cmReal_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kRealVaFl, resultFlRef ); }
cmRC_t cmVectArrayMatrixIsEqualD( cmCtx* ctx, const char* fn, const double* m, unsigned rn, unsigned cn, bool* resultFlRef )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kDoubleVaFl, resultFlRef ); }
cmRC_t cmVectArrayMatrixIsEqualF( cmCtx* ctx, const char* fn, const float* m, unsigned rn, unsigned cn, bool* resultFlRef )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kFloatVaFl, resultFlRef ); }
cmRC_t cmVectArrayMatrixIsEqualI( cmCtx* ctx, const char* fn, const int* m, unsigned rn, unsigned cn, bool* resultFlRef )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kIntVaFl, resultFlRef ); }
cmRC_t cmVectArrayMatrixIsEqualU( cmCtx* ctx, const char* fn, const unsigned* m, unsigned rn, unsigned cn, bool* resultFlRef )
{ return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kUIntVaFl, resultFlRef ); }
unsigned cmVectArrayVectEleCount( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt )
{
unsigned n = 0;
cmVectArrayVect_t* pos = p->cur;
if( cmVectArrayRewind(p) != cmOkRC )
goto errLabel;
if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
goto errLabel;
while( !cmVectArrayIsEOL(p) )
{
n += cmVectArrayEleCount(p);
if(cmVectArrayAdvance(p,groupCnt) != cmOkRC )
goto errLabel;
}
errLabel:
p->cur = pos;
return n;
}
cmRC_t cmVectArrayFormVectF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, float** vRef, unsigned* vnRef )
{
cmRC_t rc = cmOkRC;
*vRef = NULL;
*vnRef = 0;
unsigned N = cmVectArrayVectEleCount(p,groupIdx,groupCnt);
if( N == 0 )
return rc;
float* v = cmMemAllocZ(float,N);
unsigned i = 0;
cmVectArrayVect_t* pos = p->cur;
if( cmVectArrayRewind(p) != cmOkRC )
goto errLabel;
if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
goto errLabel;
while( !cmVectArrayIsEOL(p) )
{
unsigned n = cmVectArrayEleCount(p);
assert(i+n <= N);
cmVectArrayGetF(p,v+i,&n);
i += n;
cmVectArrayAdvance(p,groupCnt);
}
*vRef = v;
*vnRef = i;
errLabel:
p->cur = pos;
return rc;
}
cmRC_t cmVectArrayFormVectColF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, float** vRef, unsigned* vnRef )
{
cmRC_t rc = cmOkRC;
*vRef = NULL;
*vnRef = 0;
// assume there will be one output element for each group
unsigned N = cmVectArrayCount(p)/groupCnt + 1;
if( N == 0 )
return rc;
float* v = cmMemAllocZ(float,N);
unsigned i = 0;
cmVectArrayVect_t* pos = p->cur;
if( cmVectArrayRewind(p) != cmOkRC )
goto errLabel;
if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
goto errLabel;
while( i<N && !cmVectArrayIsEOL(p) )
{
unsigned tn = cmVectArrayEleCount(p);
float tv[tn];
// read the sub-vector
cmVectArrayGetF(p,tv,&tn);
// store the output value
if( colIdx < tn )
{
v[i] = tv[colIdx];
i += 1;
}
cmVectArrayAdvance(p,groupCnt);
}
*vRef = v;
*vnRef = i;
errLabel:
p->cur = pos;
return rc;
}
cmRC_t cmVectArrayFormVectColU( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, unsigned** vRef, unsigned* vnRef )
{
cmRC_t rc = cmOkRC;
*vRef = NULL;
*vnRef = 0;
// assume there will be one output element for each group
unsigned N = cmVectArrayCount(p)/groupCnt + 1;
if( N == 0 )
return rc;
unsigned* v = cmMemAllocZ(unsigned,N);
unsigned i = 0;
cmVectArrayVect_t* pos = p->cur;
if( cmVectArrayRewind(p) != cmOkRC )
goto errLabel;
if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
goto errLabel;
while( i<N && !cmVectArrayIsEOL(p) )
{
unsigned tn = cmVectArrayEleCount(p);
unsigned tv[tn];
// read the sub-vector
cmVectArrayGetU(p,tv,&tn);
assert( colIdx < tn );
// store the output value
if( colIdx < tn )
v[i++] = tv[colIdx];
cmVectArrayAdvance(p,groupCnt);
}
*vRef = v;
*vnRef = i;
errLabel:
p->cur = pos;
return rc;
}
cmRC_t cmVectArrayTest( cmCtx* ctx, const char* fn, bool genFl )
{
cmRC_t rc = cmOkRC;
cmVectArray_t* p = NULL;
if( fn == NULL || strlen(fn)==0 )
return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Invalid test output file name.");
if( genFl )
{
unsigned flags = kSampleVaFl;
cmSample_t v[] = { 0, 1, 2, 3, 4, 5 };
if( (p = cmVectArrayAlloc(ctx,flags)) == NULL )
return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array object allocation failed.");
if( cmVectArrayAppendS(p,v,1) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 1 failed.");
goto errLabel;
}
if( cmVectArrayAppendS(p,v+1,2) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 2 failed.");
goto errLabel;
}
if( cmVectArrayAppendS(p,v+3,3) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 3 failed.");
goto errLabel;
}
if( cmVectArrayWrite(p,fn) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector array write failed.");
goto errLabel;
}
//cmVectArrayForEachS(p,0,cmVectArrayEleCount(p),cmVectArrayForEachTextFuncS,&ctx->printRpt);
//if( cmVectArrayFree(&p) != cmOkRC )
//{
// rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array release failed.");
// goto errLabel;
//}
}
else
{
if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArray alloc from file failed.");
goto errLabel;
}
while(!cmVectArrayIsEOL(p))
{
unsigned n = cmVectArrayEleCount(p);
cmSample_t v[n];
if( cmVectArrayGetS(p,v,&n) != cmOkRC )
{
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArrayGetS() failed.");
goto errLabel;
}
//cmVOS_PrintL("v:",NULL,1,n,v);
cmVectArrayAdvance(p,1);
}
// Test matrix reading
cmSample_t* m;
unsigned rn,cn;
if( cmVectArrayReadMatrixS(ctx, fn, &m, &rn, &cn ) != cmOkRC )
goto errLabel;
else
{
//cmVOS_PrintL("v:",NULL,rn,cn,m);
cmMemFree(m);
}
}
errLabel:
if( cmVectArrayFree(&p) != cmOkRC )
rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vector array release failed.");
return rc;
}
//-----------------------------------------------------------------------------------------------------------------------
cmWhFilt* cmWhFiltAlloc( cmCtx* c, cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
{
cmWhFilt* op = cmObjAlloc(cmWhFilt,c,p);
if( binCnt > 0 )
if( cmWhFiltInit(op,binCnt,binHz,coeff,maxHz) != cmOkRC )
cmWhFiltFree(&op);
return op;
}
cmRC_t cmWhFiltFree( cmWhFilt** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return rc;
cmWhFilt* p = *pp;
if((rc = cmWhFiltFinal(p)) != cmOkRC )
return rc;
cmMemFree(p->whM);
cmMemFree(p->whiV);
cmMemFree(p->iV);
cmObjFree(pp);
return rc;
}
cmRC_t cmWhFiltInit( cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
{
cmRC_t rc;
if((rc = cmWhFiltFinal(p)) != cmOkRC )
return rc;
p->binCnt = binCnt;
p->binHz = binHz;
p->bandCnt = maxHz == 0 ? 34 : ceil(log10(maxHz/229.0 + 1) * 21.4 - 1)-1;
if( p->bandCnt <= 0 )
return cmCtxRtCondition(&p->obj, cmInvalidArgRC, "Max. Hz too low to form any frequency bands.");
cmReal_t flV[ p->bandCnt ];
cmReal_t fcV[ p->bandCnt ];
cmReal_t fhV[ p->bandCnt ];
int i;
for(i=0; i<p->bandCnt; ++i)
{
fcV[i] = 229.0 * (pow(10.0,(i+2)/21.4) - 1.0);
flV[i] = i==0 ? 0 : fcV[i-1];
}
for(i=0; i<p->bandCnt-1; ++i)
fhV[i] = fcV[i+1];
fhV[p->bandCnt-1] = fcV[p->bandCnt-1] + (fcV[p->bandCnt-1] - fcV[p->bandCnt-2]);
//cmVOR_PrintL("flV",NULL,1,p->bandCnt,flV);
//cmVOR_PrintL("fcV",NULL,1,p->bandCnt,fcV);
//cmVOR_PrintL("fhV",NULL,1,p->bandCnt,fhV);
cmReal_t* tM = cmMemAlloc(cmReal_t,p->bandCnt * p->binCnt);
p->whM = cmMemResizeZ(cmReal_t,p->whM,p->binCnt * p->bandCnt);
p->iV = cmMemResizeZ(cmReal_t,p->iV,p->binCnt);
// generate the bin index values
for(i=0; i<p->binCnt; ++i)
p->iV[i] = i;
cmReal_t stSpread = 0; // set stSpread to 0 to use flV/fhV[]
cmVOR_TriangleMask(tM, p->bandCnt, p->binCnt, fcV, p->binHz, stSpread, flV, fhV );
cmVOR_Transpose(p->whM, tM, p->bandCnt, p->binCnt );
cmMemFree(tM);
//cmVOR_PrintL("whM",NULL,p->bandCnt,p->binCnt,p->whM);
//cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whM.va", p->whM, p->binCnt, p->bandCnt );
unsigned whiN = p->bandCnt+2;
p->whiV = cmMemResizeZ(cmReal_t,p->whiV,whiN);
for(i=0; i<whiN; ++i)
{
if( i == 0 )
p->whiV[i] = 0;
else
if( i == whiN-1 )
p->whiV[i] = fhV[p->bandCnt-1]/binHz;
else
p->whiV[i] = fcV[i-1]/binHz;
}
//cmVOR_PrintL("whiV",NULL,1,whiN,p->whiV);
//cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whiV.va", p->whiV, whiN, 1 );
return rc;
}
cmRC_t cmWhFiltFinal( cmWhFilt* p )
{ return cmOkRC; }
cmRC_t cmWhFiltExec( cmWhFilt* p, const cmReal_t* xV, cmReal_t* yV, unsigned xyN )
{
assert( xyN == p->binCnt);
cmRC_t rc = cmOkRC;
unsigned whiN = p->bandCnt + 2;
unsigned mbi = cmMin(xyN, floor(p->whiV[whiN-1]));
// calculate the level in each band to form a composite filter
cmReal_t y0V[ whiN ];
cmReal_t* b0V = y0V + 1;
cmVOR_MultVVM(b0V, p->bandCnt, xV, p->binCnt, p->whM );
//cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
// BEWARE: zeros in b0V will generate Inf's when sent
// through the cmVOR_PowVS() function.
