libcm is a C development framework with an emphasis on audio signal processing applications.
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

cmRtSys.c 44KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmFloatTypes.h"
  4. #include "cmRpt.h"
  5. #include "cmErr.h"
  6. #include "cmCtx.h"
  7. #include "cmMem.h"
  8. #include "cmMallocDebug.h"
  9. #include "cmAudioPort.h"
  10. #include "cmAudioNrtDev.h"
  11. #include "cmAudioPortFile.h"
  12. #include "cmApBuf.h"
  13. #include "cmJson.h"
  14. #include "cmThread.h"
  15. #include "cmUdpPort.h"
  16. #include "cmUdpNet.h"
  17. #include "cmRtSysMsg.h"
  18. #include "cmRtSys.h"
  19. #include "cmMidi.h"
  20. #include "cmMidiPort.h"
  21. #include "cmMath.h"
  22. typedef enum
  23. {
  24. kNoCmdId,
  25. kEnableCbCmdId,
  26. kDisableCbCmdId
  27. } kRtCmdId_t;
  28. cmRtSysH_t cmRtSysNullHandle = { NULL };
  29. struct cmRt_str;
  30. typedef struct
  31. {
  32. struct cmRt_str* p; // pointer to the audio system instance which owns this sub-system
  33. cmRtSysSubSys_t ss; // sub-system configuration record
  34. cmRtSysCtx_t ctx; // DSP context
  35. cmRtSysStatus_t status; // current runtime status of this sub-system
  36. cmThreadH_t threadH; // audio system thread
  37. cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue
  38. cmThreadMutexH_t engMutexH; // thread mutex and condition variable
  39. cmUdpH_t udpH;
  40. bool runFl; // false during finalization otherwise true
  41. bool statusFl; // true if regular status notifications should be sent
  42. bool syncInputFl;
  43. kRtCmdId_t cmdId; // written by app thread, read by rt thread
  44. unsigned cbEnableFl; // written by rt thread, read by app thread
  45. double* iMeterArray; //
  46. double* oMeterArray; //
  47. unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples
  48. unsigned statusUpdateSmpIdx; // state update phase
  49. } _cmRtCfg_t;
  50. typedef struct cmRt_str
  51. {
  52. cmErr_t err;
  53. _cmRtCfg_t* ssArray;
  54. unsigned ssCnt;
  55. unsigned waitRtSubIdx; // index of the next sub-system to try with cmRtSysIsMsgWaiting().
  56. cmTsMp1cH_t dthQueH;
  57. bool initFl; // true if the audio system is initialized
  58. } cmRt_t;
  59. cmRt_t* _cmRtHandleToPtr( cmRtSysH_t h )
  60. {
  61. cmRt_t* p = (cmRt_t*)h.h;
  62. assert(p != NULL);
  63. return p;
  64. }
  65. cmRtRC_t _cmRtError( cmRt_t* p, cmRtRC_t rc, const char* fmt, ... )
  66. {
  67. va_list vl;
  68. va_start(vl,fmt);
  69. cmErrVMsg(&p->err,rc,fmt,vl);
  70. va_end(vl);
  71. return rc;
  72. }
  73. // Wrapper function to put msgs into thread safe queues and handle related errors.
  74. cmRtRC_t _cmRtEnqueueMsg( cmRt_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel )
  75. {
  76. cmRtRC_t rc = kOkRtRC;
  77. switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) )
  78. {
  79. case kOkThRC:
  80. break;
  81. case kBufFullThRC:
  82. {
  83. unsigned i;
  84. unsigned byteCnt = 0;
  85. for(i=0; i<segCnt; ++i)
  86. byteCnt += msgCntArray[i];
  87. rc = _cmRtError(p,kMsgEnqueueFailRtRC,"The %s queue was unable to load a msg containing %i bytes. The queue is currently allocated %i bytes and has %i bytes available.",queueLabel,byteCnt,cmTsMp1cAllocByteCount(qH),cmTsMp1cAvailByteCount(qH));
  88. }
  89. break;
  90. default:
  91. rc = _cmRtError(p,kMsgEnqueueFailRtRC,"A %s msg. enqueue failed.",queueLabel);
  92. }
  93. return rc;
  94. }
  95. // This is the function pointed to by ctx->dspToHostFunc.
  96. // It is called by the DSP proces to pass msgs to the host.
  97. // therefore it is always called from inside of _cmRtDspExecCallback().
  98. cmRtRC_t _cmRtDspToHostMsgCallback(struct cmRtSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  99. {
  100. cmRt_t* p = (cmRt_t*)ctx->reserved;
  101. assert( ctx->rtSubIdx < p->ssCnt );
  102. return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  103. }
  104. cmRtRC_t _cmRtSysDspToHostSegMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  105. {
  106. return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
  107. }
  108. cmRtRC_t cmRtSysDspToHostSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
  109. {
  110. cmRt_t* p = _cmRtHandleToPtr(h);
  111. return _cmRtSysDspToHostSegMsg(p,msgDataPtrArray,msgByteCntArray,msgSegCnt);
  112. }
  113. cmRtRC_t cmRtSysDspToHost( cmRtSysH_t h, const void* msgDataPtr, unsigned msgByteCnt)
  114. {
  115. const void* msgDataArray[] = { msgDataPtr };
  116. unsigned msgByteCntArray[] = { msgByteCnt };
  117. return cmRtSysDspToHostSegMsg(h,msgDataArray,msgByteCntArray,1);
  118. }
  119. cmRtRC_t _cmRtParseNonSubSysMsg( cmRt_t* p, const void* msg, unsigned msgByteCnt )
  120. {
  121. cmRtRC_t rc = kOkRtRC;
  122. cmRtSysMstr_t* m = (cmRtSysMstr_t*)msg;
  123. /*
  124. unsigned devIdx = cmRtSysUiInstIdToDevIndex(h->instId);
  125. unsigned chIdx = cmRtSysUiInstIdToChIndex(h->instId);
  126. unsigned inFl = cmRtSysUiInstIdToInFlag(h->instId);
  127. unsigned ctlId = cmRtSysUiInstIdToCtlId(h->instId);
  128. */
  129. // if the valuu associated with this msg is a mtx then set
  130. // its mtx data area pointer to just after the msg header.
