libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmAudioPort.c 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmAudioPort.h"
  9. #include "cmApBuf.h" // only needed for cmApBufTest().
  10. #include "cmAudioPortFile.h"
  11. #include "cmAudioAggDev.h"
  12. #include "cmAudioNrtDev.h"
  13. #ifdef OS_LINUX
  14. #include "linux/cmAudioPortAlsa.h"
  15. #endif
  16. #ifdef OS_OSX
  17. #include "osx/cmAudioPortOsx.h"
  18. #endif
  19. typedef struct
  20. {
  21. unsigned begDevIdx;
  22. unsigned endDevIdx;
  23. cmApRC_t (*initialize)( cmRpt_t* rpt, unsigned baseApDevIdx );
  24. cmApRC_t (*finalize)();
  25. cmApRC_t (*deviceCount)();
  26. const char* (*deviceLabel)( unsigned devIdx );
  27. unsigned (*deviceChannelCount)( unsigned devIdx, bool inputFl );
  28. double (*deviceSampleRate)( unsigned devIdx );
  29. unsigned (*deviceFramesPerCycle)( unsigned devIdx, bool inputFl );
  30. cmApRC_t (*deviceSetup)( unsigned devIdx, double sr, unsigned frmPerCycle, cmApCallbackPtr_t cb, void* cbData );
  31. cmApRC_t (*deviceStart)( unsigned devIdx );
  32. cmApRC_t (*deviceStop)( unsigned devIdx );
  33. bool (*deviceIsStarted)( unsigned devIdx );
  34. } cmApDriver_t;
  35. typedef struct
  36. {
  37. cmErr_t err;
  38. cmApDriver_t* drvArray;
  39. unsigned drvCnt;
  40. unsigned devCnt;
  41. } cmAp_t;
  42. cmAp_t* _ap = NULL;
  43. cmApRC_t _cmApIndexToDev( unsigned devIdx, cmApDriver_t** drvPtrPtr, unsigned* devIdxPtr )
  44. {
  45. unsigned i;
  46. for(i=0; i<_ap->drvCnt; ++i)
  47. if( _ap->drvArray[i].begDevIdx != cmInvalidIdx )
  48. if( (_ap->drvArray[i].begDevIdx <= devIdx) && (devIdx <= _ap->drvArray[i].endDevIdx) )
  49. {
  50. *drvPtrPtr = _ap->drvArray + i;
  51. *devIdxPtr = devIdx - _ap->drvArray[i].begDevIdx;
  52. return kOkApRC;
  53. }
  54. return cmErrMsg(&_ap->err,kInvalidDevIdApRC,"The audio port device index %i is not valid.",devIdx);
  55. }
  56. cmApRC_t cmApInitialize( cmRpt_t* rpt )
  57. {
  58. cmApRC_t rc = kOkApRC;
  59. if((rc = cmApFinalize()) != kOkApRC )
  60. return rc;
  61. _ap = cmMemAllocZ(cmAp_t,1);
  62. cmErrSetup(&_ap->err,rpt,"Audio Port Driver");
  63. _ap->drvCnt = 4;
  64. _ap->drvArray = cmMemAllocZ(cmApDriver_t,_ap->drvCnt);
  65. cmApDriver_t* dp = _ap->drvArray;
  66. #ifdef OS_OSX
  67. dp->initialize = cmApOsxInitialize;
  68. dp->finalize = cmApOsxFinalize;
  69. dp->deviceCount = cmApOsxDeviceCount;
  70. dp->deviceLabel = cmApOsxDeviceLabel;
  71. dp->deviceChannelCount = cmApOsxDeviceChannelCount;
  72. dp->deviceSampleRate = cmApOsxDeviceSampleRate;
  73. dp->deviceFramesPerCycle = cmApOsxDeviceFramesPerCycle;
  74. dp->deviceSetup = cmApOsxDeviceSetup;
  75. dp->deviceStart = cmApOsxDeviceStart;
  76. dp->deviceStop = cmApOsxDeviceStop;
  77. dp->deviceIsStarted = cmApOsxDeviceIsStarted;
  78. #endif
  79. #ifdef OS_LINUX
  80. dp->initialize = cmApAlsaInitialize;
  81. dp->finalize = cmApAlsaFinalize;
  82. dp->deviceCount = cmApAlsaDeviceCount;
  83. dp->deviceLabel = cmApAlsaDeviceLabel;
  84. dp->deviceChannelCount = cmApAlsaDeviceChannelCount;