int i;
for(i=0; i<p->bandCnt; ++i)
if( b0V[i] < 0.000001 )
b0V[i] = 0.000001;
// apply a non-linear expansion function to each band
cmVOR_PowVS(b0V,p->bandCnt,p->coeff-1);
//cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
// add edge values to the filter
y0V[0] = b0V[0];
y0V[whiN-1] = b0V[p->bandCnt-1];
//cmVOR_PrintL("y0V",NULL,1,whiN,y0V);
cmVOR_Interp1(yV,p->iV,p->binCnt,p->whiV,y0V,whiN);
cmVOR_Fill(yV+mbi,xyN-mbi,1.0);
//cmVOR_PrintL("yV",NULL,1,p->binCnt,yV);
cmVOR_MultVV(yV,xyN,xV);
return rc;
}
//-----------------------------------------------------------------------------------------------------------------------
cmFrqTrk* cmFrqTrkAlloc( cmCtx* c, cmFrqTrk* p, const cmFrqTrkArgs_t* a )
{
cmFrqTrk* op = cmObjAlloc(cmFrqTrk,c,p);
op->logVa = cmVectArrayAlloc(c,kRealVaFl);
op->levelVa = cmVectArrayAlloc(c,kRealVaFl);
op->specVa = cmVectArrayAlloc(c,kRealVaFl);
op->attenVa = cmVectArrayAlloc(c,kRealVaFl);
op->wf = cmWhFiltAlloc(c,NULL,0,0,0,0);
if( a != NULL )
if( cmFrqTrkInit(op,a) != cmOkRC )
cmFrqTrkFree(&op);
return op;
}
cmRC_t cmFrqTrkFree( cmFrqTrk** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return rc;
cmFrqTrk* p = *pp;
if((rc = cmFrqTrkFinal(p)) != cmOkRC )
return rc;
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
{
cmMemFree(p->ch[i].dbV);
cmMemFree(p->ch[i].hzV);
}
cmMemFree(p->ch);
cmMemFree(p->dbM);
cmMemFree(p->pkiV);
cmMemFree(p->dbV);
cmMemFree(p->aV);
cmVectArrayFree(&p->logVa);
cmVectArrayFree(&p->levelVa);
cmVectArrayFree(&p->specVa);
cmVectArrayFree(&p->attenVa);
cmWhFiltFree(&p->wf);
cmMemFree(p->logFn);
cmMemFree(p->levelFn);
cmMemFree(p->specFn);
cmMemFree(p->attenFn);
cmObjFree(pp);
return rc;
}
cmRC_t cmFrqTrkInit( cmFrqTrk* p, const cmFrqTrkArgs_t* a )
{
cmRC_t rc;
if((rc = cmFrqTrkFinal(p)) != cmOkRC )
return rc;
p->a = *a;
p->ch = cmMemResizeZ(cmFrqTrkCh_t,p->ch,a->chCnt );
p->hN = cmMax(1,a->wndSecs * a->srate / a->hopSmpCnt );
p->sN = 4*p->hN;
p->binHz = a->srate / ((p->a.binCnt-1)*2);
p->bN = cmMin( p->a.binCnt, ceil(p->a.pkMaxHz / p->binHz ));
p->dbM = cmMemResizeZ(cmReal_t,p->dbM,p->hN*p->bN);
p->hi = 0;
p->fN = 0;
p->dbV = cmMemResizeZ(cmReal_t,p->dbV,p->bN);
p->pkiV = cmMemResizeZ(unsigned,p->pkiV,p->bN);
p->deadN_max = a->maxTrkDeadSec * a->srate / a->hopSmpCnt;
p->minTrkN = a->minTrkSec * a->srate / a->hopSmpCnt;
p->nextTrkId = 1;
p->aV = cmMemResizeZ(cmReal_t,p->aV,p->a.binCnt);
p->attenDlyPhsMax = cmMax(3,a->attenDlySec * a->srate / a->hopSmpCnt );
p->attenPhsMax = cmMax(3,a->attenAtkSec * a->srate / a->hopSmpCnt );
if( a->logFn != NULL )
p->logFn = cmMemResizeStr(p->logFn,a->logFn);
if( a->levelFn != NULL )
p->levelFn = cmMemResizeStr(p->levelFn,a->levelFn);
if( a->specFn != NULL )
p->specFn = cmMemResizeStr(p->specFn,a->specFn);
if( a->attenFn != NULL )
p->attenFn = cmMemResizeStr(p->attenFn,a->attenFn);
if(cmWhFiltInit(p->wf,p->bN,p->binHz,p->a.whFiltCoeff,p->a.pkMaxHz) != cmOkRC )
cmCtxRtCondition(&p->obj, cmSubSysFailRC, "Whitening filter intitialization failed.");
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
{
p->ch[i].dbV = cmMemResizeZ(cmReal_t,p->ch[i].dbV,p->sN);
p->ch[i].hzV = cmMemResizeZ(cmReal_t,p->ch[i].hzV,p->sN);
}
return rc;
}
cmRC_t cmFrqTrkFinal( cmFrqTrk* p )
{
cmRC_t rc = cmOkRC;
if( p->logFn != NULL )
cmVectArrayWrite(p->logVa,p->logFn);
if( p->levelFn != NULL )
cmVectArrayWrite(p->levelVa,p->levelFn);
if( p->specFn != NULL )
cmVectArrayWrite(p->specVa,p->specFn);
if( p->attenFn != NULL )
cmVectArrayWrite(p->attenVa,p->attenFn);
cmWhFiltFinal(p->wf);
return rc;
}
// Return an available channel record or NULL if all channel records are in use.