  131. //if( cmDsvIsMtx(&h->value) )
  132. // h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t);
  133. unsigned flags = m->inFl ? kInApFl : kOutApFl;
  134. switch( m->ctlId )
  135. {
  136. case kSliderUiRtId: // slider
  137. cmApBufSetGain(m->devIdx,m->chIdx, flags, m->value);
  138. break;
  139. case kMeterUiRtId: // meter
  140. break;
  141. case kMuteUiRtId: // mute
  142. flags += m->value == 0 ? kEnableApFl : 0;
  143. cmApBufEnableChannel(m->devIdx,m->chIdx,flags);
  144. break;
  145. case kToneUiRtId: // tone
  146. flags += m->value > 0 ? kEnableApFl : 0;
  147. cmApBufEnableTone(m->devIdx,m->chIdx,flags);
  148. break;
  149. case kPassUiRtId: // pass
  150. flags += m->value > 0 ? kEnableApFl : 0;
  151. cmApBufEnablePass(m->devIdx,m->chIdx,flags);
  152. break;
  153. default:
  154. { assert(0); }
  155. }
  156. return rc;
  157. }
  158. // Process a UI msg sent from the host to the audio system
  159. cmRtRC_t _cmRtHandleNonSubSysMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt )
  160. {
  161. cmRtRC_t rc = kOkRtRC;
  162. // if the message is contained in a single segment it can be dispatched immediately ...
  163. if( msgSegCnt == 1 )
  164. rc = _cmRtParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]);
  165. else
  166. {
  167. // ... otherwise deserialize the message into contiguous memory ....
  168. unsigned byteCnt = 0;
  169. unsigned i;
  170. for(i=0; i<msgSegCnt; ++i)
  171. byteCnt += msgByteCntArray[i];
  172. char buf[ byteCnt ];
  173. char* b = buf;
  174. for(i=0; i<msgSegCnt; ++i)
  175. {
  176. memcpy(b, msgDataPtrArray[i], msgByteCntArray[i] );
  177. b += msgByteCntArray[i];
  178. }
  179. // ... and then dispatch it
  180. rc = _cmRtParseNonSubSysMsg(p,buf,byteCnt);
  181. }
  182. return rc;
  183. }
  184. cmRtRC_t _cmRtSendStateStatusToHost( _cmRtCfg_t* cp )
  185. {
  186. cmRtRC_t rc = kOkRtRC;
  187. cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  188. cp->status.hdr.selId = kStatusSelRtId;
  189. cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt );
  190. cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt );
  191. unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt;
  192. unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt;
  193. const void* msgDataPtrArray[] = { &cp->status, cp->iMeterArray, cp->oMeterArray };
  194. unsigned msgByteCntArray[] = { sizeof(cp->status), iMeterByteCnt, oMeterByteCnt };
  195. unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  196. _cmRtSysDspToHostSegMsg(cp->p,msgDataPtrArray,msgByteCntArray, segCnt );
  197. return rc;
  198. }
  199. // This is only called with _cmRtRecd.engMutexH locked
  200. cmRtRC_t _cmRtDeliverMsgsWithLock( _cmRtCfg_t* cp )
  201. {
  202. int i;
  203. cmRtRC_t rc = kOkThRC;
  204. // as long as their may be a msg wating in the incoming msg queue
  205. for(i=0; rc == kOkThRC; ++i)
  206. {
  207. // if a msg is waiting transmit it via cfg->cbFunc()
  208. if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC)
  209. ++cp->status.msgCbCnt;
  210. }
  211. return rc;
  212. }
  213. // The DSP execution callback happens through this function.
  214. // This function is only called from inside _cmRtThreadCallback()
  215. // with the engine mutex locked.
  216. void _cmRtDspExecCallback( _cmRtCfg_t* cp )
  217. {
  218. // Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers.
  219. // Notes:
  220. // 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[].
  221. // 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[].
  222. // 3) All samples returned in oChArray[] buffers will be set to zero.
  223. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt );
  224. // calling this function results in callbacks to _gtNetRecv()
  225. // which in turn calls cmRtSysDeliverMsg() which queues any incoming messages
  226. // which are then transferred to the DSP processes by the the call to
  227. // _cmRtDeliverMsgWithLock() below.
  228. //if( cp->cbEnableFl )
  229. // cmUdpGetAvailData(cp->udpH,NULL,NULL,NULL);
  230. // if there are msgs waiting to be sent to the DSP process send them.
  231. if( cp->cbEnableFl )
  232. if( cmTsMp1cMsgWaiting(cp->htdQueueH) )
  233. _cmRtDeliverMsgsWithLock(cp);
  234. // call the application provided DSP process
  235. if( cp->cbEnableFl )
  236. {
  237. cp->ctx.audioRateFl = true;
  238. cp->ss.cbFunc( &cp->ctx, 0, NULL );
  239. cp->ctx.audioRateFl = false;
  240. }
  241. // Notice client callback enable/disable
  242. // requests from the client thread
  243. switch( cp->cmdId )
  244. {
  245. case kNoCmdId:
  246. break;
  247. case kDisableCbCmdId:
  248. if( cp->cbEnableFl )
  249. cmThUIntDecr(&cp->cbEnableFl,1);
  250. break;
  251. case kEnableCbCmdId:
  252. if( cp->cbEnableFl==0)
  253. cmThUIntIncr(&cp->cbEnableFl,1);
  254. break;
  255. }
  256. // advance the audio buffer
  257. cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
  258. cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
  259. // handle periodic status messages to the host
  260. if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt )
  261. {
  262. cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt;
  263. if( cp->statusFl )
  264. _cmRtSendStateStatusToHost(cp);
  265. }
  266. }
  267. // Returns true if audio buffer is has waiting incoming samples and
  268. // available outgoing space.
  269. bool _cmRtBufIsReady( const _cmRtCfg_t* cp )
  270. {
  271. // if there neither the input or output device is valid
  272. if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx )
  273. return false;
  274. bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl);
  275. bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl);
  276. bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl;
  277. bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl;
  278. //printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl);
  279. return iFl && oFl;
  280. }
  281. // This is the main audio system loop (and thread callback function).
