libcm is a C development framework with an emphasis on audio signal processing applications.
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

cmAudioSys.c 43KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmFloatTypes.h"
  4. #include "cmRpt.h"
  5. #include "cmErr.h"
  6. #include "cmCtx.h"
  7. #include "cmMem.h"
  8. #include "cmMallocDebug.h"
  9. #include "cmAudioPort.h"
  10. #include "cmAudioPortFile.h"
  11. #include "cmApBuf.h"
  12. #include "cmJson.h"
  13. #include "cmThread.h"
  14. #include "cmUdpPort.h"
  15. #include "cmUdpNet.h"
  16. #include "cmAudioSysMsg.h"
  17. #include "cmAudioSys.h"
  18. #include "cmMidi.h"
  19. #include "cmMidiPort.h"
  20. #include "cmMath.h"
  21. #include <unistd.h> // usleep
  22. cmAudioSysH_t cmAudioSysNullHandle = { NULL };
  23. struct cmAs_str;
  24. typedef struct
  25. {
  26. struct cmAs_str* p; // pointer to the audio system instance which owns this sub-system
  27. cmAudioSysSubSys_t ss; // sub-system configuration record
  28. cmAudioSysCtx_t ctx; // DSP context
  29. cmAudioSysStatus_t status; // current runtime status of this sub-system
  30. cmThreadH_t threadH; // audio system thread
  31. cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue
  32. cmThreadMutexH_t engMutexH; // thread mutex and condition variable
  33. cmUdpNetH_t netH;
  34. bool enableFl; // application controlled pause flag
  35. bool runFl; // false during finalization otherwise true
  36. bool statusFl; // true if regular status notifications should be sent
  37. unsigned audCbLock; //
  38. bool syncInputFl;
  39. double* iMeterArray; //
  40. double* oMeterArray; //
  41. unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples
  42. unsigned statusUpdateSmpIdx; // state update phase
  43. } _cmAsCfg_t;
  44. typedef struct cmAs_str
  45. {
  46. cmErr_t err;
  47. _cmAsCfg_t* ssArray;
  48. unsigned ssCnt;
  49. unsigned waitAsSubIdx; // index of the next sub-system to try with cmAudioSysIsMsgWaiting().
  50. cmTsMp1cH_t dthQueH;
  51. bool initFl; // true if the audio system is initialized
  52. } cmAs_t;
  53. cmAs_t* _cmAsHandleToPtr( cmAudioSysH_t h )
  54. {
  55. cmAs_t* p = (cmAs_t*)h.h;
  56. assert(p != NULL);
  57. return p;
  58. }
  59. cmAsRC_t _cmAsError( cmAs_t* p, cmAsRC_t rc, const char* fmt, ... )
  60. {
  61. va_list vl;
  62. va_start(vl,fmt);
  63. cmErrVMsg(&p->err,rc,fmt,vl);
  64. va_end(vl);
  65. return rc;
  66. }
  67. // Wrapper function to put msgs into thread safe queues and handle related errors.
  68. cmAsRC_t _cmAsEnqueueMsg( cmAs_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel )
  69. {
  70. cmAsRC_t rc = kOkAsRC;
  71. switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) )
  72. {
  73. case kOkThRC:
  74. break;
  75. case kBufFullThRC:
  76. {
  77. unsigned i;
  78. unsigned byteCnt = 0;
  79. for(i=0; i<segCnt; ++i)
  80. byteCnt += msgCntArray[i];
  81. rc = _cmAsError(p,kMsgEnqueueFailAsRC,"The %s queue was unable to load a msg containing %i bytes. The queue is currently allocated %i bytes and has %i bytes available.",queueLabel,byteCnt,cmTsMp1cAllocByteCount(qH),cmTsMp1cAvailByteCount(qH));
  82. }
  83. break;
  84. default:
  85. rc = _cmAsError(p,kMsgEnqueueFailAsRC,"A %s msg. enqueue failed.",queueLabel);
  86. }
  87. return rc;
  88. }
  89. // This is the function pointed to by ctx->dspToHostFunc.
  90. // It is called by the DSP proces to pass msgs to the host.
  91. // therefore it is always called from inside of _cmAsDspExecCallback().
  92. cmAsRC_t _cmAsDspToHostMsgCallback(struct cmAudioSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  93. {
  94. cmAs_t* p = (cmAs_t*)ctx->reserved;
  95. assert( ctx->asSubIdx < p->ssCnt );
  96. //return _cmAsEnqueueMsg(p,p->ssArray[ctx->asSubIdx].dthQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  97. return _cmAsEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  98. }
  99. cmAsRC_t _cmAsHostInitNotify( cmAs_t* p )
  100. {
  101. cmAsRC_t rc = kOkAsRC;
  102. unsigned i;
  103. for(i=0; i<p->ssCnt; ++i)
  104. {
  105. cmAudioSysSsInitMsg_t m;
  106. _cmAsCfg_t* cp = p->ssArray + i;
  107. const char* inDevLabel = cp->ss.args.inDevIdx == cmInvalidIdx ? "" : cmApDeviceLabel( cp->ss.args.inDevIdx );
  108. const char* outDevLabel = cp->ss.args.outDevIdx == cmInvalidIdx ? "" : cmApDeviceLabel( cp->ss.args.outDevIdx );
  109. m.asSubIdx = i;
  110. m.selId = kSsInitSelAsId;
  111. m.asSubCnt = p->ssCnt;
  112. m.inDevIdx = cp->ss.args.inDevIdx;
  113. m.outDevIdx = cp->ss.args.outDevIdx;
  114. m.inChCnt = cp->status.iMeterCnt;
  115. m.outChCnt = cp->status.oMeterCnt;
  116. unsigned segCnt = 3;
  117. const void* msgDataPtrArray[] = { &m, inDevLabel, outDevLabel };
  118. unsigned msgByteCntArray[] = { sizeof(m), strlen(cmStringNullGuard(inDevLabel))+1, strlen(cmStringNullGuard(outDevLabel))+1 };
  119. assert( sizeof(msgDataPtrArray)/sizeof(void*) == segCnt);
  120. assert( sizeof(msgByteCntArray)/sizeof(unsigned) == segCnt);
  121. if((rc = _cmAsDspToHostMsgCallback(&cp->ctx, msgDataPtrArray, msgByteCntArray, segCnt)) != kOkAsRC )
  122. return rc;
  123. }
  124. return rc;
  125. }
  126. cmAsRC_t _cmAsParseNonSubSysMsg( cmAs_t* p, const void* msg, unsigned msgByteCnt )
  127. {
  128. cmAsRC_t rc = kOkAsRC;
  129. cmAudioSysMstr_t* h = (cmAudioSysMstr_t*)msg;
  130. unsigned devIdx = cmAudioSysUiInstIdToDevIndex(h->instId);
  131. unsigned chIdx = cmAudioSysUiInstIdToChIndex(h->instId);
  132. unsigned inFl = cmAudioSysUiInstIdToInFlag(h->instId);
  133. unsigned ctlId = cmAudioSysUiInstIdToCtlId(h->instId);
  134. // if the valuu associated with this msg is a mtx then set
  135. // its mtx data area pointer to just after the msg header.