cmFrqTrkCh_t* _cmFrqTrkFindAvailCh( cmFrqTrk* p )
{
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
if( p->ch[i].activeFl == false )
return p->ch + i;
return NULL;
}
// Estimate the peak frequency by parabolic interpolotion into hzV[p->bN]
void _cmFrqTrkMagnToHz( cmFrqTrk* p, const cmReal_t* dbV, unsigned* pkiV, unsigned pkN, cmReal_t* hzV )
{
unsigned i;
for(i=0; i<pkN; ++i)
if( pkiV[i] != cmInvalidIdx )
{
unsigned pki = pkiV[i];
cmReal_t y0 = pki>0 ? dbV[ pki-1 ] : dbV[pki];
cmReal_t y1 = dbV[ pki ];
cmReal_t y2 = pki<p->bN-1 ? dbV[ pki+1 ] : dbV[pki];
cmReal_t den = y0 - (2.*y1) + y2;
cmReal_t offs = den==0 ? 0 : 0.5 * ((y0 - y2) / den);
hzV[pki] = p->binHz * (pki+offs);
//if( hzV[pki] < 0 )
//{
// printf("%f : %f %f %f : %f %f\n",hzV[pki],y0,y1,y2,den,offs);
//}
}
}
unsigned _cmFrqTrkActiveChCount( cmFrqTrk* p )
{
unsigned n = 0;
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
if( p->ch[i].activeFl )
++n;
return n;
}
void _cmFrqTrkWriteLevel( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned bN )
{
if( p->levelFn != NULL )
{
double maxHz = 5000.0;
unsigned maxBinIdx = cmMin(bN,maxHz / p->binHz);
unsigned vn = 3;
cmReal_t v[vn];
unsigned idx = cmVOR_MaxIndex(dbV,maxBinIdx,1);
v[0] = cmVOR_Mean(dbV,maxBinIdx);
v[1] = dbV[idx];
v[2] = hzV[idx];
cmVectArrayAppendR(p->levelVa,v,vn);
}
}
void _cmFrqTrkWriteLog( cmFrqTrk* p )
{
unsigned n;
cmReal_t* vb = NULL;
if( p->logFn == NULL )
return;
if((n = _cmFrqTrkActiveChCount(p)) > 0 )
{
unsigned i,j;
// sn = count of elements in the summary sub-vector
unsigned sn = 3;
// each active channel will emit 7 values
unsigned nn = 1 + n*7 + sn;
// allocate the row vector
vb = cmMemResize(cmReal_t,vb,nn);
// row format
// [ nn idV[n] hzV[n] ... hsV[n] smV[sn] ]
// n = (nn - (1 + sn)) / 7
*vb = nn; // the first element in the vector contains the length of the row
cmReal_t* v = vb + 1;
// setup the base pointer to each sub-vector
cmReal_t* idV = v + n * 0;
cmReal_t* hzV = v + n * 1;
cmReal_t* dbV = v + n * 2;
cmReal_t* stV = v + n * 3;
cmReal_t* dsV = v + n * 4;
cmReal_t* hsV = v + n * 5;
cmReal_t* agV = v + n * 6;
cmReal_t* smV = v + n * 7; // summary information
smV[0] = p->newTrkCnt;
smV[1] = p->curTrkCnt;
smV[2] = p->deadTrkCnt;
// for each active channel
for(i=0,j=0; i<p->a.chCnt; ++i)
if( p->ch[i].activeFl )
{
assert(j < n);
// elements of each sub-vector associated with a given
// index refer to the same track record - element i therefore
// refers to active track index i.
idV[j] = p->ch[i].id;
hzV[j] = p->ch[i].hz;
dbV[j] = p->ch[i].db;
stV[j] = p->ch[i].dN;
dsV[j] = p->ch[i].db_std;
hsV[j] = p->ch[i].hz_std;
agV[j] = p->ch[i].attenGain;
++j;
}
cmVectArrayAppendR(p->logVa, vb, nn );
}
cmMemFree(vb);
}
void _cmFrqTrkPrintChs( const cmFrqTrk* p )
{
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
{
cmFrqTrkCh_t* c = p->ch + i;
printf("%i : %i tN:%i hz:%f db:%f\n",i,c->activeFl,c->tN,c->hz,c->db);
}
}
// Used to sort the channels into descending dB order.
int _cmFrqTrkChCompare( const void* p0, const void* p1 )
{ return ((cmFrqTrkCh_t*)p0)->db - ((cmFrqTrkCh_t*)p1)->db; }
// Return the index of the peak associated with pkiV[i] which best matches the tracker 'c'
// or cmInvalidIdx if no valid peaks were found.
// pkiV[ pkN ] holds the indexes into dbV[] and hzV[] which are peaks.
// Some elements of pkiV[] may be set to cmInvalidIdx if the associated peak has already
// been selected by another tracker.
unsigned _cmFrqTrkFindPeak( cmFrqTrk* p, const cmFrqTrkCh_t* c, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
{
unsigned i,pki;
cmReal_t d_max = p->a.pkThreshDb;
unsigned d_idx = cmInvalidIdx;
cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
// find the peak with the most energy inside the frequency range hz_min to hz_max.
for(i=0; i<pkN; ++i)
if( ((pki = pkiV[i]) != cmInvalidIdx) && hz_min <= hzV[pki] && hzV[pki] <= hz_max && dbV[pki]>d_max )
{
d_max= dbV[pki];
d_idx = i;
}
return d_idx;
}
void _cmFrqTrkScoreChs( cmFrqTrk* p )
{
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
if( p->ch[i].activeFl )
{
cmFrqTrkCh_t* c = p->ch + i;
c->dbV[ c->si ] = c->db;
c->hzV[ c->si ] = c->hz;
c->si = (c->si + 1) % p->sN;
c->sn += 1;
unsigned n = cmMin(c->sn,p->sN);
c->db_mean = cmVOR_Mean(c->dbV,n);
c->db_std = sqrt(cmVOR_Variance( c->dbV,n,&c->db_mean));
c->hz_mean = cmVOR_Mean(c->hzV,n);
c->hz_std = sqrt(cmVOR_Variance( c->hzV,n,&c->hz_mean));
//c->score = c->db / ((cmMax(0.1,c->db_std) + cmMax(0.1,c->hz_std))/2);
c->score = c->db - (c->db_std * 5) - (c->hz_std/50);
//printf("%f %f %f %f %f\n",c->db,cmMin(0.1,c->db_std),c->hz,cmMin(0.1,c->hz_std),c->score);
}
}
// Generate a filter that is wider for higher frequencies than lower frequencies.
unsigned _cmFrqTrkFillMap( cmFrqTrk* p, cmReal_t* map, unsigned maxN, cmReal_t hz )
{
assert( maxN % 2 == 1 );
unsigned i;
cmReal_t maxHz = p->a.srate/2;
unsigned mapN = cmMin(maxN,ceil(hz/maxHz * maxN));
if( mapN % 2 == 0 )
mapN += 1;
mapN = cmMin(maxN,mapN);
unsigned N = floor(mapN/2);
double COEFF = 0.3;
for(i=0; i<N; ++i)
{
map[i] = pow(((double)i+1)/(N+1),COEFF);
map[mapN-(i+1)] = map[i];
}
map[N] = 1.0;
return mapN;
}
void _cmFrqTrkApplyAtten( cmFrqTrk* p, cmReal_t* aV, cmReal_t gain, cmReal_t hz )
{
int cbi = cmMin(p->a.binCnt,cmMax(0,round(hz/p->binHz)));
//cmReal_t map[] = { .25, .5, 1, .5, .25 };
//int mapN = sizeof(map)/sizeof(map[0]);
unsigned maxN = 30; // must be odd
cmReal_t map[ maxN ];
int mapN = _cmFrqTrkFillMap(p, map, maxN, hz );
int j;
int ai = cbi - mapN/2;
for(j=0; j<mapN; ++j,++ai)
if( 0 <= ai && ai < p->a.binCnt )
aV[ai] *= 1.0 - (map[j] * gain);
}
void _cmFrqTrkUpdateFilter( cmFrqTrk* p )
{
unsigned i;
cmVOR_Fill(p->aV,p->a.binCnt,1.0);
for(i=0; i<p->a.chCnt; ++i)
if( p->ch[i].activeFl )
{
cmFrqTrkCh_t* c = p->ch + i;
//
if( c->score >= p->a.attenThresh && c->state == kNoStateFrqTrkId )
{
//printf("%f\n",c->score);
c->attenPhsIdx = 0;
c->state = kDlyFrqTrkId;
}
switch( c->state )
{
case kNoStateFrqTrkId:
break;
case kDlyFrqTrkId:
c->attenPhsIdx += 1;
if( c->attenPhsIdx >= p->attenDlyPhsMax && c->dN == 0 )
c->state = kAtkFrqTrkId;
break;
case kAtkFrqTrkId:
if( c->attenPhsIdx < p->attenDlyPhsMax + p->attenPhsMax )
{
c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
_cmFrqTrkApplyAtten(p, p->aV, c->attenGain, c->hz);
}
c->attenPhsIdx += 1;
if( c->attenPhsIdx >= p->attenDlyPhsMax + p->attenPhsMax )
c->state = kSusFrqTrkId;
break;
case kSusFrqTrkId:
if( c->dN > 0 )
{
if( c->attenPhsIdx > 0 )
{
c->attenPhsIdx -= 1;
c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
}
}
_cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
if( c->dN >= p->deadN_max )
c->state = kDcyFrqTrkId;
break;
case kDcyFrqTrkId:
if( c->attenPhsIdx > 0 )
{
c->attenPhsIdx -= 1;
c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
_cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
}
if( c->attenPhsIdx == 0 )
c->activeFl = false;
break;
}
}
}
// Extend the existing trackers
void _cmFrqTrkExtendChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
{
unsigned i;
p->curTrkCnt = 0;
p->deadTrkCnt = 0;
// sort the channels in descending order
qsort(p->ch,p->a.chCnt,sizeof(cmFrqTrkCh_t),_cmFrqTrkChCompare);
// for each active channel
for(i=0; i<p->a.chCnt; ++i)
{
cmFrqTrkCh_t* c = p->ch + i;
if( c->activeFl )
{
unsigned pki;
// find the best peak to extend tracker 'c'.