  85. dp->deviceSampleRate = cmApAlsaDeviceSampleRate;
  86. dp->deviceFramesPerCycle = cmApAlsaDeviceFramesPerCycle;
  87. dp->deviceSetup = cmApAlsaDeviceSetup;
  88. dp->deviceStart = cmApAlsaDeviceStart;
  89. dp->deviceStop = cmApAlsaDeviceStop;
  90. dp->deviceIsStarted = cmApAlsaDeviceIsStarted;
  91. #endif
  92. dp = _ap->drvArray + 1;
  93. dp->initialize = cmApFileInitialize;
  94. dp->finalize = cmApFileFinalize;
  95. dp->deviceCount = cmApFileDeviceCount;
  96. dp->deviceLabel = cmApFileDeviceLabel;
  97. dp->deviceChannelCount = cmApFileDeviceChannelCount;
  98. dp->deviceSampleRate = cmApFileDeviceSampleRate;
  99. dp->deviceFramesPerCycle = cmApFileDeviceFramesPerCycle;
  100. dp->deviceSetup = cmApFileDeviceSetup;
  101. dp->deviceStart = cmApFileDeviceStart;
  102. dp->deviceStop = cmApFileDeviceStop;
  103. dp->deviceIsStarted = cmApFileDeviceIsStarted;
  104. dp = _ap->drvArray + 2;
  105. dp->initialize = cmApAggInitialize;
  106. dp->finalize = cmApAggFinalize;
  107. dp->deviceCount = cmApAggDeviceCount;
  108. dp->deviceLabel = cmApAggDeviceLabel;
  109. dp->deviceChannelCount = cmApAggDeviceChannelCount;
  110. dp->deviceSampleRate = cmApAggDeviceSampleRate;
  111. dp->deviceFramesPerCycle = cmApAggDeviceFramesPerCycle;
  112. dp->deviceSetup = cmApAggDeviceSetup;
  113. dp->deviceStart = cmApAggDeviceStart;
  114. dp->deviceStop = cmApAggDeviceStop;
  115. dp->deviceIsStarted = cmApAggDeviceIsStarted;
  116. dp = _ap->drvArray + 3;
  117. dp->initialize = cmApNrtInitialize;
  118. dp->finalize = cmApNrtFinalize;
  119. dp->deviceCount = cmApNrtDeviceCount;
  120. dp->deviceLabel = cmApNrtDeviceLabel;
  121. dp->deviceChannelCount = cmApNrtDeviceChannelCount;
  122. dp->deviceSampleRate = cmApNrtDeviceSampleRate;
  123. dp->deviceFramesPerCycle = cmApNrtDeviceFramesPerCycle;
  124. dp->deviceSetup = cmApNrtDeviceSetup;
  125. dp->deviceStart = cmApNrtDeviceStart;
  126. dp->deviceStop = cmApNrtDeviceStop;
  127. dp->deviceIsStarted = cmApNrtDeviceIsStarted;
  128. _ap->devCnt = 0;
  129. unsigned i;
  130. for(i=0; i<_ap->drvCnt; ++i)
  131. {
  132. unsigned dn;
  133. cmApRC_t rc0;
  134. _ap->drvArray[i].begDevIdx = cmInvalidIdx;
  135. _ap->drvArray[i].endDevIdx = cmInvalidIdx;
  136. if((rc0 = _ap->drvArray[i].initialize(rpt,_ap->devCnt)) != kOkApRC )
  137. {
  138. rc = rc0;
  139. continue;
  140. }
  141. if((dn = _ap->drvArray[i].deviceCount()) > 0)
  142. {
  143. _ap->drvArray[i].begDevIdx = _ap->devCnt;
  144. _ap->drvArray[i].endDevIdx = _ap->devCnt + dn - 1;
  145. _ap->devCnt += dn;
  146. }
  147. }
  148. if( rc != kOkApRC )
  149. cmApFinalize();
  150. return rc;
  151. }
  152. cmApRC_t cmApFinalize()
  153. {
  154. cmApRC_t rc=kOkApRC;
  155. cmApRC_t rc0 = kOkApRC;
  156. unsigned i;
  157. if( _ap == NULL )
  158. return kOkApRC;
  159. for(i=0; i<_ap->drvCnt; ++i)
  160. {
  161. if((rc0 = _ap->drvArray[i].finalize()) != kOkApRC )
  162. rc = rc0;
  163. }
  164. cmMemPtrFree(&_ap->drvArray);
  165. cmMemPtrFree(&_ap);
  166. return rc;
  167. }