  136. //if( cmDsvIsMtx(&h->value) )
  137. // h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t);
  138. unsigned flags = inFl ? kInApFl : kOutApFl;
  139. switch( ctlId )
  140. {
  141. case kSliderUiAsId: // slider
  142. cmApBufSetGain(devIdx,chIdx, flags, h->value);
  143. break;
  144. case kMeterUiAsId: // meter
  145. break;
  146. case kMuteUiAsId: // mute
  147. flags += h->value == 0 ? kEnableApFl : 0;
  148. cmApBufEnableChannel(devIdx,chIdx,flags);
  149. break;
  150. case kToneUiAsId: // tone
  151. flags += h->value > 0 ? kEnableApFl : 0;
  152. cmApBufEnableTone(devIdx,chIdx,flags);
  153. break;
  154. case kPassUiAsId: // pass
  155. flags += h->value > 0 ? kEnableApFl : 0;
  156. cmApBufEnablePass(devIdx,chIdx,flags);
  157. break;
  158. default:
  159. { assert(0); }
  160. }
  161. return rc;
  162. }
  163. // Process a UI msg sent from the host to the audio system
  164. cmAsRC_t _cmAsHandleNonSubSysMsg( cmAs_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt )
  165. {
  166. cmAsRC_t rc = kOkAsRC;
  167. // if the message is contained in a single segment it can be dispatched immediately ...
  168. if( msgSegCnt == 1 )
  169. rc = _cmAsParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]);
  170. else
  171. {
  172. // ... otherwise deserialize the message into contiguous memory ....
  173. unsigned byteCnt = 0;
  174. unsigned i;
  175. for(i=0; i<msgSegCnt; ++i)
  176. byteCnt += msgByteCntArray[i];
  177. char buf[ byteCnt ];
  178. char* b = buf;
  179. for(i=0; i<msgSegCnt; ++i)
  180. {
  181. memcpy(b, msgDataPtrArray[i], msgByteCntArray[i] );
  182. b += msgByteCntArray[i];
  183. }
  184. // ... and then dispatch it
  185. rc = _cmAsParseNonSubSysMsg(p,buf,byteCnt);
  186. }
  187. return rc;
  188. }
  189. cmAsRC_t _cmAsSendStateStatusToHost( _cmAsCfg_t* cp )
  190. {
  191. cmAsRC_t rc = kOkAsRC;
  192. unsigned hdr[] = { cp->ctx.asSubIdx, kStatusSelAsId };
  193. cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt );
  194. cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt );
  195. unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt;
  196. unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt;
  197. const void* msgDataPtrArray[] = { &hdr, &cp->status, cp->iMeterArray, cp->oMeterArray };
  198. unsigned msgByteCntArray[] = { sizeof(hdr), sizeof(cp->status), iMeterByteCnt, oMeterByteCnt };
  199. unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  200. _cmAsDspToHostMsgCallback(&cp->ctx,msgDataPtrArray,msgByteCntArray, segCnt );
  201. return rc;
  202. }
  203. // The DSP execution callback happens through this function.
  204. // This function is only called from inside _cmAsThreadCallback() with the engine mutex locked.
  205. void _cmAsDspExecCallback( _cmAsCfg_t* cp )
  206. {
  207. /*
  208. unsigned i;
  209. // get pointers to a set of audio out buffers - pointers to disabled channels will be set to NULL
  210. cmApBufGet( cp->ss.args.outDevIdx, kOutApFl, cp->ctx.oChArray, cp->ctx.oChCnt );
  211. cmApBufGet( cp->ss.args.inDevIdx, kInApFl, cp->ctx.iChArray, cp->ctx.iChCnt );
  212. // zero the output buffers on all enabled channels
  213. for(i=0; i<cp->ctx.oChCnt; ++i)
  214. if( cp->ctx.oChArray[i] != NULL )
  215. memset( cp->ctx.oChArray[i], 0, cp->ss.args.dspFramesPerCycle * sizeof(cmSample_t));
  216. */
  217. // Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers.
  218. // Notes:
  219. // 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[].
  220. // 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[].
  221. // 3) All samples returned in oChArray[] buffers will be set to zero.
  222. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt );
  223. // call the application provided DSP process
  224. cp->ctx.audioRateFl = true;
  225. cp->ss.cbFunc( &cp->ctx, 0, NULL );
  226. cp->ctx.audioRateFl = false;
  227. // advance the audio buffer
  228. cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
  229. cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
  230. // handle periodic status messages to the host
  231. if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt )
  232. {
  233. cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt;
  234. if( cp->statusFl )
  235. _cmAsSendStateStatusToHost(cp);
  236. }
  237. }
  238. // Returns true if audio buffer is has waiting incoming samples and
  239. // available outgoing space.
  240. bool _cmAsBufIsReady( const _cmAsCfg_t* cp )
  241. {
  242. // if there neither the input or output device is valid
  243. if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx )
  244. return false;
  245. bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl);
  246. bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl);
  247. bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl;
  248. bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl;
  249. //printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl);
  250. return iFl && oFl;
  251. }
  252. // This is only called with _cmAsRecd.engMutexH locked
  253. cmAsRC_t _cmAsDeliverMsgsWithLock( _cmAsCfg_t* cp )
  254. {
  255. int i;
  256. cmAsRC_t rc = kOkThRC;
  257. // as long as their may be a msg wating in the incoming msg queue
  258. for(i=0; rc == kOkThRC; ++i)
  259. {
  260. // if a msg is waiting transmit it via cfg->cbFunc()
  261. if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC)
  262. ++cp->status.msgCbCnt;
  263. }
  264. return rc;
  265. }
  266. // This is the main audio system loop (and thread callback function).