if((pki = _cmFrqTrkFindPeak(p,c,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
{
// no valid track was found to extend tracker 'c'
c->dN += 1;
c->tN += 1;
if( c->dN >= p->deadN_max )
{
if( c->attenPhsIdx == 0 )
c->activeFl = false;
p->deadTrkCnt += 1;
}
}
else // ... update the tracker using the matching peak
{
unsigned j = pkiV[pki];
c->dN = 0;
c->db = dbV[ j ];
c->hz = hzV[ j ];
c->tN += 1;
pkiV[pki] = cmInvalidIdx; // mark the peak as unavailable.
p->curTrkCnt += 1;
}
}
}
}
// disable peaks which are within 'stRange' semitones of the frequency of active trackers.
void _cmFrqTrkDisableClosePeaks( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
{
unsigned i;
for(i=0; i<p->a.chCnt; ++i)
{
const cmFrqTrkCh_t* c = p->ch + i;
if( !c->activeFl )
continue;
cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
unsigned j;
// find all peaks within the frequency range hz_min to hz_max.
for(j=0; j<pkN; ++j)
if( pkiV[j] != cmInvalidIdx && hz_min <= c->hz && c->hz <= hz_max )
pkiV[j] = cmInvalidIdx;
}
}
// Return the index into pkiV[] of the maximum energy peak in dbV[]
// that is also above kAtkThreshDb.
unsigned _cmFrqTrkMaxEnergyPeakIndex( const cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, const unsigned* pkiV, unsigned pkN )
{
cmReal_t mv = p->a.pkAtkThreshDb;
unsigned mi = cmInvalidIdx;
unsigned i;
for(i=0; i<pkN; ++i)
if( pkiV[i] != cmInvalidIdx && dbV[pkiV[i]] >= mv && hzV[pkiV[i]] < p->a.pkMaxHz )
{
mi = i;
mv = dbV[pkiV[i]];
}
return mi;
}
// start new trackers
void _cmFrqTrkNewChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
{
p->newTrkCnt = 0;
while(1)
{
unsigned db_max_idx;
cmFrqTrkCh_t* c;
// find an inactive channel
if((c = _cmFrqTrkFindAvailCh(p)) == NULL )
break;
// find the largest peak that is above pkAtkThreshDb && less than pkAtkHz.
if((db_max_idx = _cmFrqTrkMaxEnergyPeakIndex(p,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
break;
// activate a new channel
c->activeFl = true;
c->tN = 1;
c->dN = 0;
c->hz = hzV[ pkiV[ db_max_idx ] ];
c->db = dbV[ pkiV[ db_max_idx ] ];
c->id = p->nextTrkId++;
c->si = 0;
c->sn = 0;
c->score = 0;
c->state = kNoStateFrqTrkId;
c->attenPhsIdx = cmInvalidIdx;
c->attenGain = 1.0;
// mark the peak as unavailable
pkiV[ db_max_idx ] = cmInvalidIdx;
p->newTrkCnt += 1;
}
}
void _cmFrqTrkApplyFrqBias( cmFrqTrk* p, cmReal_t* xV )
{
// convert to decibel scale (0.0 - 100.0) and then scale to (0.0 to 1.0)
unsigned i;
for(i=0; i<p->bN; ++i)
xV[i] = cmMax(0.0, (20*log10( cmMax(xV[i]/1.5,0.00001)) + 100.0)/100.0);
}
cmRC_t cmFrqTrkExec( cmFrqTrk* p, const cmReal_t* magV, const cmReal_t* phsV, const cmReal_t* hertzV )
{
cmRC_t rc = cmOkRC;
cmReal_t hzV[ p->bN ];
//cmReal_t powV[ p->bN ];
//cmReal_t yV[ p->bN];
//cmVOR_MultVVV(powV,p->bN,magV,magV);
//cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
// convert magV to Decibels
//cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
// copy p->dbV to dbM[hi,:]
//cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
//cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, whV, 1 );
if( 1 )
{
cmReal_t powV[ p->bN ];
cmVOR_MultVVV(powV,p->bN,magV,magV);
cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
_cmFrqTrkApplyFrqBias(p,p->dbV);
}
else
{
// convert magV to Decibels
cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
}
// copy p->dbV to dbM[hi,:]
cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
// increment hi to next column to fill in dbM[]
p->hi = (p->hi + 1) % p->hN;
// Set dbV[] to spectral magnitude profile by taking the mean over time
// of the last hN magnitude vectors
cmVOR_MeanM2(p->dbV, p->dbM, p->hN, p->bN, 0, cmMin(p->fN+1,p->hN));
//cmVOR_MeanM(p->dbV, p->dbM, p->hN, p->bN, 0);
if( p->fN >= p->hN )
{
// set pkiV[] to the indexes of the peaks above pkThreshDb in i0[]
unsigned pkN = cmVOR_PeakIndexes(p->pkiV, p->bN, p->dbV, p->bN, p->a.pkThreshDb );
// set hzV[] to the peak frequencies assoc'd with peaks at dbV[ pkiV[] ].
_cmFrqTrkMagnToHz(p, p->dbV, p->pkiV, pkN, hzV );
// extend the existing trackers
_cmFrqTrkExtendChs(p, p->dbV, hzV, p->pkiV, pkN );
//_cmFrqTrkDisableClosePeaks(p, p->dbV, hzV, p->pkiV, pkN );
// create new trackers
_cmFrqTrkNewChs(p,p->dbV,hzV,p->pkiV,pkN);
//
_cmFrqTrkScoreChs(p);
//
_cmFrqTrkUpdateFilter(p);
/*
// write the log file
_cmFrqTrkWriteLog(p);
// write the spectrum output file
if( p->specFn != NULL )
cmVectArrayAppendR(p->specVa,p->dbV,p->bN);
// write the atten output file
if( p->attenFn != NULL )
cmVectArrayAppendR(p->attenVa,p->aV,p->bN);
// write the the level file
_cmFrqTrkWriteLevel(p,p->dbV,hzV,p->bN);
*/
}
p->fN += 1;
return rc;
}
void cmFrqTrkPrint( cmFrqTrk* p )
{
printf("srate: %f\n",p->a.srate);
printf("chCnt: %i\n",p->a.chCnt);
printf("binCnt: %i (bN=%i)\n",p->a.binCnt,p->bN);
printf("hopSmpCnt: %i\n",p->a.hopSmpCnt);
printf("stRange: %f\n",p->a.stRange);
printf("wndSecs: %f (%i)\n",p->a.wndSecs,p->hN);
printf("minTrkSec: %f (%i)\n",p->a.minTrkSec,p->minTrkN);
printf("maxTrkDeadSec: %f (%i)\n",p->a.maxTrkDeadSec,p->deadN_max);
printf("pkThreshDb: %f\n",p->a.pkThreshDb);
printf("pkAtkThreshDb: %f\n",p->a.pkAtkThreshDb);
}
//------------------------------------------------------------------------------------------------------------
cmFbCtl_t* cmFbCtlAlloc( cmCtx* c, cmFbCtl_t* ap, const cmFbCtlArgs_t* a )
{
cmFbCtl_t* p = cmObjAlloc( cmFbCtl_t, c, ap );
p->sva = cmVectArrayAlloc(c,kRealVaFl);
p->uva = cmVectArrayAlloc(c,kRealVaFl);
if( a != NULL )
{
if( cmFbCtlInit( p, a ) != cmOkRC )
cmFbCtlFree(&p);
}
return p;
}
cmRC_t cmFbCtlFree( cmFbCtl_t** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmFbCtl_t* p = *pp;
cmVectArrayWrite(p->sva, "/home/kevin/temp/frqtrk/fb_ctl_s.va");
cmVectArrayWrite(p->uva, "/home/kevin/temp/frqtrk/fb_ctl_u.va");
cmMemFree(p->bM);
cmMemFree(p->rmsV);
cmVectArrayFree(&p->sva);
cmVectArrayFree(&p->uva);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmFbCtlInit( cmFbCtl_t* p, const cmFbCtlArgs_t* a )
{
cmRC_t rc;
if((rc = cmFbCtlFinal(p)) != cmOkRC )
return rc;
double binHz = a->srate / ((a->binCnt-1)*2);
p->a = *a;
p->frmCnt = (a->bufMs * a->srate / 1000.0) /a->hopSmpCnt;
p->binCnt = cmMin(p->a.binCnt, a->maxHz/binHz);
p->bM = cmMemResizeZ(cmReal_t, p->bM, p->binCnt*p->frmCnt);
p->rmsV = cmMemResizeZ(cmReal_t, p->rmsV, p->frmCnt);
p->sV = cmMemResizeZ(cmReal_t, p->sV, p->binCnt);