  282. // It blocks by waiting on a cond. var (which simultaneously unlocks a mutex).
  283. // With the mutex unlocked messages can pass directly to the DSP process
  284. // via calls to cmRtDeliverMsg().
  285. // When the audio buffers need to be serviced the audio device callback
  286. // signals the cond. var. which results in this thread waking up (and
  287. // simultaneously locking the mutex) as soon as the mutex is available.
  288. bool _cmRtThreadCallback(void* arg)
  289. {
  290. cmRtRC_t rc;
  291. _cmRtCfg_t* cp = (_cmRtCfg_t*)arg;
  292. // lock the cmRtSys mutex
  293. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkRtRC )
  294. {
  295. _cmRtError(cp->p,rc,"The cmRtSys thread mutex lock failed.");
  296. return false;
  297. }
  298. // runFl is always set except during finalization
  299. while( cp->runFl )
  300. {
  301. // if the buffer is NOT ready or the cmRtSys is disabled
  302. if(_cmRtBufIsReady(cp) == false || cp->cbEnableFl==false )
  303. {
  304. // block on the cond var and unlock the mutex
  305. if( cmThreadMutexWaitOnCondVar(cp->engMutexH,false) != kOkRtRC )
  306. {
  307. cmThreadMutexUnlock(cp->engMutexH);
  308. _cmRtError(cp->p,rc,"The cmRtSys cond. var. wait failed.");
  309. return false;
  310. }
  311. //
  312. // the cond var was signaled and the mutex is now locked
  313. //
  314. ++cp->status.wakeupCnt;
  315. }
  316. // be sure we are still enabled and the buffer is still ready
  317. while( cp->runFl && _cmRtBufIsReady(cp) )
  318. {
  319. ++cp->status.audioCbCnt;
  320. // make the cmRtSys callback
  321. _cmRtDspExecCallback( cp );
  322. // update the signal time
  323. cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle;
  324. }
  325. }
  326. // unlock the mutex
  327. cmThreadMutexUnlock(cp->engMutexH);
  328. return true;
  329. }
  330. void _cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl )
  331. {
  332. static unsigned rtPhase = 0;
  333. //fill output with noise
  334. unsigned i = 0,j =0, k = 0, phs = 0;
  335. for(; i<outPktCnt; ++i)
  336. {
  337. cmApAudioPacket_t* a = outPktArray + i;
  338. cmApSample_t* dp = (cmApSample_t*)a->audioBytesPtr;
  339. phs = a->audioFramesCnt;
  340. if( sineFl )
  341. {
  342. for(j=0; j<a->audioFramesCnt; ++j)
  343. {
  344. cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * rtPhase + j ));
  345. for(k=0; k<a->chCnt; ++k,++dp)
  346. *dp = v;
  347. }
  348. }
  349. else
  350. {
  351. for(j=0; j<a->audioFramesCnt*a->chCnt; ++j,++dp)
  352. *dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2);
  353. }
  354. }
  355. rtPhase += phs;
  356. }
  357. // This is the audio port callback function.
  358. //
  359. // _cmRtSysAudioUpdate() assumes that at most two audio device threads
  360. // (input and output) may call it. cmApBufUpdate() is safe under these conditions
  361. // since the input and output buffers are updated separately.
  362. // p->syncInputFl is used to allow either the input or output thread to signal
  363. // the condition variable. This flag is necessary to prevent both threads from simultaneously
  364. // attempting to signal the condition variable (which will lock the system).
  365. //
  366. // If more than two audio device threads call the function then this function is not safe.
  367. void _cmRtSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
  368. {
  369. _cmRtCfg_t* cp = (_cmRtCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr);
  370. ++cp->status.updateCnt;
  371. if( cp->runFl )
  372. {
  373. // transfer incoming/outgoing samples from/to the audio device
  374. cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt);
  375. // generate a test signal
  376. //_cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl );
  377. //return;
  378. bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0);
  379. //printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt);
  380. // if the input/output buffer contain samples to be processed then signal the condition variable
  381. // - this will cause the audio system thread to unblock and the used defined DSP process will be called.
  382. if( testBufFl && _cmRtBufIsReady(cp) )
  383. {
  384. if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC )
  385. _cmRtError(cp->p,kMutexErrRtRC,"CmRtSys signal cond. var. failed.");
  386. }
  387. }
  388. }
  389. // Called when MIDI messages arrive from external MIDI ports.