  267. // It blocks by waiting on a cond. var (which simultaneously unlocks a mutex).
  268. // With the mutex unlocked messages can pass directly to the DSP process
  269. // via calls to cmAsDeliverMsg().
  270. // When the audio buffers need to be serviced the audio device callback
  271. // signals the cond. var. which results in this thread waking up (and
  272. // simultaneously locking the mutex) as soon as the mutex is available.
  273. bool _cmAsThreadCallback(void* arg)
  274. {
  275. cmAsRC_t rc;
  276. _cmAsCfg_t* cp = (_cmAsCfg_t*)arg;
  277. // lock the cmAudioSys mutex
  278. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkAsRC )
  279. {
  280. _cmAsError(cp->p,rc,"The cmAudioSys thread mutex lock failed.");
  281. return false;
  282. }
  283. // runFl is always set except during finalization
  284. while( cp->runFl )
  285. {
  286. // if the buffer is NOT ready or the cmAudioSys is disabled
  287. if(_cmAsBufIsReady(cp) == false || cp->enableFl==false )
  288. {
  289. // block on the cond var and unlock the mutex
  290. if( cmThreadMutexWaitOnCondVar(cp->engMutexH,false) != kOkAsRC )
  291. {
  292. cmThreadMutexUnlock(cp->engMutexH);
  293. _cmAsError(cp->p,rc,"The cmAudioSys cond. var. wait failed.");
  294. return false;
  295. }
  296. //
  297. // the cond var was signaled and the mutex is now locked
  298. //
  299. ++cp->status.wakeupCnt;
  300. }
  301. // be sure we are still enabled and the buffer is still ready
  302. if( cp->enableFl && cp->runFl )
  303. {
  304. while( _cmAsBufIsReady(cp) )
  305. {
  306. ++cp->status.audioCbCnt;
  307. // calling this function results in callbacks to cmAudDsp.c:_cmAdUdpNetCallback()
  308. // which in turn calls cmAudioSysDeliverMsg() which queues any incoming messages
  309. // which are then transferred to the DSP processes by the the call to
  310. // _cmAsDeliverMsgWithLock() below.
  311. cmUdpNetReceive(cp->netH,NULL);
  312. // if there are msgs waiting to be sent to the DSP process send them.
  313. if( cmTsMp1cMsgWaiting(cp->htdQueueH) )
  314. _cmAsDeliverMsgsWithLock(cp);
  315. // make the cmAudioSys callback
  316. _cmAsDspExecCallback( cp );
  317. // update the signal time
  318. cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle;
  319. }
  320. }
  321. }
  322. // unlock the mutex
  323. cmThreadMutexUnlock(cp->engMutexH);
  324. return true;
  325. }
  326. // This is the audio port callback function.
  327. //
  328. // _cmAudioSysAudioUpdate() assumes that at most two audio device threads (input and output) may call it.
  329. // cmApBufUpdate() is safe under these conditions since the input and output buffers are updated separately.
  330. // p->audCbLock is used to allow either the input or output thread to signal
  331. // the condition variable. This flag is necessary to prevent both threads from simultaneously
  332. // attempting to signal the condition variable (which will lock the system).
  333. //
  334. // If more than two audio device threads call the function then this function is not safe.
  335. unsigned phase = 0;
  336. void _cmAudioSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  337. {
  338. _cmAsCfg_t* cp = (_cmAsCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr);
  339. ++cp->status.updateCnt;
  340. if( cp->runFl )
  341. {
  342. // transfer incoming/outgoing samples from/to the audio device
  343. cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt);
  344. /*
  345. //fill output with noise
  346. unsigned i = 0,j =0, k = 0, phs = 0;
  347. for(; i<outPktCnt; ++i)
  348. {
  349. cmApAudioPacket_t* a = outPktArray + i;
  350. cmApSample_t* dp = (cmApSample_t*)a->audioBytesPtr;
  351. phs = a->audioFramesCnt;
  352. for(j=0; j<a->audioFramesCnt; ++j)
  353. {
  354. cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * phase + j ));
  355. for(k=0; k<a->chCnt; ++k,++dp)
  356. *dp = v;
  357. }
  358. //for(j=0; j<a->audioFramesCnt*a->chCnt; ++j,++dp)
  359. // *dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2);
  360. }
  361. phase += phs;
  362. return;
  363. */
  364. //++p->audCbLock;
  365. bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0);
  366. //printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt);
  367. // if the input/output buffer contain samples to be processed then signal the condition variable
  368. // - this will cause the audio system thread to unblock and the used defined DSP process will be called.
  369. if( testBufFl && _cmAsBufIsReady(cp) )
  370. {
  371. if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC )
  372. _cmAsError(cp->p,kMutexErrAsRC,"CmAudioSys signal cond. var. failed.");
  373. }
  374. //--p->audCbLock;
  375. }
  376. }
  377. // Called when MIDI messages arrive from external MIDI ports.