p->uV = cmMemResizeZ(cmReal_t, p->uV, p->binCnt);
printf("cmFbCtl: frmCnt:%i binCnt:%i \n",p->frmCnt,p->binCnt);
return rc;
}
cmRC_t cmFbCtlFinal(cmFbCtl_t* p )
{ return cmOkRC; }
cmRC_t cmFbCtlExec( cmFbCtl_t* p, const cmReal_t* x0V )
{
unsigned i;
cmRC_t rc = cmOkRC;
cmReal_t xV[ p->binCnt ];
cmVOR_AmplToDbVV(xV, p->binCnt, x0V, -1000.0 );
cmVOR_Shift( p->rmsV, p->frmCnt, -1, 0 );
p->rmsV[0] = cmVOR_Mean(xV,p->binCnt);
cmVOR_CopyN(p->bM + p->bfi, p->binCnt, p->frmCnt, xV, 1 );
p->bfi = (p->bfi + 1) % p->frmCnt;
p->bfN = cmMin(p->bfN+1,p->frmCnt);
for(i=0; i<p->binCnt; ++i)
{
const cmReal_t* v = p->bM + i * p->frmCnt;
cmReal_t u = cmVOR_Mean(v, p->bfN );
cmReal_t s = sqrt(cmVOR_Variance(v, p->bfN,&u));
p->sV[i] = (0.0002 - s);
p->uV[i] = u;
}
cmVectArrayAppendR(p->sva,p->sV,p->binCnt);
cmVectArrayAppendR(p->uva,p->uV,p->binCnt);
return rc;
}
//=======================================================================================================================
cmExpander* cmExpanderAlloc( cmCtx* c, cmExpander* p,
double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
double threshMs, double rmsMs, double atkMs, double rlsMs )
{
cmExpander* op = cmObjAlloc(cmExpander,c,p);
if( srate > 0 )
if( cmExpanderInit(op,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
cmExpanderFree(&op);
return op;
}
cmRC_t cmExpanderFree( cmExpander** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return rc;
cmExpander* p = *pp;
if((rc = cmExpanderFinal(p)) != cmOkRC )
return rc;
cmMemFree(p->rmsV);
cmMemFree(p->envV);
cmObjFree(pp);
return rc;
}
cmRC_t cmExpanderInit( cmExpander* p,
double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
double threshMs, double rmsMs, double atkMs, double rlsMs )
{
cmRC_t rc;
unsigned i;
if((rc = cmExpanderFinal(p)) != cmOkRC )
return rc;
unsigned atkN = cmMax(1,ceil( atkMs / (srate * 1000.0)));
unsigned rlsN = cmMax(1,ceil( rlsMs / (srate * 1000.0)));
p->rmsN = cmMax(1,ceil(rmsMs / (srate * 1000.0)));
p->rmsV = cmMemResizeZ(cmReal_t,p->rmsV,p->rmsN);
p->rmsIdx = 0;
p->envN = atkN + rlsN;
p->envV = cmMemResizeZ(cmSample_t,p->envV,p->envN);
p->envIdx = p->envN;
p->threshN = cmMax(1,ceil(threshMs / (srate * 1000.0)));
p->threshIdx = 0;
p->threshLvl = pow(10.0,(threshDb/20.0));
p->rlsLvl = pow(10.0,(rlsDb/20.0));
p->gain = 1.0;
p->atkCnt = 0;
cmSample_t G = (1.0 - p->rlsLvl);
for(i=0; i<atkN; ++i)
{
p->envV[i] = 1.0 - G*i/atkN;
}
for(i=0; i<rlsN; ++i)
{
p->envV[atkN+i] = p->rlsLvl + (G*i/rlsN);
}
//printf("rmsN:%i atkN:%i rlsN:%i thr:%f %f rls:%f %f\n",p->rmsN,atkN,rlsN,threshDb,p->threshLvl,rlsDb,p->rlsLvl);
//for(i=0; i<p->envN; ++i)
// printf("%i %f\n",i,p->envV[i]);
//printf("\n");
return cmOkRC;
}
cmRC_t cmExpanderFinal( cmExpander* p )
{ return cmOkRC; }
cmRC_t cmExpanderExec( cmExpander* p, cmSample_t* x, cmSample_t* y, unsigned xyN )
{
unsigned i;
// update the RMS buffer
for(i=0; i<xyN; ++i)
{
// NOTE: using abs() instead of pow(x,2)
p->rmsV[p->rmsIdx] = fabsf(x[i]);
if( ++p->rmsIdx >= p->rmsN )
p->rmsIdx = 0;
}
// calculate the RMS
double rms = cmVOR_Mean(p->rmsV,p->rmsN);
// update the duration that the signal has been above the threshold
if( rms > p->threshLvl )
p->threshIdx += 1;
else
p->threshIdx = 0;
// begin the atk phase?
if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
{
p->envIdx = 0;
}
// update the output
if( p->envIdx >= p->envN )
{
if( y != NULL )
cmVOS_Copy(y,xyN,x);
}
else
{
if( y == NULL )
y = x;
for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
y[i] = p->envV[p->envIdx] * x[i];
}
return cmOkRC;
}
cmRC_t cmExpanderExecD( cmExpander* p, double* x, double* y, unsigned xyN )
{
unsigned i;
// update the RMS buffer
for(i=0; i<xyN; ++i)
{
// NOTE: using abs() instead of pow(x,2)
p->rmsV[p->rmsIdx] = x[i];
p->rmsIdx += 1;
if( p->rmsIdx >= p->rmsN )
p->rmsIdx = 0;
}
// calculate the RMS
p->rmsValue = cmVOR_Mean(p->rmsV,p->rmsN);
// update the duration that the signal has been above the threshold
if( p->rmsValue > p->threshLvl )
p->threshIdx += 1;
else
p->threshIdx = 0;
// begin the atk phase?
if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
{
p->envIdx = 0;
p->atkCnt += 1;
}
/*
if( p->envIdx >= p->envN )
p->gain = 1.0;
else
{
p->gain = p->envV[p->envIdx];
p->envIdx += 1;
}
*/
// update the output
if( p->envIdx >= p->envN )
{
if( y != NULL )
cmVOD_Copy(y,xyN,x);
}
else
{
if( y == NULL )
y = x;
for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
y[i] = p->envV[p->envIdx] * x[i];
}
return cmOkRC;
}
//=======================================================================================================================
cmExpanderBank* cmExpanderBankAlloc( cmCtx* c, cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
{
cmExpanderBank* op = cmObjAlloc(cmExpanderBank,c,p);
if( bandN > 0 )
if( cmExpanderBankInit(op,bandN,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
cmExpanderBankFree(&op);
return op;
}
cmRC_t cmExpanderBankFree( cmExpanderBank** pp )
{
cmRC_t rc = cmOkRC;
if( pp==NULL || *pp==NULL )
return rc;
cmExpanderBank* p = *pp;
if((rc = cmExpanderBankFinal(p)) != cmOkRC )
return rc;
cmMemFree(p->b);
cmObjFree(pp);
return rc;
}
cmRC_t cmExpanderBankInit( cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
{
cmRC_t rc;
unsigned i;
if((rc = cmExpanderBankFinal(p)) != cmOkRC )
return rc;
p->bandN = bandN;
p->b = cmMemResizeZ(cmExpander*,p->b,p->bandN);
for(i=0; i<bandN; ++i)
p->b[i] = cmExpanderAlloc(p->obj.ctx,NULL,srate, procSmpCnt,threshDb,rlsDb,threshMs,rmsMs,atkMs,rlsMs);
return cmOkRC;
}
cmRC_t cmExpanderBankFinal( cmExpanderBank* p )
{
unsigned i;
for(i=0; i<p->bandN; ++i)
cmExpanderFree(&p->b[i]);
return cmOkRC;
}
cmRC_t cmExpanderBankExec( cmExpanderBank* p, cmSample_t* x, unsigned bandN )
{
assert( bandN <= p->bandN);
unsigned i;
for(i=0; i<bandN; ++i)
{
cmExpanderExec(p->b[i],&x[i],NULL,1);
}
return cmOkRC;
}
/*
cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned binN )
{
unsigned i;
p->rmsValue = 0;
for(i=0; i<p->bandN; ++i)
{
double sum = cmVOD_Sum(x,binN);
cmExpanderExecD(p->b[i],&sum,NULL,1);
//printf("%f %f\n",sum, p->b[i]->rmsValue);
p->rmsValue += p->b[i]->rmsValue;
cmVOR_MultVS(x,binN,p->b[i]->gain);
}
p->rmsValue /= p->bandN;
return cmOkRC;
}
*/
cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned bandN )
{
unsigned i;
//unsigned n = 3;
//unsigned no2 = n/2;
double xx;
p->rmsValue = 0;
p->atkCnt = 0;