  390. void _cmRtSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt )
  391. {
  392. unsigned i;
  393. for(i=0; i<pktCnt; ++i)
  394. {
  395. const cmMidiPacket_t* pkt = pktArray + i;
  396. _cmRtCfg_t* cp = (_cmRtCfg_t*)(pkt->cbDataPtr);
  397. if( !cp->runFl )
  398. continue;
  399. cmRtSysH_t asH;
  400. asH.h = cp->p;
  401. cmRtSysMidi_t m;
  402. m.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  403. m.hdr.selId = kMidiMsgArraySelRtId;
  404. m.devIdx = pkt->devIdx;
  405. m.portIdx = pkt->portIdx;
  406. m.msgCnt = pkt->msgCnt;
  407. /*
  408. unsigned selId = kMidiMsgArraySelRtId;
  409. const void* msgPtrArray[] = { &cp->ctx.rtSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray };
  410. unsigned msgByteCntArray[] = { sizeof(cp->ctx.rtSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) };
  411. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  412. */
  413. const void* msgPtrArray[] = { &m, pkt->msgArray };
  414. unsigned msgByteCntArray[] = { sizeof(m), pkt->msgCnt*sizeof(cmMidiMsg) };
  415. unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
  416. cmRtSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId);
  417. }
  418. }
  419. cmRtRC_t cmRtSysAllocate( cmRtSysH_t* hp, cmRpt_t* rpt, const cmRtSysCfg_t* cfg )
  420. {
  421. cmRtRC_t rc;
  422. if((rc = cmRtSysFree(hp)) != kOkRtRC )
  423. return rc;
  424. cmRt_t* p = cmMemAllocZ( cmRt_t, 1 );
  425. cmErrSetup(&p->err,rpt,"Audio System");
  426. hp->h = p;
  427. if( cfg != NULL )
  428. if((rc = cmRtSysInitialize( *hp, cfg )) != kOkRtRC )
  429. cmRtSysFree(hp);
  430. return rc;
  431. }
  432. cmRtRC_t cmRtSysFree( cmRtSysH_t* hp )
  433. {
  434. cmRtRC_t rc;
  435. if( hp == NULL || hp->h == NULL )
  436. return kOkRtRC;
  437. if((rc = cmRtSysFinalize(*hp)) != kOkRtRC )
  438. return rc;
  439. cmRt_t* p = _cmRtHandleToPtr(*hp);
  440. cmMemFree(p);
  441. hp->h = NULL;
  442. return rc;
  443. }
  444. cmRtRC_t _cmRtSysEnable( cmRt_t* p, bool enableFl )
  445. {
  446. cmRtRC_t rc = kOkRtRC;
  447. unsigned i;
  448. unsigned n;
  449. unsigned tickMs = 20;
  450. unsigned timeOutMs = 10000;
  451. for(i=0; i<p->ssCnt; ++i)
  452. {
  453. _cmRtCfg_t* cp = p->ssArray + i;
  454. if( enableFl )
  455. {
  456. cp->cmdId = kNoCmdId;
  457. cmThUIntIncr(&cp->cmdId,kEnableCbCmdId);
  458. for(n=0; n<timeOutMs && cp->cbEnableFl==false; n+=tickMs )
  459. cmSleepMs(tickMs);
  460. cmThUIntDecr(&cp->cmdId,kEnableCbCmdId);
  461. }
  462. else
  463. {
  464. cp->cmdId = kNoCmdId;
  465. cmThUIntIncr(&cp->cmdId,kDisableCbCmdId);
  466. // wait for the rt thread to return from a client callbacks
  467. for(n=0; n<timeOutMs && cp->cbEnableFl; n+=tickMs )
  468. cmSleepMs(tickMs);
  469. cmThUIntDecr(&cp->cmdId,kDisableCbCmdId);
  470. }
  471. if( n >= timeOutMs )
  472. rc = cmErrMsg(&p->err,kTimeOutErrRtRC,"RT System %s timed out after %i milliseconds.",enableFl?"enable":"disable",timeOutMs);
  473. }
  474. return rc;
  475. }
  476. cmRtRC_t _cmRtSysFinalize( cmRt_t* p )
  477. {
  478. cmRtRC_t rc = kOkRtRC;
  479. unsigned i;
  480. // mark the audio system as NOT initialized
  481. p->initFl = false;
  482. // be sure all audio callbacks are disabled before continuing.
  483. if((rc = _cmRtSysEnable(p,false)) != kOkRtRC )
  484. return _cmRtError(p,rc,"Audio system finalize failed because device halting failed.");
  485. // stop the audio devices
  486. for(i=0; i<p->ssCnt; ++i)
  487. {
  488. _cmRtCfg_t* cp = p->ssArray + i;
  489. // stop the input device
  490. if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkRtRC )
  491. return _cmRtError(p,kAudioDevStopFailRtRC,"The audio input device stop failed.");
  492. // stop the output device
  493. if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkRtRC )
  494. return _cmRtError(p,kAudioDevStopFailRtRC,"The audio output device stop failed.");
  495. }
  496. for(i=0; i<p->ssCnt; ++i)
  497. {
  498. _cmRtCfg_t* cp = p->ssArray + i;
  499. if( cmThreadIsValid( cp->threadH ))
  500. {
  501. // inform the thread that it should exit
  502. cp->runFl = false;
  503. cp->statusFl = false;
  504. // signal the cond var to cause the thread to run
  505. if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC )
  506. _cmRtError(p,kMutexErrRtRC,"Finalize signal cond. var. failed.");
  507. // wait to take control of the mutex - this will occur when the thread function exits
  508. if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC )
  509. _cmRtError(p,kMutexErrRtRC,"Finalize lock failed.");
  510. // unlock the mutex because it is no longer needed and must be unlocked to be destroyed
  511. if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC )
  512. _cmRtError(p,kMutexErrRtRC,"Finalize unlock failed.");
  513. // destroy the thread
  514. if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC )
  515. _cmRtError(p,kThreadErrRtRC,"Thread destroy failed.");
  516. }
  517. // destroy the mutex
  518. if( cmThreadMutexIsValid(cp->engMutexH) )
  519. if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC )
  520. _cmRtError(p,kMutexErrRtRC,"Mutex destroy failed.");
  521. // remove the MIDI callback
  522. if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmRtSysMidiCallback, cp) )
  523. if( cmMpRemoveCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
  524. _cmRtError(p,kMidiSysFailRtRC,"MIDI callback removal failed.");
  525. // destroy the host-to-dsp msg queue
  526. if( cmTsMp1cIsValid(cp->htdQueueH ) )
  527. if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC )
  528. _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue destroy failed.");
  529. // destroy the dsp-to-host msg queue
  530. if( cmTsMp1cIsValid(p->dthQueH) )
  531. if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC )
  532. _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue destroy failed.");
  533. cmMemPtrFree(&cp->ctx.iChArray);
  534. cmMemPtrFree(&cp->ctx.oChArray);
  535. cp->ctx.iChCnt = 0;
  536. cp->ctx.oChCnt = 0;
  537. cmMemPtrFree(&cp->iMeterArray);
  538. cmMemPtrFree(&cp->oMeterArray);
  539. cp->status.iMeterCnt = 0;
  540. cp->status.oMeterCnt = 0;
  541. }
  542. cmMemPtrFree(&p->ssArray);
  543. p->ssCnt = 0;
  544. return rc;
  545. }
  546. // A given device may be used as an input device exactly once and an output device exactly once.
  547. // When the input to a given device is used by one sub-system and the output is used by another
  548. // then both sub-systems must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle.
