12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100 |
- #include "cmPrefix.h"
- #include "cmGlobal.h"
- #include "cmRpt.h"
- #include "cmErr.h"
- #include "cmCtx.h"
- #include "cmMem.h"
- #include "cmMallocDebug.h"
- #include "cmLinkedHeap.h"
- #include "cmFloatTypes.h"
- #include "cmComplexTypes.h"
- #include "cmFileSys.h"
- #include "cmJson.h"
- #include "cmSymTbl.h"
- #include "cmAudioFile.h"
- #include "cmText.h"
- #include "cmProcObj.h"
- #include "cmProcTemplate.h"
- #include "cmMath.h"
- #include "cmFile.h"
- #include "cmTime.h"
- #include "cmMidi.h"
- #include "cmProc.h"
- #include "cmProc2.h"
- #include "cmProc5.h"
-
- #include "cmVectOps.h"
-
-
- //=======================================================================================================================
- cmGoertzel* cmGoertzelAlloc( cmCtx* c, cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
- {
- cmGoertzel* op = cmObjAlloc(cmGoertzel,c,p);
-
- op->shb = cmShiftBufAlloc(c,NULL,0,0,0);
-
- if( srate > 0 )
- if( cmGoertzelInit(op,srate,fcHzV,chCnt,procSmpCnt,wndSmpCnt,hopSmpCnt) != cmOkRC )
- cmGoertzelFree(&op);
-
- return op;
- }
-
- cmRC_t cmGoertzelFree( cmGoertzel** pp )
- {
- cmRC_t rc = cmOkRC;
- if( pp==NULL || *pp==NULL )
- return rc;
-
- cmGoertzel* p = *pp;
- if((rc = cmGoertzelFinal(p)) != cmOkRC )
- return rc;
-
- cmShiftBufFree(&p->shb);
- cmMemFree(p->ch);
- cmMemFree(p->wnd);
- cmObjFree(pp);
- return rc;
-
- }
-
- cmRC_t cmGoertzelInit( cmGoertzel* p, double srate, const double* fcHzV, unsigned chCnt, unsigned procSmpCnt, unsigned hopSmpCnt, unsigned wndSmpCnt )
- {
- cmRC_t rc;
- unsigned i;
-
- if((rc = cmGoertzelFinal(p)) != cmOkRC )
- return rc;
-
- p->ch = cmMemResizeZ(cmGoertzelCh,p->ch,chCnt);
- p->chCnt = chCnt;
- p->srate = srate;
- p->wnd = cmMemResizeZ(cmSample_t,p->wnd,wndSmpCnt);
-
- cmVOS_Hann(p->wnd,wndSmpCnt);
-
- cmShiftBufInit(p->shb,procSmpCnt,wndSmpCnt,hopSmpCnt);
-
- for(i=0; i<p->chCnt; ++i)
- {
- cmGoertzelSetFcHz(p,i,fcHzV[i]);
- }
-
- return rc;
- }
-
- cmRC_t cmGoertzelFinal( cmGoertzel* p )
- { return cmOkRC; }
-
- cmRC_t cmGoertzelSetFcHz( cmGoertzel* p, unsigned chIdx, double hz )
- {
- assert( chIdx < p->chCnt );
- p->ch[chIdx].hz = hz;
- p->ch[chIdx].coeff = 2*cos(2*M_PI*hz/p->srate);
-
- return cmOkRC;
- }
-
- cmRC_t cmGoertzelExec( cmGoertzel* p, const cmSample_t* inpV, unsigned procSmpCnt, double* outV, unsigned chCnt )
- {
- unsigned i,j;
-
- while( cmShiftBufExec(p->shb,inpV,procSmpCnt) )
- {
- unsigned xn = p->shb->wndSmpCnt;
- cmSample_t x[ xn ];
-
- cmVOS_MultVVV(x,xn,p->wnd,p->shb->outV);
-
- for(i=0; i<chCnt; ++i)
- {
- cmGoertzelCh* ch = p->ch + i;
-
- ch->s2 = x[0];
- ch->s1 = x[1] + 2 * x[0] * ch->coeff;
- for(j=2; j<xn; ++j)
- {
- ch->s0 = x[j] + ch->coeff * ch->s1 - ch->s2;
- ch->s2 = ch->s1;
- ch->s1 = ch->s0;
- }
-
- outV[i] = ch->s2*ch->s2 + ch->s1*ch->s1 - ch->coeff * ch->s2 * ch->s1;
- }
- }
-
- return cmOkRC;
- }
-
-
- //=======================================================================================================================
- double _cmGoldSigSinc( double t, double T )
- {
- double x = t/T;
- return x == 0 ? 1.0 : sin(M_PI*x)/(M_PI*x);
- }
-