for(i=0; i<p->bandN; ++i)
{
unsigned atkCnt = p->b[i]->atkCnt;
//if( i >= no2 && i < bandN-no2 )
// xx = cmVOR_Mean(x-no2,n);
//else
xx = x[i];
cmExpanderExecD(p->b[i],&xx,NULL,1);
p->rmsValue += p->b[i]->rmsValue;
p->atkCnt += p->b[i]->atkCnt != atkCnt;
}
p->rmsValue /= p->bandN;
return cmOkRC;
}
//------------------------------------------------------------------------------------------------------------
cmSpecDist_t* cmSpecDistAlloc( cmCtx* ctx,cmSpecDist_t* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
{
cmSpecDist_t* p = cmObjAlloc( cmSpecDist_t, ctx, ap );
//p->iSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
//p->oSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
p->statVa = cmVectArrayAlloc(ctx,kDoubleVaFl);
if( procSmpCnt != 0 )
{
if( cmSpecDistInit( p, procSmpCnt, srate, wndSmpCnt, hopFcmt, olaWndTypeId ) != cmOkRC )
cmSpecDistFree(&p);
}
return p;
}
cmRC_t cmSpecDistFree( cmSpecDist_t** pp )
{
if( pp == NULL || *pp == NULL )
return cmOkRC;
cmSpecDist_t* p = *pp;
cmSpecDistFinal(p);
//cmVectArrayFree(&p->iSpecVa);
//cmVectArrayFree(&p->oSpecVa);
cmVectArrayFree(&p->statVa);
cmMemPtrFree(&p->hzV);
cmMemPtrFree(&p->iSpecM);
cmMemPtrFree(&p->oSpecM);
cmMemPtrFree(&p->iSpecV);
cmMemPtrFree(&p->oSpecV);
cmObjFree(pp);
return cmOkRC;
}
cmRC_t cmSpecDistInit( cmSpecDist_t* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
{
//cmFrqTrkArgs_t fta;
cmRC_t rc;
if((rc = cmSpecDistFinal(p)) != cmOkRC )
return rc;
unsigned flags = 0;
p->srate = srate;
p->wndSmpCnt = wndSmpCnt;
p->hopSmpCnt = (unsigned)floor(wndSmpCnt/hopFcmt);
p->procSmpCnt = procSmpCnt;
p->mode = kBasicModeSdId;
p->thresh = 60;
p->offset = 0;
p->invertFl = false;
p->uprSlope = 0.0;
p->lwrSlope = 2.0;
p->pva = cmPvAnlAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, flags );
p->pvs = cmPvSynAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, olaWndTypeId );
/*
fta.srate = srate;
fta.chCnt = 50;
fta.binCnt = p->pva->binCnt;
fta.hopSmpCnt = p->pva->hopSmpCnt;
fta.stRange = 0.25;
fta.wndSecs = 0.25;
fta.minTrkSec = 0.25;
fta.maxTrkDeadSec = 0.25;
fta.pkThreshDb = 0.1; //-110.0;
fta.pkAtkThreshDb = 0.4; //-60.0;
fta.pkMaxHz = 20000;
fta.whFiltCoeff = 0.33;
fta.attenThresh = 0.4;
fta.attenGain = 0.5;
fta.attenDlySec = 1.0;
fta.attenAtkSec = 1.0;
fta.logFn = "/home/kevin/temp/frqtrk/trk_log.va";
fta.levelFn = "/home/kevin/temp/frqtrk/level.va";
fta.specFn = "/home/kevin/temp/frqtrk/spec.va";
fta.attenFn = "/home/kevin/temp/frqtrk/atten.va";
*/
//p->ft = cmFrqTrkAlloc( p->obj.ctx, NULL, &fta );
/*
cmFbCtlArgs_t fba;
fba.srate = srate;
fba.binCnt = p->pva->binCnt;
fba.hopSmpCnt = p->hopSmpCnt;
fba.bufMs = 500;
fba.maxHz = 5000;
*/
//p->fbc = cmFbCtlAlloc( p->obj.ctx, NULL, &fba );
//unsigned expBandN = 1; //
unsigned expBandN = 20000.0 / (p->srate / p->pva->binCnt);
double expSrate = p->pva->hopSmpCnt / srate;
unsigned expProcSmpCnt = 1;
double expThreshDb = -80.0;
double expRlsDb = -18.0;
double expThreshMs = 250.0;
double expRmsMs = 100.0;
double expAtkMs = 25.0;
double expRlsMs = 1000.0;
p->exb = cmExpanderBankAlloc( p->obj.ctx, NULL, expBandN, expSrate, expProcSmpCnt, expThreshDb, expRlsDb, expThreshMs, expRmsMs, expAtkMs, expRlsMs );
p->spcBwHz = cmMin(srate/2,10000);
p->spcSmArg = 0.05;
p->spcMin = p->spcBwHz;
p->spcMax = 0.0;
p->spcSum = 0.0;
p->spcCnt = 0;
double binHz = srate / p->pva->wndSmpCnt;
p->spcBinCnt = (unsigned)floor(p->spcBwHz / binHz);
p->hzV = cmMemResizeZ(cmReal_t,p->hzV,p->spcBinCnt);
cmVOR_Seq( p->hzV, p->spcBinCnt, 0, 1 );
cmVOR_MultVS( p->hzV, p->spcBinCnt, binHz );
p->aeUnit = 0;
p->aeMin = 1000;
p->aeMax = -1000;
double histSecs = 0.05;
p->hN = cmMax(1,histSecs * p->srate / p->hopSmpCnt );
p->iSpecM = cmMemResizeZ(cmReal_t,p->iSpecM,p->hN*p->pva->binCnt);
p->oSpecM = cmMemResizeZ(cmReal_t,p->oSpecM,p->hN*p->pva->binCnt);
p->iSpecV = cmMemResizeZ(cmReal_t,p->iSpecV, p->pva->binCnt);
p->oSpecV = cmMemResizeZ(cmReal_t,p->oSpecV, p->pva->binCnt);
p->hi = 0;
//p->bypOut = cmMemResizeZ(cmSample_t, p->bypOut, procSmpCnt );
return rc;
}
cmRC_t cmSpecDistFinal(cmSpecDist_t* p )
{
cmRC_t rc = cmOkRC;
//cmVectArrayWrite(p->iSpecVa, "/home/kevin/temp/frqtrk/iSpec.va");
//cmVectArrayWrite(p->oSpecVa, "/home/kevin/temp/expand/oSpec.va");
//cmVectArrayWrite(p->statVa, "/Users/kevin/temp/kc/state.va");
cmPvAnlFree(&p->pva);
cmPvSynFree(&p->pvs);
//cmFrqTrkFree(&p->ft);
//cmFbCtlFree(&p->fbc);
cmExpanderBankFree(&p->exb);
return rc;
}
void _cmSpecDistBasicMode0(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
{
// octavez> thresh = 60;
// octave> X1m = [-62 -61 -60 -59];
// octave> -abs(abs(X1m+thresh)-(X1m+thresh)) - thresh
// octave> ans = -64 -62 -60 -60
/*
unsigned i=0;
for(i=0; i<binCnt; ++i)
{
cmReal_t a = fabs(X1m[i]);
cmReal_t d = a - thresh;
X1m[i] = -thresh;
if( d > 0 )
X1m[i] -= 2*d;
}
*/
unsigned i=0;
for(i=0; i>binCnt; ++i)
{
X1m[i] = -fabs(fabs(X1m[i]-thresh) - (X1m[i]-thresh)) - thresh;
}
}
void _cmSpecDistBasicMode(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
{
unsigned i=0;
if( p->lwrSlope < 0.3 )
p->lwrSlope = 0.3;
for(i=0; i<binCnt; ++i)
{
cmReal_t a = fabs(X1m[i]);
cmReal_t d = a - thresh;
X1m[i] = -thresh;
if( d > 0 )
X1m[i] -= (p->lwrSlope*d);
else
X1m[i] -= (p->uprSlope*d);
}
}
cmReal_t _cmSpecDistCentMode( cmSpecDist_t* p, cmReal_t* X1m )
{
// calc the spectral centroid
double num = cmVOR_MultSumVV( p->pva->magV, p->hzV, p->spcBinCnt );
double den = cmVOR_Sum( p->pva->magV, p->spcBinCnt );
double result = 0;
if( den != 0 )
result = num/den;
// apply smoothing filter to spectral centroid
p->spc = (result * p->spcSmArg) + (p->spc * (1.0-p->spcSmArg));
// track spec. cetr. min and max
p->spcMin = cmMin(p->spcMin,p->spc);
p->spcMax = cmMax(p->spcMax,p->spc);
//-----------------------------------------------------
++p->spcCnt;
p->spcSum += p->spc;
p->spcSqSum += p->spc * p->spc;
// use the one-pass std-dev calc. trick
//double mean = p->spcSum / p->spcCnt;
//double variance = p->spcSqSum / p->spcCnt - mean * mean;
//double std_dev = sqrt(variance);
double smin = p->spcMin;
double smax = p->spcMax;
//smin = mean - std_dev;
//smax = mean + std_dev;
//-----------------------------------------------------
// convert spec. cent. to unit range
double spcUnit = (p->spc - smin) / (smax - smin);
spcUnit = cmMin(1.0,cmMax(0.0,spcUnit));
if( p->invertFl )
spcUnit = 1.0 - spcUnit;