  549. cmRtRC_t _cmRtSysValidate( cmErr_t* err, const cmRtSysCfg_t* cfg )
  550. {
  551. unsigned i,j,k;
  552. for(i=0; i<2; ++i)
  553. {
  554. // examine input devices - then output devices
  555. bool inputFl = i==0;
  556. bool outputFl = !inputFl;
  557. for(j=0; j<cfg->ssCnt; ++j)
  558. {
  559. cmRtSysArgs_t* s0 = &cfg->ssArray[j].args;
  560. unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx;
  561. for(k=0; k<cfg->ssCnt && devIdx != cmInvalidIdx; ++k)
  562. if( k != j )
  563. {
  564. cmRtSysArgs_t* s1 = &cfg->ssArray[k].args;
  565. // if the device was used as input or output multple times then signal an error
  566. if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) )
  567. return cmErrMsg(err,kInvalidArgRtRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output");
  568. // if this device is being used by another subsystem ...
  569. if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) )
  570. {
  571. // ... then some of its buffer spec's must match
  572. if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle )
  573. return cmErrMsg(err,kInvalidArgRtRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx);
  574. }
  575. }
  576. }
  577. }
  578. return kOkRtRC;
  579. }
  580. cmRtRC_t cmRtSysInitialize( cmRtSysH_t h, const cmRtSysCfg_t* cfg )
  581. {
  582. cmRtRC_t rc;
  583. unsigned i;
  584. cmRt_t* p = _cmRtHandleToPtr(h);
  585. // validate the device setup
  586. if((rc =_cmRtSysValidate(&p->err, cfg )) != kOkRtRC )
  587. return rc;
  588. // always finalize before iniitalize
  589. if((rc = cmRtSysFinalize(h)) != kOkRtRC )
  590. return rc;
  591. p->ssArray = cmMemAllocZ( _cmRtCfg_t, cfg->ssCnt );
  592. p->ssCnt = cfg->ssCnt;
  593. for(i=0; i<p->ssCnt; ++i)
  594. {
  595. _cmRtCfg_t* cp = p->ssArray + i;
  596. const cmRtSysSubSys_t* ss = cfg->ssArray + i;
  597. cp->p = p;
  598. cp->ss = *ss; // copy the cfg into the internal audio system state
  599. cp->runFl = false;
  600. cp->statusFl = false;
  601. cp->ctx.reserved = p;
  602. cp->ctx.rtSubIdx = i;
  603. cp->ctx.ss = &cp->ss;
  604. cp->ctx.begSmpIdx = 0;
  605. cp->ctx.dspToHostFunc = _cmRtDspToHostMsgCallback;
  606. // validate the input device index
  607. if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() )
  608. {
  609. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio input device index %i is invalid.",ss->args.inDevIdx);
  610. goto errLabel;
  611. }
  612. // validate the output device index
  613. if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() )
  614. {
  615. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio output device index %i is invalid.",ss->args.outDevIdx);
  616. goto errLabel;
  617. }
  618. // setup the input device
  619. if( ss->args.inDevIdx != cmInvalidIdx )
  620. if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
  621. {
  622. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio input device setup failed.");
  623. goto errLabel;
  624. }
  625. // setup the output device
  626. if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx )
  627. if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
  628. {
  629. rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio output device setup failed.");
  630. goto errLabel;
  631. }
  632. // setup the input device buffer
  633. if( ss->args.inDevIdx != cmInvalidIdx )
  634. if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC )
  635. {
  636. rc = _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer input setup failed.");
  637. goto errLabel;
  638. }
  639. cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl );
  640. cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl );
  641. // setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmRtDspExecCallback()
  642. if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 )
  643. cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt );
  644. // setup the output device buffer
  645. if( ss->args.outDevIdx != ss->args.inDevIdx )
  646. if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC )
  647. return _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer ouput device setup failed.");
  648. // setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmRtDspExecCallback()
  649. if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 )
  650. cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt );
  651. // determine the sync source
  652. cp->syncInputFl = ss->args.syncInputFl;
  653. // if sync'ing to an unavailable device then sync to the available device
  654. if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 )
  655. cp->syncInputFl = false;
  656. if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 )
  657. cp->syncInputFl = true;
  658. // setup the status record
  659. cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
  660. cp->status.iDevIdx = ss->args.inDevIdx;
  661. cp->status.oDevIdx = ss->args.outDevIdx;
  662. cp->status.iMeterCnt = cp->ctx.iChCnt;
  663. cp->status.oMeterCnt = cp->ctx.oChCnt;
  664. cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt );
  665. cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt );
  666. cp->udpH = cfg->udpH;
  667. // create the audio System thread
  668. if((rc = cmThreadCreate( &cp->threadH, _cmRtThreadCallback, cp, ss->args.rpt )) != kOkThRC )
  669. {
  670. rc = _cmRtError(p,kThreadErrRtRC,"Thread create failed.");
  671. goto errLabel;
  672. }
  673. // create the audio System mutex
  674. if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC )
  675. {
  676. rc = _cmRtError(p,kMutexErrRtRC,"Thread mutex create failed.");
  677. goto errLabel;
  678. }
  679. // create the host-to-dsp thread safe msg queue
  680. if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC )
  681. {
  682. rc = _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue create failed.");
  683. goto errLabel;
  684. }