- void _cmGoldSigRaisedCos( cmSample_t* yV, int yN, double sPc, double beta )
- {
- int i;
-
- for(i=0; i<yN; ++i)
- {
- double t = i - yN/2;
- double den = 1 - (4*(beta*beta)*(t*t) / (sPc*sPc));
- double a;
-
- if(fabs(den) < 0.00001 )
- a = 1;
- else
- a = cos(M_PI * beta * t/ sPc ) / den;
-
- yV[i] = _cmGoldSigSinc(t,sPc) * a;
- }
- }
-
- void _cmGoldSigConv( cmGoldSig_t* p, unsigned chIdx )
- {
- int i;
- int sPc = p->a.samplesPerChip;
- int osf = p->a.rcosOSFact;
-
- // for each bit in the spreading-code
- for(i=0; i<p->mlsN; ++i)
- {
- int j = (i*sPc) + sPc/2; // index into bbV[] of center of impulse response
- int k = j - (sPc*osf)/2; // index into bbV[] of start of impulse response
- int h;
-
- // for each sample in the impulse response
- for(h=0; h<p->rcosN; ++h,++k)
- {
-
- while( k<0 )
- k += p->sigN;
-
- while( k>=p->sigN )
- k -= p->sigN;
-
- p->ch[chIdx].bbV[k] += p->ch[chIdx].pnV[i] * p->rcosV[h];
- }
- }
- }
-
- void _cmGoldSigModulate( cmGoldSig_t* p, unsigned chIdx )
- {
- unsigned i;
- double rps = 2.0 * M_PI * p->a.carrierHz / p->a.srate;
- cmSample_t* yV = p->ch[chIdx].mdV;
- cmSample_t* bbV = p->ch[chIdx].bbV;
-
- for(i=0; i<p->sigN; ++i)
- yV[ i ] = bbV[i]*cos(rps*i) + bbV[i]*sin(rps*i);
-
- // apply a half Hann envelope to the onset/offset of the id signal
- if( p->a.envMs > 0 )
- {
- unsigned wndMs = p->a.envMs * 2;
- unsigned wndN = wndMs * p->a.srate / 1000;
- wndN += wndN % 2 ? 0 : 1; // force the window length to be odd
- unsigned wNo2 = wndN/2 + 1;
- cmSample_t wndV[ wndN ];
- cmVOS_Hann(wndV,wndN);
- cmVOS_MultVV(yV,wNo2,wndV);
- cmVOS_MultVV(yV + p->sigN - wNo2, wNo2, wndV + wNo2 - 1);
- }
-
- }
-
- cmGoldSig_t* cmGoldSigAlloc( cmCtx* ctx, cmGoldSig_t* p, const cmGoldSigArg_t* a )
- {
- cmGoldSig_t* op = cmObjAlloc(cmGoldSig_t,ctx,p);
-
- op->fir = cmFIRAllocKaiser(ctx, NULL, 0, 0, 0, 0, 0, 0, 0 );
-
- if( a != NULL )
- if( cmGoldSigInit(op,a) != cmOkRC )
- cmGoldSigFree(&op);
-
- return op;
-
- }
-
- cmRC_t cmGoldSigFree( cmGoldSig_t** pp )
- {
- cmRC_t rc = cmOkRC;
-
- if( pp == NULL || *pp == NULL )
- return rc;
-
- cmGoldSig_t* p = *pp;
-
- if((rc = cmGoldSigFinal(p)) != cmOkRC )
- return rc;
-
- unsigned i;
- for(i=0; i<p->a.chN; ++i)
- {
- cmMemFree(p->ch[i].bbV);
- cmMemFree(p->ch[i].mdV);
- }
-
- cmFIRFree(&p->fir);
- cmMemFree(p->ch);
- cmMemFree(p->rcosV);
- cmMemFree(p->pnM);
- cmMemFree(p);
- *pp = NULL;
-
- return rc;
- }
-
- cmRC_t cmGoldSigInit( cmGoldSig_t* p, const cmGoldSigArg_t* a )
- {
- cmRC_t rc = cmOkRC;
- unsigned i;
-
- p->a = *a; // store arg recd
- p->ch = cmMemResizeZ(cmGoldSigCh_t,p->ch,a->chN); // alloc channel array
- p->mlsN = (1 << a->lfsrN) - 1; // calc spreading code length
- p->rcosN = a->samplesPerChip * a->rcosOSFact; // calc rcos imp. resp. length
- p->rcosN += (p->rcosN % 2)==0; // force rcos imp. length odd
- p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN); // alloc rcos imp. resp. vector
- p->pnM = cmMemResizeZ(int,p->pnM,p->mlsN*a->chN); // alloc spreading-code mtx
- p->sigN = p->mlsN * a->samplesPerChip; // calc audio signal length
-
- // generate spreading codes