  168. unsigned cmApDeviceCount()
  169. { return _ap->devCnt; }
  170. const char* cmApDeviceLabel( unsigned devIdx )
  171. {
  172. cmApDriver_t* dp;
  173. unsigned di;
  174. cmApRC_t rc;
  175. if( devIdx == cmInvalidIdx )
  176. return NULL;
  177. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  178. return cmStringNullGuard(NULL);
  179. return dp->deviceLabel(di);
  180. }
  181. unsigned cmApDeviceLabelToIndex( const cmChar_t* label )
  182. {
  183. unsigned n = cmApDeviceCount();
  184. unsigned i;
  185. for(i=0; i<n; ++i)
  186. {
  187. const cmChar_t* s = cmApDeviceLabel(i);
  188. if( s!=NULL && strcmp(s,label)==0)
  189. return i;
  190. }
  191. return cmInvalidIdx;
  192. }
  193. unsigned cmApDeviceChannelCount( unsigned devIdx, bool inputFl )
  194. {
  195. cmApDriver_t* dp;
  196. unsigned di;
  197. cmApRC_t rc;
  198. if( devIdx == cmInvalidIdx )
  199. return 0;
  200. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  201. return rc;
  202. return dp->deviceChannelCount(di,inputFl);
  203. }
  204. double cmApDeviceSampleRate( unsigned devIdx )
  205. {
  206. cmApDriver_t* dp;
  207. unsigned di;
  208. cmApRC_t rc;
  209. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  210. return rc;
  211. return dp->deviceSampleRate(di);
  212. }
  213. unsigned cmApDeviceFramesPerCycle( unsigned devIdx, bool inputFl )
  214. {
  215. cmApDriver_t* dp;
  216. unsigned di;
  217. cmApRC_t rc;
  218. if( devIdx == cmInvalidIdx )
  219. return 0;
  220. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  221. return rc;
  222. return dp->deviceFramesPerCycle(di,inputFl);
  223. }
  224. cmApRC_t cmApDeviceSetup(
  225. unsigned devIdx,
  226. double srate,
  227. unsigned framesPerCycle,
  228. cmApCallbackPtr_t callbackPtr,
  229. void* userCbPtr )
  230. {
  231. cmApDriver_t* dp;
  232. unsigned di;
  233. cmApRC_t rc;
  234. if( devIdx == cmInvalidIdx )
  235. return kOkApRC;
  236. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  237. return rc;
  238. return dp->deviceSetup(di,srate,framesPerCycle,callbackPtr,userCbPtr);
  239. }
  240. cmApRC_t cmApDeviceStart( unsigned devIdx )
  241. {
  242. cmApDriver_t* dp;
  243. unsigned di;
  244. cmApRC_t rc;
  245. if( devIdx == cmInvalidIdx )
  246. return kOkApRC;
  247. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  248. return rc;
  249. return dp->deviceStart(di);
  250. }
  251. cmApRC_t cmApDeviceStop( unsigned devIdx )
  252. {
  253. cmApDriver_t* dp;
  254. unsigned di;
  255. cmApRC_t rc;
  256. if( devIdx == cmInvalidIdx )
  257. return kOkApRC;
  258. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  259. return rc;
  260. return dp->deviceStop(di);
  261. }
  262. bool cmApDeviceIsStarted( unsigned devIdx )
  263. {
  264. cmApDriver_t* dp;
  265. unsigned di;
  266. cmApRC_t rc;
  267. if( devIdx == cmInvalidIdx )
  268. return false;
  269. if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC )
  270. return rc;
  271. return dp->deviceIsStarted(di);
  272. }
  273. void cmApReport( cmRpt_t* rpt )