  378. void _cmAudioSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt )
  379. {
  380. unsigned i;
  381. for(i=0; i<pktCnt; ++i)
  382. {
  383. const cmMidiPacket_t* pkt = pktArray + i;
  384. _cmAsCfg_t* cp = (_cmAsCfg_t*)(pkt->cbDataPtr);
  385. if( !cp->runFl )
  386. continue;
  387. cmAudioSysH_t asH;
  388. asH.h = cp->p;
  389. unsigned selId = kMidiMsgArraySelAsId;
  390. const void* msgPtrArray[] = { &cp->ctx.asSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray };
  391. unsigned msgByteCntArray[] = { sizeof(cp->ctx.asSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) };
  392. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  393. cmAudioSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId);
  394. }
  395. }
  396. cmAsRC_t cmAudioSysAllocate( cmAudioSysH_t* hp, cmRpt_t* rpt, const cmAudioSysCfg_t* cfg )
  397. {
  398. cmAsRC_t rc;
  399. if((rc = cmAudioSysFree(hp)) != kOkAsRC )
  400. return rc;
  401. cmAs_t* p = cmMemAllocZ( cmAs_t, 1 );
  402. cmErrSetup(&p->err,rpt,"Audio System");
  403. hp->h = p;
  404. if( cfg != NULL )
  405. if((rc = cmAudioSysInitialize( *hp, cfg )) != kOkAsRC )
  406. cmAudioSysFree(hp);
  407. return rc;
  408. }
  409. cmAsRC_t cmAudioSysFree( cmAudioSysH_t* hp )
  410. {
  411. cmAsRC_t rc;
  412. if( hp == NULL || hp->h == NULL )
  413. return kOkAsRC;
  414. if((rc = cmAudioSysFinalize(*hp)) != kOkAsRC )
  415. return rc;
  416. cmAs_t* p = _cmAsHandleToPtr(*hp);
  417. cmMemFree(p);
  418. hp->h = NULL;
  419. return rc;
  420. }
  421. cmAsRC_t _cmAudioSysEnable( cmAs_t* p, bool enableFl )
  422. {
  423. cmAsRC_t rc;
  424. unsigned i;
  425. for(i=0; i<p->ssCnt; ++i)
  426. {
  427. _cmAsCfg_t* cp = p->ssArray + i;
  428. if( enableFl )
  429. {
  430. //cmApBufPrimeOutput( cp->ss.args.outDevIdx, 2 );
  431. // start the input device
  432. if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkAsRC )
  433. return _cmAsError(p,kAudioDevStartFailAsRC,"The audio input device start failed.");
  434. // start the output device
  435. if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkAsRC )
  436. return _cmAsError(p,kAudioDevStartFailAsRC,"The audio ouput device start failed.");
  437. }
  438. else
  439. {
  440. // stop the input device
  441. if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkAsRC )
  442. return _cmAsError(p,kAudioDevStopFailAsRC,"The audio input device stop failed.");
  443. // stop the output device
  444. if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkAsRC )
  445. return _cmAsError(p,kAudioDevStopFailAsRC,"The audio output device stop failed.");
  446. }
  447. cp->enableFl = enableFl;
  448. }
  449. return kOkAsRC;
  450. }
  451. cmAsRC_t _cmAudioSysFinalize( cmAs_t* p )
  452. {
  453. cmAsRC_t rc = kOkAsRC;
  454. unsigned i;
  455. // mark the audio system as NOT initialized
  456. p->initFl = false;
  457. // be sure all audio callbacks are disabled before continuing.
  458. if((rc = _cmAudioSysEnable(p,false)) != kOkAsRC )
  459. return _cmAsError(p,rc,"Audio system finalize failed because device halting failed.");
  460. for(i=0; i<p->ssCnt; ++i)
  461. {
  462. _cmAsCfg_t* cp = p->ssArray + i;
  463. if( cmThreadIsValid( cp->threadH ))
  464. {
  465. // inform the thread that it should exit
  466. cp->enableFl = false;
  467. cp->runFl = false;
  468. cp->statusFl = false;
  469. // WARNING: be sure that the audio thread cannot simultaneously signal the
  470. // cond variable from _cmAsAudioUpdate() otherwise the system may crash
  471. while( cp->audCbLock != 0 )
  472. { usleep(100000); }
  473. // signal the cond var to cause the thread to run
  474. if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC )
  475. _cmAsError(p,kMutexErrAsRC,"Finalize signal cond. var. failed.");
  476. // wait to take control of the mutex - this will occur when the thread function exits
  477. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC )
  478. _cmAsError(p,kMutexErrAsRC,"Finalize lock failed.");
  479. // unlock the mutex because it is no longer needed and must be unlocked to be destroyed
  480. if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC )
  481. _cmAsError(p,kMutexErrAsRC,"Finalize unlock failed.");
  482. // destroy the thread
  483. if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC )
  484. _cmAsError(p,kThreadErrAsRC,"Thread destroy failed.");
  485. }
  486. // destroy the mutex
  487. if( cmThreadMutexIsValid(cp->engMutexH) )
  488. if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC )
  489. _cmAsError(p,kMutexErrAsRC,"Mutex destroy failed.");
  490. // remove the MIDI callback
  491. if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmAudioSysMidiCallback, cp) )
  492. if( cmMpRemoveCallback( -1, -1, _cmAudioSysMidiCallback, cp ) != kOkMpRC )
  493. _cmAsError(p,kMidiSysFailAsRC,"MIDI callback removal failed.");
  494. // destroy the host-to-dsp msg queue
  495. if( cmTsMp1cIsValid(cp->htdQueueH ) )
  496. if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC )
  497. _cmAsError(p,kTsQueueErrAsRC,"Host-to-DSP msg queue destroy failed.");
  498. // destroy the dsp-to-host msg queue
  499. if( cmTsMp1cIsValid(p->dthQueH) )
  500. if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC )
  501. _cmAsError(p,kTsQueueErrAsRC,"DSP-to-Host msg queue destroy failed.");
  502. cmMemPtrFree(&cp->ctx.iChArray);
  503. cmMemPtrFree(&cp->ctx.oChArray);
  504. cp->ctx.iChCnt = 0;
  505. cp->ctx.oChCnt = 0;
  506. cmMemPtrFree(&cp->iMeterArray);
  507. cmMemPtrFree(&cp->oMeterArray);
  508. cp->status.iMeterCnt = 0;
  509. cp->status.oMeterCnt = 0;
  510. }
  511. cmMemPtrFree(&p->ssArray);
  512. p->ssCnt = 0;
  513. return rc;
  514. }
  515. // A given device may be used as an input device exactly once and an output device exactly once.
  516. // When the input to a given device is used by one sub-system and the output is used by another
  517. // then both sub-systems must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle.
  518. cmAsRC_t _cmAsSysValidate( cmErr_t* err, const cmAudioSysCfg_t* cfg )
  519. {
  520. unsigned i,j,k;
  521. for(i=0; i<2; ++i)
  522. {
  523. // examine input devices - then output devices
  524. bool inputFl = i==0;
  525. bool outputFl = !inputFl;
  526. for(j=0; j<cfg->ssCnt; ++j)
  527. {
  528. cmAudioSysArgs_t* s0 = &cfg->ssArray[j].args;
  529. unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx;
  530. for(k=0; k<cfg->ssCnt && devIdx != cmInvalidIdx; ++k)
  531. if( k != j )
  532. {
  533. cmAudioSysArgs_t* s1 = &cfg->ssArray[k].args;
  534. // if the device was used as input or output multple times then signal an error
  535. if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) )
  536. return cmErrMsg(err,kInvalidArgAsRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output");
  537. // if this device is being used by another subsystem ...