  685. // create the dsp-to-host thread safe msg queue
  686. if( cmTsMp1cIsValid( p->dthQueH ) == false )
  687. {
  688. if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, cfg->clientCbFunc, cfg->clientCbData, ss->args.rpt )) != kOkThRC )
  689. {
  690. rc = _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue create failed.");
  691. goto errLabel;
  692. }
  693. }
  694. //cp->dthQueueH = p->dthQueH;
  695. // install an external MIDI port callback handler for incoming MIDI messages
  696. if( cmMpIsInitialized() )
  697. if( cmMpInstallCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
  698. {
  699. rc = _cmRtError(p,kMidiSysFailRtRC,"MIDI system callback installation failed.");
  700. goto errLabel;
  701. }
  702. // setup the sub-system status notification
  703. cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 );
  704. cp->statusUpdateSmpIdx = 0;
  705. cp->runFl = true;
  706. // start the audio System thread
  707. if( cmThreadPause( cp->threadH, 0 ) != kOkThRC )
  708. {
  709. rc = _cmRtError(p,kThreadErrRtRC,"Thread start failed.");
  710. goto errLabel;
  711. }
  712. }
  713. //_cmRtHostInitNotify(p);
  714. for(i=0; i<p->ssCnt; ++i)
  715. {
  716. _cmRtCfg_t* cp = p->ssArray + i;
  717. // start the input device
  718. if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkRtRC )
  719. return _cmRtError(p,kAudioDevStartFailRtRC,"The audio input device start failed.");
  720. // start the output device
  721. if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkRtRC )
  722. return _cmRtError(p,kAudioDevStartFailRtRC,"The audio ouput device start failed.");
  723. }
  724. p->initFl = true;
  725. errLabel:
  726. if( rc != kOkRtRC )
  727. _cmRtSysFinalize(p);
  728. return rc;
  729. }
  730. cmRtRC_t cmRtSysFinalize(cmRtSysH_t h )
  731. {
  732. cmRtRC_t rc = kOkRtRC;
  733. if( cmRtSysHandleIsValid(h) == false )
  734. return rc;
  735. cmRt_t* p = _cmRtHandleToPtr(h);
  736. rc = _cmRtSysFinalize(p);
  737. h.h = NULL;
  738. return rc;
  739. }
  740. bool cmRtSysIsInitialized( cmRtSysH_t h )
  741. {
  742. cmRt_t* p = _cmRtHandleToPtr(h);
  743. return p->initFl;
  744. }
  745. cmRtRC_t _cmRtSysVerifyInit( cmRt_t* p, bool errFl )
  746. {
  747. if( p->initFl == false )
  748. {
  749. // if the last msg generated was also a not init msg then don't
  750. // generate another message - just return the error
  751. if( errFl )
  752. if( cmErrLastRC(&p->err) != kNotInitRtRC )
  753. cmErrMsg(&p->err,kNotInitRtRC,"The audio system is not initialized.");
  754. return kNotInitRtRC;
  755. }
  756. return kOkRtRC;
  757. }
  758. bool cmRtSysIsEnabled( cmRtSysH_t h )
  759. {
  760. if( cmRtSysIsInitialized(h) == false )
  761. return false;
  762. cmRt_t* p = _cmRtHandleToPtr(h);
  763. unsigned i;
  764. for(i=0; i<p->ssCnt; ++i)
  765. if( p->ssArray[i].cbEnableFl )
  766. return true;
  767. return false;
  768. }
  769. cmRtRC_t cmRtSysEnable( cmRtSysH_t h, bool enableFl )
  770. {
  771. cmRt_t* p = _cmRtHandleToPtr(h);
  772. return _cmRtSysEnable(p,enableFl);
  773. }
  774. cmRtRC_t cmRtSysDeliverSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId )
  775. {
  776. cmRt_t* p = _cmRtHandleToPtr(h);
  777. cmRtRC_t rc;
  778. // the system must be initialized to use this function
  779. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  780. return rc;
  781. if( msgSegCnt == 0 )
  782. return kOkRtRC;
  783. // BUG BUG BUG - there is no reason that both the rtSubIdx and the selId must
  784. // be in the first segment but it would be nice.
  785. assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) );
  786. // The audio sub-system index is always the first field of the msg
  787. // and the msg selector id is always the second field
  788. unsigned* array = (unsigned*)msgDataPtrArray[0];
  789. unsigned rtSubIdx = array[0];
  790. unsigned selId = array[1];
  791. if( selId == kUiMstrSelRtId )
  792. return _cmRtHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt );
  793. if( selId == kNetSyncSelRtId )
  794. {
  795. assert( msgSegCnt==1);
  796. assert( rtSubIdx < p->ssCnt );
  797. p->ssArray[rtSubIdx].ctx.srcNetNodeId = srcNetNodeId;
  798. p->ssArray[rtSubIdx].ss.cbFunc(&p->ssArray[rtSubIdx].ctx,msgByteCntArray[0],msgDataPtrArray[0]);
  799. return kOkRtRC;
  800. }
  801. return _cmRtEnqueueMsg(p,p->ssArray[rtSubIdx].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP");
  802. }
  803. cmRtRC_t cmRtSysDeliverMsg( cmRtSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  804. {
  805. const void* msgDataPtrArray[] = { msgPtr };
  806. unsigned msgByteCntArray[] = { msgByteCnt };
  807. return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId);
  808. }
  809. cmRtRC_t cmRtSysDeliverIdMsg( cmRtSysH_t h, unsigned rtSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
  810. {
  811. cmRtRC_t rc;
  812. cmRt_t* p = _cmRtHandleToPtr(h);
  813. // the system must be initialized to use this function
  814. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  815. return rc;
  816. const void* msgDataPtrArray[] = { &rtSubIdx, &id, msgPtr };
  817. unsigned msgByteCntArray[] = { sizeof(rtSubIdx), sizeof(id), msgByteCnt };
  818. return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId);
  819. }
  820. unsigned cmRtSysIsMsgWaiting( cmRtSysH_t h )
  821. {
  822. cmRtRC_t rc;
  823. cmRt_t* p = _cmRtHandleToPtr(h);
  824. // the system must be initialized to use this function
  825. if((rc = _cmRtSysVerifyInit(p,false)) != kOkRtRC )
  826. return 0;
  827. unsigned n = 0;
  828. unsigned retByteCnt;
  829. for(n=0; n < p->ssCnt; ++n )
  830. {
  831. if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 )
  832. return retByteCnt;
  833. p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
  834. }
  835. return 0;
  836. }
  837. cmRtRC_t cmRtSysReceiveMsg( cmRtSysH_t h, void* msgDataPtr, unsigned msgByteCnt )
  838. {
  839. cmRtRC_t rc;