  274. {
  275. unsigned i,j,k;
  276. for(j=0,k=0; j<_ap->drvCnt; ++j)
  277. {
  278. cmApDriver_t* drvPtr = _ap->drvArray + j;
  279. unsigned n = drvPtr->deviceCount();
  280. for(i=0; i<n; ++i,++k)
  281. {
  282. cmRptPrintf(rpt, "%i %f in:%i (%i) out:%i (%i) %s\n",
  283. k, drvPtr->deviceSampleRate(i),
  284. drvPtr->deviceChannelCount(i,true), drvPtr->deviceFramesPerCycle(i,true),
  285. drvPtr->deviceChannelCount(i,false), drvPtr->deviceFramesPerCycle(i,false),
  286. drvPtr->deviceLabel(i));
  287. }
  288. }
  289. }
  290. /// [cmAudioPortExample]
  291. // See cmApPortTest() below for the main point of entry.
  292. // Data structure used to hold the parameters for cpApPortTest()
  293. // and the user defined data record passed to the host from the
  294. // audio port callback functions.
  295. typedef struct
  296. {
  297. unsigned bufCnt; // 2=double buffering 3=triple buffering
  298. unsigned chIdx; // first test channel
  299. unsigned chCnt; // count of channels to test
  300. unsigned framesPerCycle; // DSP frames per cycle
  301. unsigned bufFrmCnt; // count of DSP frames used by the audio buffer (bufCnt * framesPerCycle)
  302. unsigned bufSmpCnt; // count of samples used by the audio buffer (chCnt * bufFrmCnt)
  303. unsigned inDevIdx; // input device index
  304. unsigned outDevIdx; // output device index
  305. double srate; // audio sample rate
  306. unsigned meterMs; // audio meter buffer length
  307. // param's and state for cmApSynthSine()
  308. unsigned phase; // sine synth phase
  309. double frqHz; // sine synth frequency in Hz
  310. // buffer and state for cmApCopyIn/Out()
  311. cmApSample_t* buf; // buf[bufSmpCnt] - circular interleaved audio buffer
  312. unsigned bufInIdx; // next input buffer index
  313. unsigned bufOutIdx; // next output buffer index
  314. unsigned bufFullCnt; // count of full samples
  315. // debugging log data arrays
  316. unsigned logCnt; // count of elements in log[] and ilong[]
  317. char* log; // log[logCnt]
  318. unsigned* ilog; // ilog[logCnt]
  319. unsigned logIdx; // current log index
  320. unsigned cbCnt; // count the callback
  321. } cmApPortTestRecd;
  322. #ifdef NOT_DEF
  323. // The application can request any block of channels from the device. The packets are provided with the starting
  324. // device channel and channel count. This function converts device channels and channel counts to buffer
  325. // channel indexes and counts.
  326. //
  327. // Example:
  328. // input output
  329. // i,n i n
  330. // App: 0,4 0 1 2 3 -> 2 2
  331. // Pkt 2,8 2 3 4 5 6 7 8 -> 0 2
  332. //
  333. // The return value is the count of application requested channels located in this packet.
  334. //
  335. // input: *appChIdxPtr and appChCnt describe a block of device channels requested by the application.
  336. // *pktChIdxPtr and pktChCnt describe a block of device channels provided to the application
  337. //
  338. // output:*appChIdxPtr and <return value> describe a block of app buffer channels which will send/recv samples.