- if( cmGenGoldCodes(a->lfsrN, a->mlsCoeff0, a->mlsCoeff1, a->chN, p->pnM, p->mlsN ) == false )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to generate sufficient balanced Gold codes.");
- goto errLabel;
- }
-
- // generate the rcos impulse response
- _cmGoldSigRaisedCos(p->rcosV,p->rcosN,a->samplesPerChip,a->rcosBeta);
-
- if(1)
- {
- double passHz = 20000.0;
- double stopHz = 17000.0;
- double passDb = 1.0;
- double stopDb = 90.0;
- unsigned flags = 0;
-
- if( cmFIRInitKaiser(p->fir, 64, a->srate, passHz, stopHz, passDb, stopDb, flags ) != cmOkRC )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Unable to allocate internal FIR.");
- goto errLabel;
- }
-
- p->rcosN = p->fir->coeffCnt;
- p->rcosV = cmMemResizeZ(cmSample_t,p->rcosV,p->rcosN);
- cmVOS_CopyD(p->rcosV,p->rcosN,p->fir->coeffV);
-
- }
-
-
- // for each channel
- for(i=0; i<a->chN; ++i)
- {
- // Note: if (i*p->mlsN) is set to 0 in the following line then all channels
- // will use the same spreading code.
- p->ch[i].pnV = p->pnM + (i*p->mlsN); // get ch. spreading code
- p->ch[i].bbV = cmMemResizeZ(cmSample_t,p->ch[i].bbV,p->sigN); // alloc baseband signal vector
- p->ch[i].mdV = cmMemResizeZ(cmSample_t,p->ch[i].mdV,p->sigN); // alloc output audio vector
-
- // Convolve spreading code with rcos impulse reponse to form baseband signal.
- _cmGoldSigConv(p, i );
-
- // Modulate baseband signal to carrier frq. and apply attack/decay envelope.
- _cmGoldSigModulate(p, i );
- }
-
- errLabel:
- if((rc = cmErrLastRC(&p->obj.err)) != cmOkRC )
- cmGoldSigFree(&p);
-
- return rc;
- }
-
- cmRC_t cmGoldSigFinal( cmGoldSig_t* p )
- { return cmFIRFinal(p->fir); }
-
- cmRC_t cmGoldSigWrite( cmCtx* ctx, cmGoldSig_t* p, const char* fn )
- {
- cmVectArray_t* vap = NULL;
- unsigned i;
-
- vap = cmVectArrayAlloc(ctx,kSampleVaFl);
-
- for(i=0; i<p->a.chN; ++i)
- {
- cmVectArrayAppendS(vap,p->ch[i].bbV,p->sigN);
- cmVectArrayAppendS(vap,p->ch[i].mdV,p->sigN);
- }
-
- cmVectArrayWrite(vap,fn);
-
- cmVectArrayFree(&vap);
-
- return cmOkRC;
- }
-
-
- cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned dsN, unsigned *bsiV, unsigned bsiN, double noiseGain, cmSample_t** yVRef, unsigned* yNRef )
- {
- unsigned yN = prefixN + bsiN * (p->sigN + dsN);
- cmSample_t* yV = cmMemAllocZ(cmSample_t,yN);
- unsigned i;
-
- cmVOS_Random(yV, yN, -noiseGain, noiseGain );
-
- for(i=0; i<bsiN; ++i)
- {
- bsiV[i] = prefixN + i*(p->sigN + dsN);
-
- cmVOS_AddVV(yV + bsiV[i], p->sigN, p->ch[chIdx].mdV );
- }
-
- if( yVRef != NULL )
- *yVRef = yV;
-
- if( yNRef != NULL )
- *yNRef = yN;
-
- return cmOkRC;
- }
-
-
- //=======================================================================================================================
- cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* ap, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
- {
- cmPhat_t* p = cmObjAlloc(cmPhat_t,ctx,ap);
-
- // The FFT buffer and the delay line is at least twice the size of the
- // id signal. This will guarantee that at least one complete id signal
- // is inside the buffer. In practice it means that it is possible
- // that there will be two id's in the buffer therefore if there are
- // two correlation spikes it is important that we take the second.