  538. if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) )
  539. {
  540. // ... then some of its buffer spec's must match
  541. if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle )
  542. return cmErrMsg(err,kInvalidArgAsRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx);
  543. }
  544. }
  545. }
  546. }
  547. return kOkAsRC;
  548. }
  549. cmAsRC_t cmAudioSysInitialize( cmAudioSysH_t h, const cmAudioSysCfg_t* cfg )
  550. {
  551. cmAsRC_t rc;
  552. unsigned i;
  553. cmAs_t* p = _cmAsHandleToPtr(h);
  554. // validate the device setup
  555. if((rc =_cmAsSysValidate(&p->err, cfg )) != kOkAsRC )
  556. return rc;
  557. // always finalize before iniitalize
  558. if((rc = cmAudioSysFinalize(h)) != kOkAsRC )
  559. return rc;
  560. // create the audio file devices
  561. /*
  562. for(i=0; i<cfg->afpCnt; ++i)
  563. {
  564. const cmAudioSysFilePort_t* afp = cfg->afpArray + i;
  565. cmApFileDeviceCreate( afp->devLabel, afp->inAudioFn, afp->outAudioFn, afp->oBits, afp->oChCnt );
  566. }
  567. */
  568. p->ssArray = cmMemAllocZ( _cmAsCfg_t, cfg->ssCnt );
  569. p->ssCnt = cfg->ssCnt;
  570. for(i=0; i<p->ssCnt; ++i)
  571. {
  572. _cmAsCfg_t* cp = p->ssArray + i;
  573. const cmAudioSysSubSys_t* ss = cfg->ssArray + i;
  574. cp->p = p;
  575. cp->ss = *ss; // copy the cfg into the internal audio system state
  576. cp->runFl = false;
  577. cp->enableFl = false;
  578. cp->statusFl = false;
  579. cp->ctx.reserved = p;
  580. cp->ctx.asSubIdx = i;
  581. cp->ctx.ss = &cp->ss;
  582. cp->ctx.begSmpIdx = 0;
  583. cp->ctx.dspToHostFunc = _cmAsDspToHostMsgCallback;
  584. // validate the input device index
  585. if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() )
  586. {
  587. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"The audio input device index %i is invalid.",ss->args.inDevIdx);
  588. goto errLabel;
  589. }
  590. // validate the output device index
  591. if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() )
  592. {
  593. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"The audio output device index %i is invalid.",ss->args.outDevIdx);
  594. goto errLabel;
  595. }
  596. // setup the input device
  597. if( ss->args.inDevIdx != cmInvalidIdx )
  598. if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmAudioSysAudioUpdate, cp )) != kOkAsRC )
  599. {
  600. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"Audio input device setup failed.");
  601. goto errLabel;
  602. }
  603. // setup the output device
  604. if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx )
  605. if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmAudioSysAudioUpdate, cp )) != kOkAsRC )
  606. {
  607. rc = _cmAsError(p,kAudioDevSetupErrAsRC,"Audio output device setup failed.");
  608. goto errLabel;
  609. }
  610. // setup the input device buffer
  611. if( ss->args.inDevIdx != cmInvalidIdx )
  612. if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle )) != kOkAsRC )
  613. {
  614. rc = _cmAsError(p,kAudioBufSetupErrAsRC,"Audio buffer input setup failed.");
  615. goto errLabel;
  616. }
  617. cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl );
  618. cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl );
  619. // setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmAsDspExecCallback()
  620. if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 )
  621. cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt );
  622. // setup the output device buffer
  623. if( ss->args.outDevIdx != ss->args.inDevIdx )
  624. if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle )) != kOkAsRC )
  625. return _cmAsError(p,kAudioBufSetupErrAsRC,"Audio buffer ouput device setup failed.");
  626. // setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmAsDspExecCallback()
  627. if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 )
  628. cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt );
  629. // determine the sync source
  630. cp->syncInputFl = ss->args.syncInputFl;
  631. // if sync'ing to an unavailable device then sync to the available device
  632. if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 )
  633. cp->syncInputFl = false;
  634. if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 )
  635. cp->syncInputFl = true;
  636. // setup the status record
  637. cp->status.asSubIdx = cp->ctx.asSubIdx;
  638. cp->status.iDevIdx = ss->args.inDevIdx;
  639. cp->status.oDevIdx = ss->args.outDevIdx;
  640. cp->status.iMeterCnt = cp->ctx.iChCnt;
  641. cp->status.oMeterCnt = cp->ctx.oChCnt;
  642. cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt );
  643. cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt );
  644. cp->netH = cfg->netH;
  645. // create the audio System thread
  646. if((rc = cmThreadCreate( &cp->threadH, _cmAsThreadCallback, cp, ss->args.rpt )) != kOkThRC )
  647. {
  648. rc = _cmAsError(p,kThreadErrAsRC,"Thread create failed.");
  649. goto errLabel;
  650. }
  651. // create the audio System mutex
  652. if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC )
  653. {
  654. rc = _cmAsError(p,kMutexErrAsRC,"Thread mutex create failed.");
  655. goto errLabel;
  656. }
  657. // create the host-to-dsp thread safe msg queue
  658. if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC )
  659. {
  660. rc = _cmAsError(p,kTsQueueErrAsRC,"Host-to-DSP msg queue create failed.");
  661. goto errLabel;
  662. }
  663. // create the dsp-to-host thread safe msg queue
  664. if( cmTsMp1cIsValid( p->dthQueH ) == false )
  665. {
  666. if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, cfg->clientCbFunc, cfg->clientCbData, ss->args.rpt )) != kOkThRC )