  339. // *pktChIdxPtr and <return value> describe a block of pkt buffer channels which will send/recv samples
  340. //
  341. unsigned _cmApDeviceToBuffer( unsigned* appChIdxPtr, unsigned appChCnt, unsigned* pktChIdxPtr, unsigned pktChCnt )
  342. {
  343. unsigned abi = *appChIdxPtr;
  344. unsigned aei = abi+appChCnt-1;
  345. unsigned pbi = *pktChIdxPtr;
  346. unsigned pei = pbi+pktChCnt-1;
  347. // if the ch's rqstd by the app do not overlap with this packet - return false.
  348. if( aei < pbi || abi > pei )
  349. return 0;
  350. // if the ch's rqstd by the app overlap with the beginning of the pkt channel block
  351. if( abi < pbi )
  352. {
  353. appChCnt -= pbi - abi;
  354. *appChIdxPtr = pbi - abi;
  355. *pktChIdxPtr = 0;
  356. }
  357. else
  358. {
  359. // the rqstd ch's begin inside the pkt channel block
  360. pktChCnt -= abi - pbi;
  361. *pktChIdxPtr = abi - pbi;
  362. *appChIdxPtr = 0;
  363. }
  364. // if the pkt channels extend beyond the rqstd ch block
  365. if( aei < pei )
  366. pktChCnt -= pei - aei;
  367. else
  368. appChCnt -= aei - pei; // the rqstd ch's extend beyond or coincide with the pkt block
  369. // the returned channel count must always be the same for both the rqstd and pkt
  370. return cmMin(appChCnt,pktChCnt);
  371. }
  372. // synthesize a sine signal into an interleaved audio buffer
  373. unsigned _cmApSynthSine( cmApPortTestRecd* r, float* p, unsigned chIdx, unsigned chCnt, unsigned frmCnt, unsigned phs, double hz )
  374. {
  375. long ph = 0;
  376. unsigned i;
  377. unsigned bufIdx = r->chIdx;
  378. unsigned bufChCnt;
  379. if( (bufChCnt = _cmApDeviceToBuffer( &bufIdx, r->chCnt, &chIdx, chCnt )) == 0)
  380. return phs;
  381. //if( r->cbCnt < 50 )
  382. // printf("ch:%i cnt:%i ch:%i cnt:%i bi:%i bcn:%i\n",r->chIdx,r->chCnt,chIdx,chCnt,bufIdx,bufChCnt);
  383. for(i=bufIdx; i<bufIdx+bufChCnt; ++i)
  384. {
  385. unsigned j;
  386. float* op = p + i;
  387. ph = phs;
  388. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  389. {
  390. *op = (float)(0.9 * sin( 2.0 * M_PI * hz * ph / r->srate ));
  391. }
  392. }
  393. return ph;
  394. }
  395. // Copy the audio samples in the interleaved audio buffer sp[srcChCnt*srcFrameCnt]
  396. // to the internal record buffer.
  397. void _cmApCopyIn( cmApPortTestRecd* r, const cmApSample_t* sp, unsigned srcChIdx, unsigned srcChCnt, unsigned srcFrameCnt )
  398. {
  399. unsigned i,j;
  400. unsigned chCnt = cmMin(r->chCnt,srcChCnt);
  401. for(i=0; i<srcFrameCnt; ++i)
  402. {
  403. for(j=0; j<chCnt; ++j)
  404. r->buf[ r->bufInIdx + j ] = sp[ (i*srcChCnt) + j ];
  405. for(; j<r->chCnt; ++j)
  406. r->buf[ r->bufInIdx + j ] = 0;
  407. r->bufInIdx = (r->bufInIdx+r->chCnt) % r->bufFrmCnt;
  408. }
  409. //r->bufFullCnt = (r->bufFullCnt + srcFrameCnt) % r->bufFrmCnt;
  410. r->bufFullCnt += srcFrameCnt;
  411. }
  412. // Copy audio samples out of the internal record buffer into dp[dstChCnt*dstFrameCnt].
  413. void _cmApCopyOut( cmApPortTestRecd* r, cmApSample_t* dp, unsigned dstChIdx, unsigned dstChCnt, unsigned dstFrameCnt )
  414. {
  415. // if there are not enough samples available to fill the destination buffer then zero the dst buf.