- unsigned fhN = cmNextPowerOfTwo(mult*hN);
-
- // allocate the FFT object
- cmFftAllocSR(ctx,&p->fft,NULL,fhN,kToPolarFftFl);
- cmIFftAllocRS(ctx,&p->ifft,fhN/2 + 1 );
-
- // allocate the vect array
- p->ftVa = cmVectArrayAlloc(ctx, kSampleVaFl );
-
- if( chN != 0 )
- if( cmPhatInit(p,chN,hN,alpha,mult,flags) != cmOkRC )
- cmPhatFree(&p);
-
- return p;
-
- }
-
- cmRC_t cmPhatFree( cmPhat_t** pp )
- {
- cmRC_t rc = cmOkRC;
-
- if( pp == NULL || *pp == NULL )
- return rc;
-
- cmPhat_t* p = *pp;
- if((rc = cmPhatFinal(p)) != cmOkRC )
- return rc;
-
- cmMemFree(p->t0V);
- cmMemFree(p->t1V);
- cmMemFree(p->dV);
- cmMemFree(p->xV);
- cmMemFree(p->fhM);
- cmMemFree(p->mhM);
- cmMemFree(p->wndV);
- cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft);
- cmObjFreeStatic(cmIFftFreeRS, cmIFftRS, p->ifft);
- cmVectArrayFree(&p->ftVa);
- cmObjFree(pp);
-
- return rc;
-
- }
-
-
- cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
- {
- cmRC_t rc = cmOkRC;
- if((rc = cmPhatFinal(cmOkRC)) != cmOkRC )
- return rc;
-
- p->fhN = cmNextPowerOfTwo(mult*hN);
-
- if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC )
- return rc;
-
- if((cmIFftInitRS(&p->ifft, p->fft.binCnt )) != cmOkRC )
- return rc;
-
- p->alpha = alpha;
- p->flags = flags;
-
- // allocate the delay line
- p->dV = cmMemResizeZ(cmSample_t,p->dV,p->fhN);
- p->di = 0;
-
- // allocate the linear buffer
- p->xV = cmMemResizeZ(cmSample_t,p->xV,p->fhN);
- p->t0V = cmMemResizeZ(cmComplexR_t,p->t0V,p->fhN);
- p->t1V = cmMemResizeZ(cmComplexR_t,p->t1V,p->fhN);
-
- // allocate the window function
- p->wndV = cmMemResizeZ(cmSample_t,p->wndV,p->fhN);
- cmVOS_Hann(p->wndV,p->fhN);
-
- // allocate the signal id matrix
- p->chN = chN;
- p->hN = hN;
- p->binN = p->fft.binCnt; //atFftRealBinCount(p->fftH);
- p->fhM = cmMemResizeZ(cmComplexR_t, p->fhM, p->fhN * chN);
- p->mhM = cmMemResizeZ(float, p->mhM, p->binN * chN);
- cmPhatReset(p);
-
- if( cmIsFlag(p->flags,kDebugAtPhatFl))
- cmVectArrayClear(p->ftVa);
-
- return rc;
-
- }
-
- cmRC_t cmPhatFinal( cmPhat_t* p )
- { return cmOkRC; }
-
- cmRC_t cmPhatReset( cmPhat_t* p )
- {
- p->di = 0;
- p->absIdx = 0;
- cmVOS_Zero(p->dV,p->fhN);
- return cmOkRC;
- }
-
- cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned hN )
- {
- unsigned i;
- assert( chIdx < p->chN );
- assert( hN == p->hN );
-
- // Allocate a window vector
- cmSample_t* wndV = cmMemAllocZ(cmSample_t,hN);
- cmVOS_Hann(wndV,hN);
-
- // get ptr to output column in p->fhM[].