  667. {
  668. rc = _cmAsError(p,kTsQueueErrAsRC,"DSP-to-Host msg queue create failed.");
  669. goto errLabel;
  670. }
  671. }
  672. //cp->dthQueueH = p->dthQueH;
  673. // install an external MIDI port callback handler for incoming MIDI messages
  674. if( cmMpIsInitialized() )
  675. if( cmMpInstallCallback( -1, -1, _cmAudioSysMidiCallback, cp ) != kOkMpRC )
  676. {
  677. rc = _cmAsError(p,kMidiSysFailAsRC,"MIDI system callback installation failed.");
  678. goto errLabel;
  679. }
  680. // setup the sub-system status notification
  681. cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 );
  682. cp->statusUpdateSmpIdx = 0;
  683. cp->runFl = true;
  684. // start the audio System thread
  685. if( cmThreadPause( cp->threadH, 0 ) != kOkThRC )
  686. {
  687. rc = _cmAsError(p,kThreadErrAsRC,"Thread start failed.");
  688. goto errLabel;
  689. }
  690. }
  691. _cmAsHostInitNotify(p);
  692. p->initFl = true;
  693. errLabel:
  694. if( rc != kOkAsRC )
  695. _cmAudioSysFinalize(p);
  696. return rc;
  697. }
  698. cmAsRC_t cmAudioSysFinalize(cmAudioSysH_t h )
  699. {
  700. cmAsRC_t rc = kOkAsRC;
  701. if( cmAudioSysHandleIsValid(h) == false )
  702. return rc;
  703. cmAs_t* p = _cmAsHandleToPtr(h);
  704. rc = _cmAudioSysFinalize(p);
  705. h.h = NULL;
  706. return rc;
  707. }
  708. bool cmAudioSysIsInitialized( cmAudioSysH_t h )
  709. {
  710. cmAs_t* p = _cmAsHandleToPtr(h);
  711. return p->initFl;
  712. }
  713. cmAsRC_t _cmAudioSysVerifyInit( cmAs_t* p )
  714. {
  715. if( p->initFl == false )
  716. {
  717. // if the last msg generated was also a not init msg then don't
  718. // generate another message - just return the error
  719. if( cmErrLastRC(&p->err) != kNotInitAsRC )
  720. cmErrMsg(&p->err,kNotInitAsRC,"The audio system is not initialized.");
  721. return kNotInitAsRC;
  722. }
  723. return kOkAsRC;
  724. }
  725. bool cmAudioSysIsEnabled( cmAudioSysH_t h )
  726. {
  727. if( cmAudioSysIsInitialized(h) == false )
  728. return false;
  729. cmAs_t* p = _cmAsHandleToPtr(h);
  730. unsigned i;
  731. for(i=0; i<p->ssCnt; ++i)
  732. if( p->ssArray[i].enableFl )
  733. return true;
  734. return false;
  735. }
  736. cmAsRC_t cmAudioSysEnable( cmAudioSysH_t h, bool enableFl )
  737. {
  738. cmAs_t* p = _cmAsHandleToPtr(h);
  739. return _cmAudioSysEnable(p,enableFl);
  740. }
  741. cmAsRC_t cmAudioSysDeliverSegMsg( cmAudioSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId )
  742. {
  743. cmAs_t* p = _cmAsHandleToPtr(h);
  744. cmAsRC_t rc;
  745. // the system must be initialized to use this function
  746. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  747. return rc;
  748. if( msgSegCnt == 0 )
  749. return kOkAsRC;
  750. // BUG BUG BUG - there is no reason that both the asSubIdx and the selId must
  751. // be in the first segment but it would be nice.
  752. assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) );
  753. // The audio sub-system index is always the first field of the msg
  754. // and the msg selector id is always the second field
  755. unsigned* array = (unsigned*)msgDataPtrArray[0];
  756. unsigned asSubIdx = array[0];
  757. unsigned selId = array[1];
  758. if( selId == kUiMstrSelAsId )
  759. return _cmAsHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt );
  760. if( selId == kNetSyncSelAsId )
  761. {
  762. assert( msgSegCnt==1);
  763. assert( asSubIdx < p->ssCnt );
  764. p->ssArray[asSubIdx].ctx.srcNetNodeId = srcNetNodeId;
  765. p->ssArray[asSubIdx].ss.cbFunc(&p->ssArray[asSubIdx].ctx,msgByteCntArray[0],msgDataPtrArray[0]);
  766. return kOkAsRC;
  767. }
  768. return _cmAsEnqueueMsg(p,p->ssArray[asSubIdx].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP");
  769. }
  770. cmAsRC_t cmAudioSysDeliverMsg( cmAudioSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  771. {
  772. const void* msgDataPtrArray[] = { msgPtr };
  773. unsigned msgByteCntArray[] = { msgByteCnt };
  774. return cmAudioSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId);
  775. }
  776. cmAsRC_t cmAudioSysDeliverIdMsg( cmAudioSysH_t h, unsigned asSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  777. {
  778. cmAsRC_t rc;
  779. cmAs_t* p = _cmAsHandleToPtr(h);
  780. // the system must be initialized to use this function
  781. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  782. return rc;
  783. const void* msgDataPtrArray[] = { &asSubIdx, &id, msgPtr };
  784. unsigned msgByteCntArray[] = { sizeof(asSubIdx), sizeof(id), msgByteCnt };
  785. return cmAudioSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId);
  786. }
  787. unsigned cmAudioSysIsMsgWaiting( cmAudioSysH_t h )
  788. {
  789. cmAsRC_t rc;
  790. cmAs_t* p = _cmAsHandleToPtr(h);
  791. // the system must be initialized to use this function
  792. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  793. return 0;
  794. unsigned n = 0;
  795. unsigned retByteCnt;
  796. for(n=0; n < p->ssCnt; ++n )
  797. {
  798. //if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->ssArray[p->waitAsSubIdx].dthQueueH)) > 0 )
  799. if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 )
  800. return retByteCnt;
  801. p->waitAsSubIdx = (p->waitAsSubIdx + 1) % p->ssCnt;
  802. }
  803. return 0;
  804. }
  805. cmAsRC_t cmAudioSysReceiveMsg( cmAudioSysH_t h, void* msgDataPtr, unsigned msgByteCnt )
  806. {
  807. cmAsRC_t rc;
  808. cmAs_t* p = _cmAsHandleToPtr(h);
  809. // the system must be initialized to use this function
  810. if((rc = _cmAudioSysVerifyInit(p)) != kOkAsRC )
  811. return rc;
  812. //switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitAsSubIdx].dthQueueH,msgDataPtr,msgByteCnt) )