  416. if( r->bufFullCnt < dstFrameCnt )
  417. {
  418. printf("Empty Output Buffer\n");
  419. memset( dp, 0, dstFrameCnt*dstChCnt*sizeof(cmApSample_t) );
  420. }
  421. else
  422. {
  423. unsigned i,j;
  424. unsigned chCnt = cmMin(dstChCnt, r->chCnt);
  425. // for each output frame
  426. for(i=0; i<dstFrameCnt; ++i)
  427. {
  428. // copy the first chCnt samples from the internal buf to the output buf
  429. for(j=0; j<chCnt; ++j)
  430. dp[ (i*dstChCnt) + j ] = r->buf[ r->bufOutIdx + j ];
  431. // zero any output ch's for which there is no internal buf channel
  432. for(; j<dstChCnt; ++j)
  433. dp[ (i*dstChCnt) + j ] = 0;
  434. // advance the internal buffer
  435. r->bufOutIdx = (r->bufOutIdx + r->chCnt) % r->bufFrmCnt;
  436. }
  437. r->bufFullCnt -= dstFrameCnt;
  438. }
  439. }
  440. // Audio port callback function called from the audio device thread.
  441. void _cmApPortCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  442. {
  443. unsigned i;
  444. // for each incoming audio packet
  445. for(i=0; i<inPktCnt; ++i)
  446. {
  447. cmApPortTestRecd* r = (cmApPortTestRecd*)inPktArray[i].userCbPtr;
  448. if( inPktArray[i].devIdx == r->inDevIdx )
  449. {
  450. // copy the incoming audio into an internal buffer where it can be picked up by _cpApCopyOut().
  451. _cmApCopyIn( r, (cmApSample_t*)inPktArray[i].audioBytesPtr, inPktArray[i].begChIdx, inPktArray[i].chCnt, inPktArray[i].audioFramesCnt );
  452. }
  453. ++r->cbCnt;
  454. //printf("i %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  455. }
  456. unsigned hold_phase = 0;
  457. // for each outgoing audio packet
  458. for(i=0; i<outPktCnt; ++i)
  459. {
  460. cmApPortTestRecd* r = (cmApPortTestRecd*)outPktArray[i].userCbPtr;
  461. if( outPktArray[i].devIdx == r->outDevIdx )
  462. {
  463. // zero the output buffer
  464. memset(outPktArray[i].audioBytesPtr,0,outPktArray[i].chCnt * outPktArray[i].audioFramesCnt * sizeof(cmApSample_t) );
  465. // if the synth is enabled
  466. if( r->synthFl )
  467. {
  468. unsigned tmp_phase = _cmApSynthSine( r, outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt, r->phase, r->frqHz );
  469. // the phase will only change on packets that are actually used
  470. if( tmp_phase != r->phase )
  471. hold_phase = tmp_phase;
  472. }
  473. else
  474. {
  475. // copy the any audio in the internal record buffer to the playback device
  476. _cmApCopyOut( r, (cmApSample_t*)outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt );
  477. }
  478. }
  479. r->phase = hold_phase;
  480. //printf("o %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx);
  481. // count callbacks
  482. ++r->cbCnt;
  483. }
  484. }
  485. #endif
  486. // print the usage message for cmAudioPortTest.c
  487. void _cmApPrintUsage( cmRpt_t* rpt )
  488. {
  489. char msg[] =
  490. "cmApPortTest() command switches\n"
  491. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -t -p -h \n"
  492. "\n"
  493. "-r <srate> = sample rate\n"
  494. "-a <chidx> = first channel\n"
  495. "-c <chcnt> = audio channels\n"
  496. "-b <bufcnt> = count of buffers\n"
  497. "-f <frmcnt> = count of samples per buffer\n"
  498. "-i <idevidx> = input device index\n"
  499. "-o <odevidx> = output device index\n"
  500. "-p = print report but do not start audio devices\n"
  501. "-h = print this usage message\n";
  502. cmRptPrintf(rpt,msg);
  503. }
  504. // Get a command line option.