- cmComplexR_t* yV = p->fhM + (chIdx*p->fhN);
-
- // Zero pad hV[hN] to p->fhN;
- assert( hN <= p->fhN );
- cmVOS_Zero(p->xV,p->fhN);
- cmVOS_Copy(p->xV,hN,hV);
-
- // Apply the window function to the id signal
- if(cmIsFlag(p->flags,kHannAtPhatFl) )
- cmVOS_MultVVV(p->xV,hN,hV,wndV);
-
- // take FFT of id signal. The result is in fft->complexV and fft->magV,phsV
- cmFftExecSR(&p->fft, p->xV, p->fhN );
-
- // Store the magnitude of the id signal
- //atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN);
- cmVOF_CopyR(p->mhM + (chIdx*p->binN), p->binN, p->fft.magV );
-
- // Scale the magnitude
- cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha);
-
- // store the complex conjugate of the FFT result in yV[]
- //atFftComplexConj(yV,p->binN);
- for(i=0; i<p->binN; ++i)
- yV[i] = cmCconjR(p->fft.complexV[i]);
-
- cmMemFree(wndV);
-
- return cmOkRC;
- }
-
- cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef )
- {
- cmVectArray_t* vap = NULL;
- cmSample_t* v = NULL;
- cmRC_t rc = cmOkRC;
-
- // instantiate a VectArray from a file
- if( (vap = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector file read failed '%s'.",fn);
- goto errLabel;
- }
-
- // get the count of elements in the vector
- *vnRef = cmVectArrayEleCount(vap);
-
- // allocate memory to hold the vector
- v = cmMemAlloc(cmSample_t,*vnRef);
-
- // copy the vector from the vector array object into v[]
- if((rc = cmVectArrayGetF(vap,v,vnRef)) != cmOkRC )
- {
- cmMemFree(v);
- v = NULL;
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector copy out failed '%s'.",fn);
- goto errLabel;
- }
-
- cmRptPrintf(p->obj.err.rpt,"%i : %s",*vnRef,fn);
-
-
- errLabel:
- cmVectArrayFree(&vap);
-
- return v;
- }
-
-
- cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN )
- {
- unsigned n = cmMin(xN,p->fhN-p->di);
-
- // update the delay line
- cmVOS_Copy(p->dV+p->di,n,xV);
-
- if( n < xN )
- cmVOS_Copy(p->dV,xN-n,xV+n);
-
- p->di = cmModIncr(p->di,xN,p->fhN);
-
- // p->absIdx is the absolute sample index associated with di
- p->absIdx += xN;
-
- return cmOkRC;
- }
-
-
- void cmPhatChExec(
- cmPhat_t* p,
- unsigned chIdx,
- unsigned sessionId,
- unsigned roleId)
- {
-
- unsigned n0 = p->fhN - p->di;
- unsigned n1 = p->fhN - n0;
-
- // Linearize the delay line into xV[]
- cmVOS_Copy(p->xV, n0, p->dV + p->di );
- cmVOS_Copy(p->xV+n0, n1, p->dV );
-
- if( cmIsFlag(p->flags,kDebugAtPhatFl))
- cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
-
- // apply a window function to the incoming signal
- if( cmIsFlag(p->flags,kHannAtPhatFl) )
- cmVOS_MultVV(p->xV,p->fhN,p->wndV);
-
- // Take the FFT of the delay line.
- // p->t0V[p->binN] = fft(p->xV)
- //atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN );
- cmFftExecSR(&p->fft, p->xV, p->fhN );
-
- // Calc. the Cross Power Spectrum (aka cross spectral density) of the
- // input signal with the id signal.
- // Note that the CPS is equivalent to the Fourier Transform of the
- // cross-correlation of the two signals.
- // t0V[] *= p->fhM[:,chIdx]
- //atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN );
- cmVOCR_MultVVV( p->t0V, p->fft.complexV, p->fhM + (chIdx * p->fhN), p->binN);
-
- // Calculate the magnitude of the CPS.
- // xV[] = | t0V[] |
- cmVOCR_Abs( p->xV, p->t0V, p->binN );
-
- // Weight the CPS by the scaled magnitude of the id signal
- // (we want to emphasize the limited frequencies where the
- // id signal contains energy)
- // t0V[] *= p->mhM[:,chIdx]
- if( p->alpha > 0 )
- cmVOCR_MultVFV( p->t0V, p->mhM + (chIdx*p->binN), p->binN);
-
- // Divide through by the magnitude of the CPS
- // This has the effect of whitening the spectram and thereby
- // minimizing the effect of the magnitude correlation
- // while maximimizing the effect of the phase correlation.
- //
- // t0V[] /= xV[]
- cmVOCR_DivVFV( p->t0V, p->xV, p->binN );
-
- // Take the IFFT of the weighted CPS to recover the cross correlation.
- // xV[] = IFFT(t0V[])
- cmIFftExecRS( &p->ifft, p->t0V );
-
- // Normalize the result by the length of the transform.