  840. cmRt_t* p = _cmRtHandleToPtr(h);
  841. // the system must be initialized to use this function
  842. if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
  843. return rc;
  844. //switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitRtSubIdx].dthQueueH,msgDataPtr,msgByteCnt) )
  845. switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) )
  846. {
  847. case kOkThRC:
  848. p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
  849. return kOkRtRC;
  850. case kBufTooSmallThRC:
  851. return kBufTooSmallRtRC;
  852. case kBufEmptyThRC:
  853. return kNoMsgWaitingRtRC;
  854. }
  855. return _cmRtError(p,kTsQueueErrRtRC,"A deque operation failed on the DSP-to-Host message queue.");
  856. }
  857. void cmRtSysStatus( cmRtSysH_t h, unsigned rtSubIdx, cmRtSysStatus_t* statusPtr )
  858. {
  859. cmRt_t* p = _cmRtHandleToPtr(h);
  860. // the system must be initialized to use this function
  861. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  862. return;
  863. if( rtSubIdx < p->ssCnt )
  864. *statusPtr = p->ssArray[rtSubIdx].status;
  865. }
  866. void cmRtSysStatusNotifyEnable( cmRtSysH_t h, unsigned rtSubIdx, bool enableFl )
  867. {
  868. cmRt_t* p = _cmRtHandleToPtr(h);
  869. // the system must be initialized to use this function
  870. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  871. return;
  872. unsigned i = rtSubIdx == cmInvalidIdx ? 0 : rtSubIdx;
  873. unsigned n = rtSubIdx == cmInvalidIdx ? p->ssCnt : rtSubIdx+1;
  874. for(; i<n; ++i)
  875. p->ssArray[i].statusFl = enableFl;
  876. }
  877. bool cmRtSysHandleIsValid( cmRtSysH_t h )
  878. { return h.h != NULL; }
  879. cmRtSysCtx_t* cmRtSysContext( cmRtSysH_t h, unsigned rtSubIdx )
  880. {
  881. cmRt_t* p = _cmRtHandleToPtr(h);
  882. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  883. return NULL;
  884. return &p->ssArray[rtSubIdx].ctx;
  885. }
  886. unsigned cmRtSysSubSystemCount( cmRtSysH_t h )
  887. {
  888. cmRt_t* p = _cmRtHandleToPtr(h);
  889. if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
  890. return 0;
  891. return p->ssCnt;
  892. }
  893. //===========================================================================================================================
  894. //
  895. // cmRtTest()
  896. //
  897. /// [cmRtSysTest]
  898. typedef struct
  899. {
  900. double hz; // current synth frq
  901. long phs; // current synth phase
  902. double srate; // audio sample rate
  903. unsigned cbCnt; // DSP cycle count
  904. bool synthFl; // true=synth false=pass through
  905. } _cmRtTestCbRecd;
  906. typedef struct
  907. {
  908. unsigned rtSubIdx; // rtSubIdx must always be the first field in the msg
  909. unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host
  910. double hz;
  911. unsigned uint;
  912. } _cmRtTestMsg;
  913. long _cmRtSynthSine( _cmRtTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt )
  914. {
  915. long ph = 0;
  916. unsigned i;
  917. for(i=0; i<chCnt; ++i)
  918. {
  919. unsigned j;
  920. cmApSample_t* op = p + i;
  921. ph = r->phs;
  922. for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
  923. *op = (cmApSample_t)(0.9 * sin( 2.0 * M_PI * r->hz * ph / r->srate ));
  924. }
  925. return ph;
  926. }
  927. unsigned _cmRtTestChIdx = 0;
  928. cmRC_t _cmRtTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr )
  929. {
  930. cmRC_t rc = cmOkRC;
  931. cmRtSysCtx_t* ctx = (cmRtSysCtx_t*)cbPtr;
  932. cmRtSysSubSys_t* ss = ctx->ss;
  933. _cmRtTestCbRecd* r = (_cmRtTestCbRecd*)ss->cbDataPtr;
  934. // update the calback counter
  935. ++r->cbCnt;
  936. // if this is an audio update request
  937. if( msgByteCnt == 0 )
  938. {
  939. unsigned i;
  940. if( r->synthFl )
  941. {
  942. long phs = 0;
  943. if(0)
  944. {
  945. for(i=0; i<ctx->oChCnt; ++i)
  946. if( ctx->oChArray[i] != NULL )
  947. phs = _cmRtSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle );
  948. }
  949. else
  950. {
  951. if( _cmRtTestChIdx < ctx->oChCnt )
  952. phs = _cmRtSynthSine(r, ctx->oChArray[_cmRtTestChIdx], 1, ss->args.dspFramesPerCycle );
  953. }
  954. r->phs = phs;
  955. }
  956. else
  957. {
  958. // BUG BUG BUG - this assumes that the input and output channels are the same.
  959. unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt);
  960. for(i=0; i<chCnt; ++i)
  961. memcpy(ctx->oChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle);
  962. }
  963. }
  964. else // ... otherwise it is a msg for the DSP process from the host
  965. {
  966. _cmRtTestMsg* msg = (_cmRtTestMsg*)msgDataPtr;
  967. msg->rtSubIdx = ctx->rtSubIdx;
  968. switch(msg->id)
  969. {
  970. case 0:
  971. r->hz = msg->hz;
  972. break;
  973. case 1:
  974. msg->uint = r->cbCnt;
  975. msgByteCnt = sizeof(_cmRtTestMsg);
  976. rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1);
  977. break;
  978. }
  979. }
  980. return rc;
  981. }
  982. // print the usage message for cmAudioPortTest.c
  983. void _cmRtPrintUsage( cmRpt_t* rpt )
  984. {
  985. char msg[] =
  986. "cmRtSysTest() command switches:\n"
  987. "-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -m <msgqsize> -d <dspsize> -t -p -h \n"
  988. "\n"
  989. "-r <srate> = sample rate (48000)\n"
  990. "-c <chcnt> = audio channels (2)\n"
  991. "-b <bufcnt> = count of buffers (3)\n"
  992. "-f <frmcnt> = count of samples per buffer (512)\n"
  993. "-i <idevidx> = input device index (0)\n"
  994. "-o <odevidx> = output device index (2)\n"
  995. "-m <msgqsize> = message queue byte count (1024)\n"
  996. "-d <dspsize> = samples per DSP frame (64)\n"
  997. "-s = true: sync to input port false: sync to output port\n"
  998. "-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n"
  999. "-p = report but don't start audio devices\n"
  1000. "-h = print this usage message\n";
  1001. cmRptPrintf(rpt,"%s",msg);
  1002. }
  1003. // Get a command line option.