//if( p->spcMin==p->spc || p->spcMax==p->spc )
// printf("min:%f avg:%f sd:%f max:%f\n",p->spcMin,p->spcSum/p->spcCnt,std_dev,p->spcMax);
return spcUnit;
}
void _cmSpecDistBump( cmSpecDist_t* p, cmReal_t* x, unsigned binCnt, double thresh)
{
/*
thresh *= -1;
minDb = -100;
if db < minDb
db = minDb;
endif
if db > thresh
y = 1;
else
x = (minDb - db)/(minDb - thresh);
y = x + (x - (x.^coeff));
endif
y = minDb + abs(minDb) * y;
*/
unsigned i=0;
//printf("%f %f %f\n",thresh,p->lwrSlope,x[0]);
double minDb = -100.0;
thresh = -thresh;
for(i=0; i<binCnt; ++i)
{
double y;
if( x[i] < minDb )
x[i] = minDb;
if( x[i] > thresh )
y = 1;
else
{
y = (minDb - x[i])/(minDb - thresh);
y += y - pow(y,p->lwrSlope);
}
x[i] = minDb + (-minDb) * y;
}
}
void _cmSpecDistAmpEnvMode( cmSpecDist_t* p, cmReal_t* X1m )
{
cmReal_t smCoeff = 0.1;
//
cmReal_t mx = cmVOR_Max(X1m,p->pva->binCnt,1);
p->aeSmMax = (mx * smCoeff) + (p->aeSmMax * (1.0-smCoeff));
cmReal_t a = cmVOR_Mean(X1m,p->pva->binCnt);
p->ae = (a * smCoeff) + (p->ae * (1.0-smCoeff));
p->aeMin = cmMin(p->ae,p->aeMin);
p->aeMax = cmMax(p->ae,p->aeMax);
p->aeUnit = (p->ae - p->aeMin) / (p->aeMax-p->aeMin);
p->aeUnit = cmMin(1.0,cmMax(0.0,p->aeUnit));
if( p->invertFl )
p->aeUnit = 1.0 - p->aeUnit;
//printf("%f\n",p->aeSmMax);
}
void _cmSpecDistPhaseMod( cmSpecDist_t* p, cmReal_t* phsV, unsigned binCnt )
{
unsigned i;
cmReal_t offs = sin( 0.1 * 2.0 * M_PI * (p->phaseModIndex++) / (p->srate/p->hopSmpCnt) );
//printf("offs %f %i %i %f\n",offs,p->phaseModIndex,p->hopSmpCnt,p->srate);
cmReal_t new_phs = phsV[0] + offs;
for(i=0; i<binCnt-1; ++i)
{
while( new_phs > M_PI )
new_phs -= 2.0*M_PI;
while( new_phs < -M_PI )
new_phs += 2.0*M_PI;
cmReal_t d = phsV[i+1] - phsV[i];
phsV[i] = new_phs;
new_phs += d;
}
}
cmRC_t cmSpecDistExec( cmSpecDist_t* p, const cmSample_t* sp, unsigned sn )
{
assert( sn == p->procSmpCnt );
bool recordFl = false;
// cmPvAnlExec() returns true when it calc's a new spectral output frame
if( cmPvAnlExec( p->pva, sp, sn ) )
{
cmReal_t X1m[p->pva->binCnt];
// take the mean of the the input magntitude spectrum
cmReal_t u0 = cmVOR_Mean(p->pva->magV,p->pva->binCnt);
if(recordFl)
{
// store a time windowed average of the input spectrum to p->iSpecV
cmVOR_CopyN(p->iSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
cmVOR_MeanM2(p->iSpecV, p->iSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
}
cmVOR_PowVS(X1m,p->pva->binCnt,2.0);
cmVOR_AmplToDbVV(X1m, p->pva->binCnt, p->pva->magV, -1000.0 );
//cmVOR_AmplToDbVV(X1m, p->pva->binCnt, X1m, -1000.0 );
switch( p->mode )
{
case kBypassModeSdId:
break;
case kBasicModeSdId:
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
break;
case kSpecCentSdId:
{
_cmSpecDistAmpEnvMode(p,X1m);
double spcUnit = _cmSpecDistCentMode(p,X1m);
double thresh = fabs(p->aeSmMax) - (spcUnit*p->offset);
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
}
break;
case kAmpEnvSdId:
{
_cmSpecDistAmpEnvMode(p,X1m);
//double thresh = fabs(p->aeSmMax) - p->offset;
double thresh = fabs(p->aeSmMax) - (p->aeUnit*p->offset);
thresh = fabs(p->thresh) - (p->aeUnit*p->offset);
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
}
break;
case kBumpSdId:
_cmSpecDistBump(p,X1m, p->pva->binCnt, p->offset);
_cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
break;
case 5:
break;
default:
break;
}
cmVOR_DbToAmplVV(X1m, p->pva->binCnt, X1m );
// run and apply the tracker/supressor
//cmFrqTrkExec(p->ft, X1m, p->pva->phsV, NULL );
//cmVOR_MultVV(X1m, p->pva->binCnt,p->ft->aV );
// convert the mean input magnitude to db
cmReal_t idb = 20*log10(u0);
// get the mean output magnitude spectra
cmReal_t u1 = cmVOR_Mean(X1m,p->pva->binCnt);
if( idb > -150.0 )
{
// set the output gain such that the mean output magnitude
// will match the mean input magnitude
p->ogain = u0/u1;
}
else
{
cmReal_t a0 = 0.9;
p->ogain *= a0;
}
double g = u0/u1;
p->ogain0 = g + (p->ogain0 * .98);
//double v[] = { u0, u1, p->ogain, p->ogain0 };
//cmVectArrayAppendD(p->statVa,v,sizeof(v)/sizeof(v[0]));
cmVOR_MultVS(X1m,p->pva->binCnt,cmMin(4.0,p->ogain));
//cmFbCtlExec(p->fbc,X1m);
//cmReal_t v[ p->pva->binCnt ];
//cmVOR_Copy(v,p->pva->binCnt,p->pva->phsV);
//_cmSpecDistPhaseMod(p, v, p->pva->binCnt );
if(recordFl)
{
// store a time windowed average of the output spectrum to p->iSpecV
cmVOR_CopyN(p->oSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
cmVOR_MeanM2(p->oSpecV, p->oSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
// store iSpecV and oSpecV to iSpecVa and oSpecVa to create debugging files
//cmVectArrayAppendR(p->iSpecVa,p->iSpecV,p->pva->binCnt);
//cmVectArrayAppendR(p->oSpecVa,p->oSpecV,p->pva->binCnt);
p->hi = (p->hi + 1) % p->hN;
}
//unsigned binN = 12500.0 / (p->srate / p->pva->binCnt);
//cmExpanderBankExecD(p->exb, X1m, binN );
/*
cmExpanderBankExecD(p->exb, X1m, p->exb->bandN );
cmReal_t mean = cmVOR_Mean(X1m,p->exb->bandN);
cmReal_t arr[3] = { p->exb->rmsValue, mean, p->exb->atkCnt };
cmVectArrayAppendR(p->oSpecVa,arr,3);
*/
cmPvSynExec(p->pvs, X1m, p->pva->phsV );
p->fi += 1;
}
return cmOkRC;
}
const cmSample_t* cmSpecDistOut( cmSpecDist_t* p )
{
return cmPvSynExecOut(p->pvs);
}
//------------------------------------------------------------------------------------------------------------
cmRC_t _cmBinMtxFileWriteHdr( cmBinMtxFile_t* p )
{
cmFileRC_t fileRC;
unsigned n = 3;
unsigned hdr[n];
hdr[0] = p->rowCnt;
hdr[1] = p->maxRowEleCnt;
hdr[2] = p->eleByteCnt;
if((fileRC = cmFileSeek(p->fh,kBeginFileFl,0)) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "File seek failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)));
if((fileRC = cmFileWriteUInt(p->fh,hdr,n)) != kOkFileRC )
return cmCtxRtCondition( &p->obj, fileRC, "Header write failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)) );
return cmOkRC;
}
cmBinMtxFile_t* cmBinMtxFileAlloc( cmCtx* ctx, cmBinMtxFile_t* ap, const cmChar_t* fn )
{
cmBinMtxFile_t* p = cmObjAlloc( cmBinMtxFile_t, ctx, ap );
if( fn != NULL )
if( cmBinMtxFileInit( p, fn ) != cmOkRC )
cmBinMtxFileFree(&p);
return p;
}
cmRC_t cmBinMtxFileFree( cmBinMtxFile_t** pp )
{
cmRC_t rc;
if( pp==NULL || *pp == NULL )
return cmOkRC;
cmBinMtxFile_t* p = *pp;
if((rc = cmBinMtxFileFinal(p)) == cmOkRC )
{
cmObjFree(pp);
}
return rc;
}
cmRC_t cmBinMtxFileInit( cmBinMtxFile_t* p, const cmChar_t* fn )
{
cmRC_t rc;
cmFileRC_t fileRC;