- cmVOS_DivVVS( p->xV, p->fhN, p->ifft.outV, p->fhN );
-
- // Shift the correlation spike to mark the end of the id
- cmVOS_Rotate( p->xV, p->fhN, -((int)p->hN) );
-
- // normalize by the length of the correlation
- cmVOS_DivVS(p->xV,p->fhN,p->fhN);
-
- if( cmIsFlag(p->flags,kDebugAtPhatFl))
- {
- cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
-
- cmSample_t v[] = { sessionId, roleId };
- cmVectArrayAppendS(p->ftVa, v, sizeof(v)/sizeof(v[0]));
- }
-
- }
-
- cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr )
- {
- cmRC_t rc = cmOkRC;
-
- if( cmIsFlag(p->flags, kDebugAtPhatFl))
- {
- const char* path = NULL;
-
- if( cmVectArrayCount(p->ftVa) )
- if((rc = cmVectArrayWrite(p->ftVa, path = cmFsMakeFn(path,"cmPhatFT","va",dirStr,NULL) )) != cmOkRC )
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT debug file write failed.");
-
- cmFsFreeFn(path);
- }
-
- return rc;
- }
-
-
- //=======================================================================================================================
- //
- //
-
- cmReflectCalc_t* cmReflectCalcAlloc( cmCtx* ctx, cmReflectCalc_t* p, const cmGoldSigArg_t* gsa, float phat_alpha, unsigned phat_mult )
- {
- cmReflectCalc_t* op = cmObjAlloc(cmReflectCalc_t,ctx,p);
- cmRC_t rc = cmOkRC;
-
- // allocate the Gold code signal generator
- if( (op->gs = cmGoldSigAlloc(ctx,NULL,NULL)) == NULL )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Gold sig allocate failed.");
- goto errLabel;
- }
-
- // allocate the PHAT object
- if( (op->phat = cmPhatAlloc(ctx,NULL,0,0,0,0,0)) == NULL )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT allocate failed.");
- goto errLabel;
- }
-
- op->phVa = cmVectArrayAlloc(ctx,kSampleVaFl);
- op->xVa = cmVectArrayAlloc(ctx,kSampleVaFl);
- op->yVa = cmVectArrayAlloc(ctx,kSampleVaFl);
-
- // allocate 'this'
- if( gsa != NULL )
- rc = cmReflectCalcInit(op,gsa,phat_alpha,phat_mult);
-
-
- errLabel:
- if( rc != cmOkRC )
- cmReflectCalcFree(&op);
-
-
- return op;
-
- }
-
- cmRC_t cmReflectCalcFree( cmReflectCalc_t** pp )
- {
- cmRC_t rc = cmOkRC;
-
- if( pp == NULL || *pp == NULL )
- return rc;
-
- cmReflectCalc_t* p = *pp;
-
- cmReflectCalcWrite(p,"/Users/kevin/temp/kc");
-
- if((rc = cmReflectCalcFinal(p)) != cmOkRC )
- return rc;
-
- cmMemFree(p->t0V);
- cmMemFree(p->t1V);
- cmVectArrayFree(&p->phVa);
- cmVectArrayFree(&p->xVa);
- cmVectArrayFree(&p->yVa);
- cmGoldSigFree(&p->gs);
- cmPhatFree(&p->phat);
-
- cmMemFree(p);
- *pp = NULL;
-
- return rc;
- }
-
- cmRC_t cmReflectCalcInit( cmReflectCalc_t* p, const cmGoldSigArg_t* gsa, float phat_alpha, unsigned phat_mult )
- {
- cmRC_t rc;
- if((rc = cmReflectCalcFinal(p)) != cmOkRC )
- return rc;
-
- // initialize the Gold code signal generator
- if((rc = cmGoldSigInit(p->gs,gsa)) != cmOkRC )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Gold code signal initialize failed.");
- goto errLabel;
- }
-
- unsigned phat_chN = 1;
- unsigned phat_hN = p->gs->sigN;
- unsigned phat_flags = 0;
- unsigned phat_chIdx = 0;
-
- // initialize the PHAT
- if((rc = cmPhatInit(p->phat,phat_chN,phat_hN,phat_alpha,phat_mult,phat_flags)) != cmOkRC )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT intialize failed.");
- goto errLabel;
- }
-
- // register a target signal with the PHAT
- if((rc = cmPhatSetId( p->phat, phat_chIdx, p->gs->ch[phat_chIdx].mdV, p->gs->sigN )) != cmOkRC )
- {
- rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT signal registration failed.");
- goto errLabel;
- }
-
- p->xi = 0;
-
- p->tN = 5;
- p->t0V = cmMemResizeZ(unsigned,p->t0V,p->tN);
- p->t1V = cmMemResizeZ(unsigned,p->t1V,p->tN);
- p->ti = 0;
- p->t = 0;
-
- errLabel:
-
- return rc;
- }
-
- cmRC_t cmReflectCalcFinal( cmReflectCalc_t* p )
- {
- cmGoldSigFinal(p->gs);
- cmPhatFinal(p->phat);
- return cmOkRC;
- }
-
- /*
- cmRC_t cmReflectCalcExec( cmReflectCalc_t* p, const cmSample_t* xV, cmSample_t* yV, unsigned xyN )
- {
- unsigned i;
-
- // feed audio into the PHAT's buffer
- cmPhatExec(p->phat,xV,xyN);
-
- // fill the output buffer
- for(i=0; i<xyN; ++i,++p->xi)
- {
- if( p->xi < p->gs->sigN )
- yV[i] = p->gs->ch[0].mdV[p->xi];
- else
- yV[i] = 0;
-
- // if the PHAT has a complete buffer
- if( p->xi == p->phat->fhN )
- {
- p->xi = 0;
-
- // execute the correlation
- cmPhatChExec(p->phat,0,0,0);
-
- // p->phat->xV[fhN] now holds the correlation result
-
- if( p->phVa != NULL )
- cmVectArrayAppendS(p->phVa,p->phat->xV,p->phat->fhN );
- }
-
- }
-
- cmVectArrayAppendS(p->xVa,xV,xyN);
- cmVectArrayAppendS(p->yVa,yV,xyN);
-
- return cmOkRC;
- }
- */
-
- cmRC_t cmReflectCalcExec( cmReflectCalc_t* p, const cmSample_t* xV, cmSample_t* yV, unsigned xyN )
- {
- unsigned i;
-
- unsigned xyN0 = xyN;
-
- while(xyN0)
- {
- // feed audio into the PHAT's buffer
- unsigned di = p->phat->di;
- unsigned n = cmMin(xyN0,p->phat->fhN - di );
-
- cmPhatExec(p->phat,xV,n);
-
- if( di + n == p->phat->fhN )
- {
- // execute the correlation
- cmPhatChExec(p->phat,0,0,0);
-
- // p->phat->xV[fhN] now holds the correlation result
-
- // get the peak index
- p->t1V[p->ti] = cmVOS_MaxIndex(p->phat->xV,p->phat->fhN,1);
-
- printf("%i %i\n",p->t,p->t1V[p->ti]);
-
- p->ti = (p->ti + 1) % p->tN;
-
-
- // store the correlation result
- if( p->phVa != NULL )
- cmVectArrayAppendS(p->phVa,p->phat->xV,p->phat->fhN );
-
- }
-
- xyN0 -= n;
-
- }
-
- // fill the output buffer
- for(i=0; i<xyN; ++i)
- {
- if( p->xi == 0 )
- p->t0V[p->ti] = p->t + i;
-
- if( p->xi < p->gs->sigN )
- yV[i] = p->gs->ch[0].mdV[p->xi];
- else
- yV[i] = 0;
-
- p->xi = (p->xi+1) % p->phat->fhN;
- }
-
- p->t += xyN;
-
- if( p->xVa != NULL )
- cmVectArrayAppendS(p->xVa,xV,xyN);
-
- if( p->yVa != NULL )
- cmVectArrayAppendS(p->yVa,yV,xyN);
-
- return cmOkRC;
- }
-
- cmRC_t cmReflectCalcWrite( cmReflectCalc_t* p, const char* dirStr )
- {
- cmRC_t rc = cmOkRC;
-
- if( p->xVa != NULL)
- cmVectArrayWriteDirFn(p->xVa, dirStr, "reflect_calc_x.va" );
-
- if( p->yVa != NULL )
- cmVectArrayWriteDirFn(p->yVa, dirStr, "reflect_calc_y.va" );
-
- if( p->phVa != NULL )
- cmVectArrayWriteDirFn(p->phVa,dirStr, "reflect_calc_ph.va");
-
- return rc;
- }
-
- //=======================================================================================================================
- //
- //
- cmNlmsEc_t* cmNlmsEcAlloc( cmCtx* ctx, cmNlmsEc_t* ap, double srate, float mu, unsigned hN, unsigned delayN )
- {
- cmNlmsEc_t* p = cmObjAlloc(cmNlmsEc_t,ctx,ap);
-
- bool debugFl = false;
-
- // allocate the vect array's
- p->uVa = debugFl ? cmVectArrayAlloc(ctx, kFloatVaFl ) : NULL;
- p->fVa = debugFl ? cmVectArrayAlloc(ctx, kFloatVaFl ) : NULL;
- p->eVa = debugFl ? cmVectArrayAlloc(ctx, kFloatVaFl ) : NULL;
-
-
- if( srate != 0 )
- if( cmNlmsEcInit(p,srate,mu,hN,delayN) != cmOkRC )
- cmNlmsEcFree(&p);
-
- return p;
-
- }