  1004. int _cmRtGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
  1005. {
  1006. int i = 0;
  1007. for(; i<argc; ++i)
  1008. if( strcmp(label,argv[i]) == 0 )
  1009. {
  1010. if(boolFl)
  1011. return 1;
  1012. if( i == (argc-1) )
  1013. return defaultVal;
  1014. return atoi(argv[i+1]);
  1015. }
  1016. return defaultVal;
  1017. }
  1018. bool _cmRtGetBoolOpt( int argc, const char* argv[], const char* label, bool defaultVal )
  1019. { return _cmRtGetOpt(argc,argv,label,defaultVal?1:0,true)!=0; }
  1020. int _cmRtGetIntOpt( int argc, const char* argv[], const char* label, int defaultVal )
  1021. { return _cmRtGetOpt(argc,argv,label,defaultVal,false); }
  1022. void cmRtSysTest( cmRpt_t* rpt, int argc, const char* argv[] )
  1023. {
  1024. cmRtSysCfg_t cfg;
  1025. cmRtSysSubSys_t ss;
  1026. cmRtSysH_t h = cmRtSysNullHandle;
  1027. cmRtSysStatus_t status;
  1028. _cmRtTestCbRecd cbRecd = {1000.0,0,48000.0,0};
  1029. cfg.ssArray = &ss;
  1030. cfg.ssCnt = 1;
  1031. //cfg.afpArray= NULL;
  1032. //cfg.afpCnt = 0;
  1033. cfg.meterMs = 50;
  1034. if(_cmRtGetBoolOpt(argc,argv,"-h",false))
  1035. _cmRtPrintUsage(rpt);
  1036. cbRecd.srate = _cmRtGetIntOpt(argc,argv,"-r",48000);
  1037. cbRecd.synthFl = _cmRtGetBoolOpt(argc,argv,"-t",false)==false;
  1038. ss.args.rpt = rpt;
  1039. ss.args.inDevIdx = _cmRtGetIntOpt( argc,argv,"-i",0);
  1040. ss.args.outDevIdx = _cmRtGetIntOpt( argc,argv,"-o",2);
  1041. ss.args.syncInputFl = _cmRtGetBoolOpt(argc,argv,"-s",true);
  1042. ss.args.msgQueueByteCnt = _cmRtGetIntOpt( argc,argv,"-m",8192);
  1043. ss.args.devFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-f",512);
  1044. ss.args.dspFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-d",64);;
  1045. ss.args.audioBufCnt = _cmRtGetIntOpt( argc,argv,"-b",3);
  1046. ss.args.srate = cbRecd.srate;
  1047. ss.cbFunc = _cmRtTestCb; // set the DSP entry function
  1048. ss.cbDataPtr = &cbRecd; // set the DSP function argument record
  1049. cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl,
  1050. ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate);
  1051. if( cmApNrtAllocate(rpt) != kOkApRC )
  1052. goto errLabel;
  1053. if( cmApFileAllocate(rpt) != kOkApRC )
  1054. goto errLabel;
  1055. // initialize the audio device system
  1056. if( cmApInitialize(rpt) != kOkApRC )
  1057. goto errLabel;
  1058. cmApReport(rpt);
  1059. // initialize the audio buffer
  1060. if( cmApBufInitialize( cmApDeviceCount(), cfg.meterMs ) != kOkApRC )
  1061. goto errLabel;
  1062. // initialize the audio system
  1063. if( cmRtSysAllocate(&h,rpt,&cfg) != kOkRtRC )
  1064. goto errLabel;
  1065. // start the audio system
  1066. cmRtSysEnable(h,true);
  1067. char c = 0;
  1068. printf("q=quit a-g=note n=ch r=rqst s=status\n");
  1069. // simulate a host event loop
  1070. while(c != 'q')
  1071. {
  1072. _cmRtTestMsg msg = {0,0,0,0};
  1073. bool fl = true;
  1074. // wait here for a key press
  1075. c =(char)fgetc(stdin);
  1076. fflush(stdin);
  1077. switch(c)
  1078. {
  1079. case 'c': msg.hz = cmMidiToHz(60); break;
  1080. case 'd': msg.hz = cmMidiToHz(62); break;
  1081. case 'e': msg.hz = cmMidiToHz(64); break;
  1082. case 'f': msg.hz = cmMidiToHz(65); break;
  1083. case 'g': msg.hz = cmMidiToHz(67); break;
  1084. case 'a': msg.hz = cmMidiToHz(69); break;
  1085. case 'b': msg.hz = cmMidiToHz(71); break;
  1086. case 'r': msg.id = 1; break; // request DSP process to send a callback count
  1087. case 'n': ++_cmRtTestChIdx; printf("ch:%i\n",_cmRtTestChIdx); break;
  1088. case 's':
  1089. // report the audio system status
  1090. cmRtSysStatus(h,0,&status);
  1091. printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt);
  1092. //printf("%f \n",status.oMeterArray[0]);
  1093. fl = false;
  1094. break;
  1095. default:
  1096. fl=false;
  1097. }
  1098. if( fl )
  1099. {
  1100. // transmit a command to the DSP process
  1101. cmRtSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId);
  1102. }
  1103. // check if messages are waiting to be delivered from the DSP process
  1104. unsigned msgByteCnt;
  1105. if((msgByteCnt = cmRtSysIsMsgWaiting(h)) > 0 )
  1106. {
  1107. char buf[ msgByteCnt ];
  1108. // rcv a msg from the DSP process
  1109. if( cmRtSysReceiveMsg(h,buf,msgByteCnt) == kOkRtRC )
  1110. {
  1111. _cmRtTestMsg* msg = (_cmRtTestMsg*)buf;
  1112. switch(msg->id)
  1113. {
  1114. case 1:
  1115. printf("RCV: Callback count:%i\n",msg->uint);
  1116. break;
  1117. }
  1118. }
  1119. }
  1120. // report the audio buffer status
  1121. //cmApBufReport(ss.args.rpt);
  1122. }
  1123. // stop the audio system
  1124. cmRtSysEnable(h,false);
  1125. goto exitLabel;
  1126. errLabel:
  1127. printf("AUDIO SYSTEM TEST ERROR\n");
  1128. exitLabel:
  1129. cmRtSysFree(&h);
  1130. cmApFinalize();
  1131. cmApFileFree();
  1132. cmApNrtFree();
  1133. cmApBufFinalize();
  1134. }
  1135. /// [cmRtSysTest]