  813. switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) )
  814. {
  815. case kOkThRC:
  816. p->waitAsSubIdx = (p->waitAsSubIdx + 1) % p->ssCnt;
  817. return kOkAsRC;
  818. case kBufTooSmallThRC:
  819. return kBufTooSmallAsRC;
  820. case kBufEmptyThRC:
  821. return kNoMsgWaitingAsRC;
  822. }
  823. return _cmAsError(p,kTsQueueErrAsRC,"A deque operation failed on the DSP-to-Host message queue.");
  824. }
  825. void cmAudioSysStatus( cmAudioSysH_t h, unsigned asSubIdx, cmAudioSysStatus_t* statusPtr )
  826. {
  827. cmAs_t* p = _cmAsHandleToPtr(h);
  828. // the system must be initialized to use this function
  829. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  830. return;
  831. if( asSubIdx < p->ssCnt )
  832. *statusPtr = p->ssArray[asSubIdx].status;
  833. }
  834. void cmAudioSysStatusNotifyEnable( cmAudioSysH_t h, unsigned asSubIdx, bool enableFl )
  835. {
  836. cmAs_t* p = _cmAsHandleToPtr(h);
  837. // the system must be initialized to use this function
  838. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  839. return;
  840. unsigned i = asSubIdx == cmInvalidIdx ? 0 : asSubIdx;
  841. unsigned n = asSubIdx == cmInvalidIdx ? p->ssCnt : asSubIdx+1;
  842. for(; i<n; ++i)
  843. p->ssArray[i].statusFl = enableFl;
  844. }
  845. bool cmAudioSysHandleIsValid( cmAudioSysH_t h )
  846. { return h.h != NULL; }
  847. cmAudioSysCtx_t* cmAudioSysContext( cmAudioSysH_t h, unsigned asSubIdx )
  848. {
  849. cmAs_t* p = _cmAsHandleToPtr(h);
  850. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  851. return NULL;
  852. return &p->ssArray[asSubIdx].ctx;
  853. }
  854. unsigned cmAudioSysSubSystemCount( cmAudioSysH_t h )
  855. {
  856. cmAs_t* p = _cmAsHandleToPtr(h);
  857. if( _cmAudioSysVerifyInit(p) != kOkAsRC )
  858. return 0;
  859. return p->ssCnt;
  860. }
  861. //===========================================================================================================================
  862. //
  863. // cmAsTest()
  864. //
  865. /// [cmAudioSysTest]
  866. typedef struct
  867. {
  868. double hz; // current synth frq
  869. long phs; // current synth phase
  870. double srate; // audio sample rate
  871. unsigned cbCnt; // DSP cycle count
  872. bool synthFl; // true=synth false=pass through
  873. } _cmAsTestCbRecd;
  874. typedef struct
  875. {
  876. unsigned asSubIdx; // asSubIdx must always be the first field in the msg
  877. unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host
  878. double hz;
  879. unsigned uint;
  880. } _cmAsTestMsg;
  881. long _cmAsSynthSine( _cmAsTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt )
  882. {
  883. long ph = 0;
  884. unsigned i;
  885. for(i=0; i<chCnt; ++i)
  886. {
  887. unsigned j;
  888. cmApSample_t* op = p + i;
  889. ph = r->phs;
  890. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  891. *op = (cmApSample_t)(0.9 * sin( 2.0 * M_PI * r->hz * ph / r->srate ));
  892. }
  893. return ph;
  894. }
  895. unsigned _cmAsTestChIdx = 0;
  896. cmRC_t _cmAsTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr )
  897. {
  898. cmRC_t rc = cmOkRC;
  899. cmAudioSysCtx_t* ctx = (cmAudioSysCtx_t*)cbPtr;
  900. cmAudioSysSubSys_t* ss = ctx->ss;
  901. _cmAsTestCbRecd* r = (_cmAsTestCbRecd*)ss->cbDataPtr;
  902. // update the calback counter
  903. ++r->cbCnt;
  904. // if this is an audio update request
  905. if( msgByteCnt == 0 )
  906. {
  907. unsigned i;
  908. if( r->synthFl )
  909. {
  910. long phs = 0;
  911. if(0)
  912. {
  913. for(i=0; i<ctx->oChCnt; ++i)
  914. if( ctx->oChArray[i] != NULL )
  915. phs = _cmAsSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle );
  916. }
  917. else
  918. {
  919. if( _cmAsTestChIdx < ctx->oChCnt )
  920. phs = _cmAsSynthSine(r, ctx->oChArray[_cmAsTestChIdx], 1, ss->args.dspFramesPerCycle );
  921. }
  922. r->phs = phs;
  923. }
  924. else
  925. {
  926. // BUG BUG BUG - this assumes that the input and output channels are the same.
  927. unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt);
  928. for(i=0; i<chCnt; ++i)
  929. memcpy(ctx->oChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle);
  930. }
  931. }
  932. else // ... otherwise it is a msg for the DSP process from the host
  933. {
  934. _cmAsTestMsg* msg = (_cmAsTestMsg*)msgDataPtr;
  935. msg->asSubIdx = ctx->asSubIdx;
  936. switch(msg->id)
  937. {
  938. case 0:
  939. r->hz = msg->hz;
  940. break;
  941. case 1:
  942. msg->uint = r->cbCnt;
  943. msgByteCnt = sizeof(_cmAsTestMsg);
  944. rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1);
  945. break;
  946. }
  947. }
  948. return rc;
  949. }
  950. // print the usage message for cmAudioPortTest.c
  951. void _cmAsPrintUsage( cmRpt_t* rpt )
  952. {
  953. char msg[] =
  954. "cmAudioSysTest() command switches:\n"
  955. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -m <msgqsize> -d <dspsize> -t -p -h \n"
  956. "\n"
  957. "-r <srate> = sample rate (48000)\n"
  958. "-c <chcnt> = audio channels (2)\n"
  959. "-b <bufcnt> = count of buffers (3)\n"
  960. "-f <frmcnt> = count of samples per buffer (512)\n"
  961. "-i <idevidx> = input device index (0)\n"
  962. "-o <odevidx> = output device index (2)\n"
  963. "-m <msgqsize> = message queue byte count (1024)\n"
  964. "-d <dspsize> = samples per DSP frame (64)\n"
  965. "-s = true: sync to input port false: sync to output port\n"
  966. "-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n"
  967. "-p = report but don't start audio devices\n"
  968. "-h = print this usage message\n";
  969. cmRptPrintf(rpt,"%s",msg);
  970. }
  971. // Get a command line option.