-
- cmRC_t cmNlmsEcFree( cmNlmsEc_t** pp )
- {
- cmRC_t rc = cmOkRC;
-
- if( pp == NULL || *pp == NULL )
- return rc;
-
- cmNlmsEc_t* p = *pp;
- if((rc = cmNlmsEcFinal(p)) != cmOkRC )
- return rc;
-
- cmMemFree(p->wV);
- cmMemFree(p->hV);
- cmVectArrayFree(&p->eVa);
- cmObjFree(pp);
-
- return rc;
-
- }
-
- cmRC_t cmNlmsEcInit( cmNlmsEc_t* p, double srate, float mu, unsigned hN, unsigned delayN )
- {
- cmRC_t rc = cmOkRC;
-
- if((rc = cmNlmsEcFinal(p)) != cmOkRC )
- return rc;
-
- assert( srate >= hN );
- assert( srate >= delayN );
-
- p->mu = mu;
- p->hN = hN;
- p->delayN = cmMax(1,delayN);
- p->dN = srate;
- p->delayV = cmMemResizeZ(cmSample_t, p->delayV, srate );
- p->di = 0;
- p->wV = cmMemResizeZ(double,p->wV,srate);
- p->hV = cmMemResizeZ(double,p->hV,srate);
- p->w0i = 0;
-
- return rc;
- }
-
- cmRC_t cmNlmsEcFinal( cmNlmsEc_t* p )
- { return cmOkRC; }
-
- cmRC_t cmNlmsEcExec( cmNlmsEc_t* p, const cmSample_t* xV, const cmSample_t* fV, cmSample_t* yV, unsigned xyN )
- {
- // See: http://www.eit.lth.se/fileadmin/eit/courses/ett042/CE/CE2e.pdf
- // and http://www.eit.lth.se/fileadmin/eit/courses/ett042/CE/CE3e.pdf
- unsigned i;
- for(i=0; i<xyN; ++i)
- {
- double y = 0;
- unsigned k = 0;
- double a = 0.001;
- unsigned j;
-
- // Insert the next sample into the filter delay line.
- // Note that rather than shifting the delay line on each iteration we
- // increment the input location and then align it with the zeroth
- // weight below.
- p->hV[p->w0i] = p->delayV[ p->di ];
-
- p->delayV[ p->di ] = xV[i];
-
- p->di = (p->di + 1) % p->delayN;
-
- // calculate the output of the delay w0i:hN
- for(j=p->w0i,k=0; j<p->hN; ++j,++k)
- y += p->hV[j] * p->wV[k];
-
- // calcuate the output of the delay 0:w0i
- for(j=0; j<p->w0i; ++j,++k)
- y += p->hV[j] * p->wV[k];
-
- // calculate the error which is also the filter output
- double e = fV[i] - y;
- yV[i] = e;
-
- //
- double z = 0;
- for(j=0; j<p->hN; ++j)
- z += p->hV[j] * p->hV[j];
-
- // update weights 0 through w0i
- for(j=p->w0i,k=0; j<p->hN; ++j,++k)
- p->wV[k] += (p->mu/(a + z)) * p->hV[j] * e;
-
- // update weights w0i through hN
- for(j=0; j<p->w0i; ++j,++k)
- p->wV[k] += (p->mu/(a + z)) * p->hV[j] * e;
-
- // advance the delay
- p->w0i = (p->w0i+1) % p->hN;
-
- }
-
- if( p->uVa != NULL )
- cmVectArrayAppendS(p->uVa,xV,xyN);
-
- if( p->fVa != NULL )
- cmVectArrayAppendS(p->fVa,fV,xyN);
-
- if( p->eVa != NULL )
- cmVectArrayAppendS(p->eVa,yV,xyN);
-
-
- return cmOkRC;
- }
-
-
- cmRC_t cmNlmsEcWrite( cmNlmsEc_t* p, const cmChar_t* dirStr )
- {
-
- if( p->uVa != NULL )
- cmVectArrayWriteDirFn(p->uVa, dirStr, "nlms_unfiltered.va");
-
- if( p->fVa != NULL )
- cmVectArrayWriteDirFn(p->fVa, dirStr, "nlms_filtered.va");
-
- if( p->eVa != NULL )
- cmVectArrayWriteDirFn(p->eVa, dirStr, "nlms_out.va");
-
- return cmOkRC;
- }
-
-
- void cmNlmsEcSetMu( cmNlmsEc_t* p, float mu )
- {
- if( mu < 0 )
- p->mu = 0.0001;
- else
- if( mu >= 1 )
- p->mu = 0.99;
- else
- p->mu = mu;
- }
-
- void cmNlmsEcSetDelayN( cmNlmsEc_t* p, unsigned delayN )
- {
- if( delayN > p->dN)
- delayN = p->dN;
- else
- if( delayN < 1 )
- delayN = 1;
-
- cmVOS_Zero(p->delayV,p->delayN);
- p->delayN = delayN;
- }
-
- void cmNlmsEcSetIrN( cmNlmsEc_t* p, unsigned hN )
- {
- if( hN > p->dN )
- hN = p->dN;
- else
- if( hN < 1 )
- hN = 1;
-
- cmVOD_Zero(p->wV,p->hN);
- cmVOD_Zero(p->hV,p->hN);
- p->hN = hN;
- }
|