if((rc = cmBinMtxFileFinal(p)) != cmOkRC )
return rc;
// open the output file for writing
if((fileRC = cmFileOpen(&p->fh,fn,kWriteFileFl | kBinaryFileFl, p->obj.err.rpt)) != kOkFileRC )
return cmCtxRtCondition( &p->obj, fileRC, "Unable to open the matrix file:'%s'", cmStringNullGuard(fn) );
// iniitlaize the object
p->rowCnt = 0;
p->maxRowEleCnt = 0;
p->eleByteCnt = 0;
// write the blank header as place holder
if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
return rc;
return rc;
}
cmRC_t cmBinMtxFileFinal( cmBinMtxFile_t* p )
{
cmRC_t rc;
cmFileRC_t fileRC;
if( p != NULL && cmFileIsValid(p->fh))
{
// re-write the file header
if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
return rc;
// close the file
if((fileRC = cmFileClose(&p->fh)) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "Matrix file close failed on:'%s'",cmStringNullGuard(cmFileName(p->fh)));
}
return cmOkRC;
}
bool cmBinMtxFileIsValid( cmBinMtxFile_t* p )
{ return p != NULL && cmFileIsValid(p->fh); }
cmRC_t _cmBinMtxFileWriteRow( cmBinMtxFile_t* p, const void* buf, unsigned eleCnt, unsigned eleByteCnt )
{
cmFileRC_t fileRC;
if((fileRC = cmFileWrite(p->fh,&eleCnt,sizeof(eleCnt))) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i element count write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
if((fileRC = cmFileWrite(p->fh,buf,eleCnt*eleByteCnt)) != kOkFileRC )
return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i data write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
if( eleCnt > p->maxRowEleCnt )
p->maxRowEleCnt = eleCnt;
++p->rowCnt;
return cmOkRC;
}
cmRC_t cmBinMtxFileExecS( cmBinMtxFile_t* p, const cmSample_t* x, unsigned xn )
{
// verify that all rows are written as cmSample_t
assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmSample_t));
p->eleByteCnt = sizeof(cmSample_t);
return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
}
cmRC_t cmBinMtxFileExecR( cmBinMtxFile_t* p, const cmReal_t* x, unsigned xn )
{
// verify that all rows are written as cmReal_t
assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmReal_t));
p->eleByteCnt = sizeof(cmReal_t);
return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
}
cmRC_t cmBinMtxFileWrite( const cmChar_t* fn, unsigned rowCnt, unsigned colCnt, const cmSample_t* sp, const cmReal_t* rp, cmCtx* ctx, cmRpt_t* rpt )
{
assert( sp == NULL || rp == NULL );
cmCtx* ctxp = NULL;
cmBinMtxFile_t* bp = NULL;
if( ctx == NULL )
ctx = ctxp = cmCtxAlloc(NULL,rpt,cmLHeapNullHandle,cmSymTblNullHandle);
if((bp = cmBinMtxFileAlloc(ctx,NULL,fn)) != NULL )
{
unsigned i = 0;
cmSample_t* sbp = sp == NULL ? NULL : cmMemAlloc(cmSample_t,colCnt);
cmReal_t* rbp = rp == NULL ? NULL : cmMemAlloc(cmReal_t,colCnt);
for(i=0; i<rowCnt; ++i)
{
if( sp!=NULL )
{
cmVOS_CopyN(sbp,colCnt,1,sp+i,rowCnt);
cmBinMtxFileExecS(bp,sbp,colCnt);
}
if( rp!=NULL )
{
cmVOR_CopyN(rbp,colCnt,1,rp+i,rowCnt);
cmBinMtxFileExecR(bp,rbp,colCnt);
}
}
cmMemPtrFree(&sbp);
cmMemPtrFree(&rbp);
cmBinMtxFileFree(&bp);
}
if( ctxp != NULL )
cmCtxFree(&ctxp);
return cmOkRC;
}
cmRC_t _cmBinMtxFileReadHdr( cmCtx_t* ctx, cmFileH_t h, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr, const cmChar_t* fn )
{
cmRC_t rc = cmOkRC;
unsigned hdr[3];
if( cmFileRead(h,&hdr,sizeof(hdr)) != kOkFileRC )
{
rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file header read failed on '%s'.",cmStringNullGuard(fn));
goto errLabel;
}
if( rowCntPtr != NULL )
*rowCntPtr = hdr[0];
if( colCntPtr != NULL )
*colCntPtr = hdr[1];
if( eleByteCntPtr != NULL )
*eleByteCntPtr = hdr[2];
errLabel:
return rc;
}
cmRC_t cmBinMtxFileSize( cmCtx_t* ctx, const cmChar_t* fn, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr )
{
cmFileH_t h = cmFileNullHandle;
cmRC_t rc = cmOkRC;
if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, ctx->err.rpt) != kOkFileRC )
{
rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
goto errLabel;
}
rc = _cmBinMtxFileReadHdr(ctx,h,rowCntPtr,colCntPtr,eleByteCntPtr,fn);
errLabel:
cmFileClose(&h);
return rc;
}
cmRC_t cmBinMtxFileRead( cmCtx_t* ctx, const cmChar_t* fn, unsigned mRowCnt, unsigned mColCnt, unsigned mEleByteCnt, void* retBuf, unsigned* colCntV )
{
cmFileH_t h = cmFileNullHandle;
cmRC_t rc = cmOkRC;
char* rowBuf = NULL;
unsigned rowCnt,colCnt,eleByteCnt,i;
cmErr_t err;
cmErrSetup(&err,ctx->err.rpt,"Binary Matrix File Reader");
if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, err.rpt) != kOkFileRC )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
goto errLabel;
}
if((rc = _cmBinMtxFileReadHdr(ctx,h,&rowCnt,&colCnt,&eleByteCnt,fn)) != cmOkRC )
goto errLabel;
if( mRowCnt != rowCnt )
rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file row count and the return buffer row count are not the same.");
if( mColCnt != colCnt )
rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file column count and the return buffer column count are not the same.");
if( mEleByteCnt != eleByteCnt )
rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file element byte count and the return buffer element byte count are not the same.");
if( rc == cmOkRC )
{
rowBuf = cmMemAllocZ(char,colCnt*eleByteCnt);
for(i=0; i<rowCnt; ++i)
{
unsigned cn;
// read the row length
if( cmFileReadUInt(h,&cn,1) != kOkFileRC )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"Error reading row length at row index:%i.",i);
goto errLabel;
}
if( colCntV != NULL )
colCntV[i] = cn;
// verify the actual col count does not exceed the max col count
if( cn > colCnt )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"The actual column count:%i exceeds the max column count:%i.",cn,colCnt);
goto errLabel;
}
//read the row data
if( cmFileReadChar(h,rowBuf,cn*eleByteCnt) != kOkFileRC )
{
rc = cmErrMsg(&err,cmSubSysFailRC,"File read failed at row index:%i.",i);
goto errLabel;
}
char* dp = ((char*)retBuf) + i * eleByteCnt;
// the data is read in row-major order but the matrix must be
// returned on col major order - rearrange the columns here.
switch(eleByteCnt)
{
case sizeof(cmSample_t):
cmVOS_CopyN(((cmSample_t*)dp), cn, rowCnt, (cmSample_t*)rowBuf, 1 );
break;
case sizeof(cmReal_t):
cmVOR_CopyN(((cmReal_t*)dp), cn, rowCnt, (cmReal_t*)rowBuf, 1 );
break;
default:
rc = cmErrMsg(&err,cmSubSysFailRC,"Invalid element byte count:%i.",eleByteCnt);
goto errLabel;
}
}
}
errLabel:
cmMemPtrFree(&rowBuf);
cmFileClose(&h);
return rc;
}