  972. int _cmAsGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  973. {
  974. int i = 0;
  975. for(; i<argc; ++i)
  976. if( strcmp(label,argv[i]) == 0 )
  977. {
  978. if(boolFl)
  979. return 1;
  980. if( i == (argc-1) )
  981. return defaultVal;
  982. return atoi(argv[i+1]);
  983. }
  984. return defaultVal;
  985. }
  986. bool _cmAsGetBoolOpt( int argc, const char* argv[], const char* label, bool defaultVal )
  987. { return _cmAsGetOpt(argc,argv,label,defaultVal?1:0,true)!=0; }
  988. int _cmAsGetIntOpt( int argc, const char* argv[], const char* label, int defaultVal )
  989. { return _cmAsGetOpt(argc,argv,label,defaultVal,false); }
  990. void cmAudioSysTest( cmRpt_t* rpt, int argc, const char* argv[] )
  991. {
  992. cmAudioSysCfg_t cfg;
  993. cmAudioSysSubSys_t ss;
  994. cmAudioSysH_t h = cmAudioSysNullHandle;
  995. cmAudioSysStatus_t status;
  996. _cmAsTestCbRecd cbRecd = {1000.0,0,48000.0,0};
  997. cfg.ssArray = &ss;
  998. cfg.ssCnt = 1;
  999. //cfg.afpArray= NULL;
  1000. //cfg.afpCnt = 0;
  1001. cfg.meterMs = 50;
  1002. if(_cmAsGetBoolOpt(argc,argv,"-h",false))
  1003. _cmAsPrintUsage(rpt);
  1004. cbRecd.srate = _cmAsGetIntOpt(argc,argv,"-r",48000);
  1005. cbRecd.synthFl = _cmAsGetBoolOpt(argc,argv,"-t",false)==false;
  1006. ss.args.rpt = rpt;
  1007. ss.args.inDevIdx = _cmAsGetIntOpt( argc,argv,"-i",0);
  1008. ss.args.outDevIdx = _cmAsGetIntOpt( argc,argv,"-o",2);
  1009. ss.args.syncInputFl = _cmAsGetBoolOpt(argc,argv,"-s",true);
  1010. ss.args.msgQueueByteCnt = _cmAsGetIntOpt( argc,argv,"-m",8192);
  1011. ss.args.devFramesPerCycle = _cmAsGetIntOpt( argc,argv,"-f",512);
  1012. ss.args.dspFramesPerCycle = _cmAsGetIntOpt( argc,argv,"-d",64);;
  1013. ss.args.audioBufCnt = _cmAsGetIntOpt( argc,argv,"-b",3);
  1014. ss.args.srate = cbRecd.srate;
  1015. ss.cbFunc = _cmAsTestCb; // set the DSP entry function
  1016. ss.cbDataPtr = &cbRecd; // set the DSP function argument record
  1017. cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl,
  1018. ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate);
  1019. // initialize the audio device system
  1020. if( cmApInitialize(rpt) != kOkApRC )
  1021. goto errLabel;
  1022. cmApReport(rpt);
  1023. // initialize the audio buffer
  1024. if( cmApBufInitialize( cmApDeviceCount(), cfg.meterMs ) != kOkApRC )
  1025. goto errLabel;
  1026. // initialize the audio system
  1027. if( cmAudioSysAllocate(&h,rpt,&cfg) != kOkAsRC )
  1028. goto errLabel;
  1029. // start the audio system
  1030. cmAudioSysEnable(h,true);
  1031. char c = 0;
  1032. printf("q=quit a-g=note n=ch r=rqst s=status\n");
  1033. // simulate a host event loop
  1034. while(c != 'q')
  1035. {
  1036. _cmAsTestMsg msg = {0,0,0,0};
  1037. bool fl = true;
  1038. // wait here for a key press
  1039. c =(char)fgetc(stdin);
  1040. fflush(stdin);
  1041. switch(c)
  1042. {
  1043. case 'c': msg.hz = cmMidiToHz(60); break;
  1044. case 'd': msg.hz = cmMidiToHz(62); break;
  1045. case 'e': msg.hz = cmMidiToHz(64); break;
  1046. case 'f': msg.hz = cmMidiToHz(65); break;
  1047. case 'g': msg.hz = cmMidiToHz(67); break;
  1048. case 'a': msg.hz = cmMidiToHz(69); break;
  1049. case 'b': msg.hz = cmMidiToHz(71); break;
  1050. case 'r': msg.id = 1; break; // request DSP process to send a callback count
  1051. case 'n': ++_cmAsTestChIdx; printf("ch:%i\n",_cmAsTestChIdx); break;
  1052. case 's':
  1053. // report the audio system status
  1054. cmAudioSysStatus(h,0,&status);
  1055. printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt);
  1056. //printf("%f \n",status.oMeterArray[0]);
  1057. fl = false;
  1058. break;
  1059. default:
  1060. fl=false;
  1061. }
  1062. if( fl )
  1063. {
  1064. // transmit a command to the DSP process
  1065. cmAudioSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId);
  1066. }
  1067. // check if messages are waiting to be delivered from the DSP process
  1068. unsigned msgByteCnt;
  1069. if((msgByteCnt = cmAudioSysIsMsgWaiting(h)) > 0 )
  1070. {
  1071. char buf[ msgByteCnt ];
  1072. // rcv a msg from the DSP process
  1073. if( cmAudioSysReceiveMsg(h,buf,msgByteCnt) == kOkAsRC )
  1074. {
  1075. _cmAsTestMsg* msg = (_cmAsTestMsg*)buf;
  1076. switch(msg->id)
  1077. {
  1078. case 1:
  1079. printf("RCV: Callback count:%i\n",msg->uint);
  1080. break;
  1081. }
  1082. }
  1083. }
  1084. // report the audio buffer status
  1085. //cmApBufReport(ss.args.rpt);
  1086. }
  1087. // stop the audio system
  1088. cmAudioSysEnable(h,false);
  1089. goto exitLabel;
  1090. errLabel:
  1091. printf("AUDIO SYSTEM TEST ERROR\n");
  1092. exitLabel:
  1093. cmAudioSysFree(&h);
  1094. cmApFinalize();
  1095. cmApBufFinalize();
  1096. }
  1097. /// [cmAudioSysTest]