  505. int _cmApGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  506. {
  507. int i = 0;
  508. for(; i<argc; ++i)
  509. if( strcmp(label,argv[i]) == 0 )
  510. {
  511. if(boolFl)
  512. return 1;
  513. if( i == (argc-1) )
  514. return defaultVal;
  515. return atoi(argv[i+1]);
  516. }
  517. return defaultVal;
  518. }
  519. unsigned _cmGlobalInDevIdx = 0;
  520. unsigned _cmGlobalOutDevIdx = 0;
  521. void _cmApPortCb2( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  522. {
  523. cmApBufInputToOutput( _cmGlobalInDevIdx, _cmGlobalOutDevIdx );
  524. cmApBufUpdate( inPktArray, inPktCnt, outPktArray, outPktCnt );
  525. }
  526. // Audio Port testing function
  527. int cmApPortTest( bool runFl, cmRpt_t* rpt, int argc, const char* argv[] )
  528. {
  529. cmApPortTestRecd r;
  530. unsigned i;
  531. int result = 0;
  532. if( _cmApGetOpt(argc,argv,"-h",0,true) )
  533. _cmApPrintUsage(rpt);
  534. runFl = _cmApGetOpt(argc,argv,"-p",!runFl,true)?false:true;
  535. r.chIdx = _cmApGetOpt(argc,argv,"-a",0,false);
  536. r.chCnt = _cmApGetOpt(argc,argv,"-c",2,false);
  537. r.bufCnt = _cmApGetOpt(argc,argv,"-b",3,false);
  538. r.framesPerCycle = _cmApGetOpt(argc,argv,"-f",512,false);
  539. r.bufFrmCnt = (r.bufCnt*r.framesPerCycle);
  540. r.bufSmpCnt = (r.chCnt * r.bufFrmCnt);
  541. r.logCnt = 100;
  542. r.meterMs = 50;
  543. cmApSample_t buf[r.bufSmpCnt];
  544. char log[r.logCnt];
  545. unsigned ilog[r.logCnt];
  546. r.inDevIdx = _cmGlobalInDevIdx = _cmApGetOpt(argc,argv,"-i",0,false);
  547. r.outDevIdx = _cmGlobalOutDevIdx = _cmApGetOpt(argc,argv,"-o",2,false);
  548. r.phase = 0;
  549. r.frqHz = 2000;
  550. r.srate = 44100;
  551. r.bufInIdx = 0;
  552. r.bufOutIdx = 0;
  553. r.bufFullCnt = 0;
  554. r.logIdx = 0;
  555. r.buf = buf;
  556. r.log = log;
  557. r.ilog = ilog;
  558. r.cbCnt = 0;
  559. cmRptPrintf(rpt,"%s in:%i out:%i chidx:%i chs:%i bufs=%i frm=%i rate=%f\n",runFl?"exec":"rpt",r.inDevIdx,r.outDevIdx,r.chIdx,r.chCnt,r.bufCnt,r.framesPerCycle,r.srate);
  560. if( cmApFileAllocate(rpt) != kOkApRC )
  561. {
  562. cmRptPrintf(rpt,"Audio port file allocation failed.");
  563. result = -1;
  564. goto errLabel;
  565. }
  566. // allocate the non-real-time port
  567. if( cmApNrtAllocate(rpt) != kOkApRC )
  568. {
  569. cmRptPrintf(rpt,"Non-real-time system allocation failed.");
  570. result = 1;
  571. goto errLabel;
  572. }
  573. // initialize the audio device interface
  574. if( cmApInitialize(rpt) != kOkApRC )
  575. {
  576. cmRptPrintf(rpt,"Initialize failed.\n");
  577. result = 1;
  578. goto errLabel;
  579. }
  580. // report the current audio device configuration
  581. for(i=0; i<cmApDeviceCount(); ++i)
  582. {
  583. cmRptPrintf(rpt,"%i [in: chs=%i frames=%i] [out: chs=%i frames=%i] srate:%f %s\n",i,cmApDeviceChannelCount(i,true),cmApDeviceFramesPerCycle(i,true),cmApDeviceChannelCount(i,false),cmApDeviceFramesPerCycle(i,false),cmApDeviceSampleRate(i),cmApDeviceLabel(i));
  584. }
  585. // report the current audio devices using the audio port interface function
  586. cmApReport(rpt);
  587. if( runFl )
  588. {
  589. // initialize the audio bufer
  590. cmApBufInitialize( cmApDeviceCount(), r.meterMs );
  591. // setup the buffer for the output device
  592. cmApBufSetup( r.outDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.outDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.outDevIdx,false), r.framesPerCycle );
  593. // setup the buffer for the input device
  594. if( r.inDevIdx != r.outDevIdx )
  595. cmApBufSetup( r.inDevIdx, r.srate, r.framesPerCycle, r.bufCnt, cmApDeviceChannelCount(r.inDevIdx,true), r.framesPerCycle, cmApDeviceChannelCount(r.inDevIdx,false), r.framesPerCycle );
  596. // setup an output device
  597. if(cmApDeviceSetup(r.outDevIdx,r.srate,r.framesPerCycle,_cmApPortCb2,&r) != kOkApRC )
  598. cmRptPrintf(rpt,"Out device setup failed.\n");
  599. else
  600. // setup an input device
  601. if( cmApDeviceSetup(r.inDevIdx,r.srate,r.framesPerCycle,_cmApPortCb2,&r) != kOkApRC )
  602. cmRptPrintf(rpt,"In device setup failed.\n");
  603. else
  604. // start the input device
  605. if( cmApDeviceStart(r.inDevIdx) != kOkApRC )
  606. cmRptPrintf(rpt,"In device start failed.\n");
  607. else
  608. // start the output device
  609. if( cmApDeviceStart(r.outDevIdx) != kOkApRC )
  610. cmRptPrintf(rpt,"Out Device start failed.\n");
  611. cmRptPrintf(rpt,"q=quit O/o output tone, I/i input tone P/p pass\n");
  612. char c;
  613. while((c=getchar()) != 'q')
  614. {
  615. //cmApAlsaDeviceRtReport(rpt,r.outDevIdx);
  616. switch(c)
  617. {
  618. case 'i':
  619. case 'I':
  620. cmApBufEnableTone(r.inDevIdx,-1,kInApFl | (c=='I'?kEnableApFl:0));
  621. break;
  622. case 'o':
  623. case 'O':
  624. cmApBufEnableTone(r.outDevIdx,-1,kOutApFl | (c=='O'?kEnableApFl:0));
  625. break;
  626. case 'p':
  627. case 'P':
  628. cmApBufEnablePass(r.outDevIdx,-1,kOutApFl | (c=='P'?kEnableApFl:0));
  629. break;
  630. case 's':
  631. cmApBufReport(rpt);
  632. break;
  633. }
  634. }
  635. // stop the input device
  636. if( cmApDeviceIsStarted(r.inDevIdx) )
  637. if( cmApDeviceStop(r.inDevIdx) != kOkApRC )
  638. cmRptPrintf(rpt,"In device stop failed.\n");
  639. // stop the output device
  640. if( cmApDeviceIsStarted(r.outDevIdx) )
  641. if( cmApDeviceStop(r.outDevIdx) != kOkApRC )
  642. cmRptPrintf(rpt,"Out device stop failed.\n");
  643. }
  644. errLabel:
  645. // release any resources held by the audio port interface
  646. if( cmApFinalize() != kOkApRC )
  647. cmRptPrintf(rpt,"Finalize failed.\n");
  648. cmApBufFinalize();
  649. cmApNrtFree();
  650. cmApFileFree();
  651. // report the count of audio buffer callbacks
  652. cmRptPrintf(rpt,"cb count:%i\n", r.cbCnt );
  653. //for(i=0; i<_logCnt; ++i)
  654. // cmRptPrintf(rpt,"%c(%i)",_log[i],_ilog[i]);
  655. //cmRptPrintf(rpt,"\n");
  656. return result;
  657. }
  658. /// [cmAudioPortExample]