libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmProc2.c 172KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779
  1. #include "cmPrefix.h"
  2. #include "cmGlobal.h"
  3. #include "cmRpt.h"
  4. #include "cmErr.h"
  5. #include "cmCtx.h"
  6. #include "cmMem.h"
  7. #include "cmMallocDebug.h"
  8. #include "cmLinkedHeap.h"
  9. #include "cmSymTbl.h"
  10. #include "cmFloatTypes.h"
  11. #include "cmComplexTypes.h"
  12. #include "cmFile.h"
  13. #include "cmFileSys.h"
  14. #include "cmProcObj.h"
  15. #include "cmProcTemplate.h"
  16. #include "cmAudioFile.h"
  17. #include "cmMath.h"
  18. #include "cmProc.h"
  19. #include "cmVectOps.h"
  20. #include "cmKeyboard.h"
  21. #include "cmGnuPlot.h"
  22. #include "cmTime.h"
  23. #include "cmMidi.h"
  24. #include "cmProc2.h"
  25. //------------------------------------------------------------------------------------------------------------
  26. cmArray* cmArrayAllocate( cmCtx* c, cmArray* ap, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
  27. {
  28. cmArray* p = cmObjAlloc( cmArray, c, ap );
  29. if( eleCnt > 0 && eleByteCnt > 0 )
  30. if( cmArrayInit(p, eleCnt, eleByteCnt, flags ) != cmOkRC )
  31. cmArrayFree(&p);
  32. return cmOkRC;
  33. }
  34. cmRC_t cmArrayFree( cmArray** pp )
  35. {
  36. cmRC_t rc = cmOkRC;
  37. cmArray* p = *pp;
  38. if( pp == NULL || *pp == NULL )
  39. return cmOkRC;
  40. if((rc = cmArrayFinal(p)) != cmOkRC )
  41. return rc;
  42. cmMemPtrFree(&p->ptr);
  43. cmObjFree(pp);
  44. return rc;
  45. }
  46. cmRC_t cmArrayInit( cmArray* p, unsigned eleCnt, unsigned eleByteCnt, unsigned flags )
  47. {
  48. cmRC_t rc = cmOkRC;
  49. if((rc = cmArrayFinal(p)) != cmOkRC )
  50. return rc;
  51. p->allocByteCnt = eleCnt * eleByteCnt;
  52. p->ptr = cmIsFlag(flags,kZeroArrayFl) ? cmMemResizeZ( char, p->ptr, p->allocByteCnt ) : cmMemResize( char, p->ptr, p->allocByteCnt );
  53. p->eleCnt = eleCnt;
  54. p->eleByteCnt = eleByteCnt;
  55. return rc;
  56. }
  57. cmRC_t cmArrayFinal( cmArray* p )
  58. { return cmOkRC; }
  59. char* cmArrayReallocDestroy(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
  60. {
  61. // if memory is expanding
  62. if( newEleCnt * newEleByteCnt > p->allocByteCnt )
  63. cmArrayInit( p, newEleCnt, newEleByteCnt, flags );
  64. else
  65. {
  66. // ... otherwise memory is contrcmting
  67. p->eleCnt = newEleCnt;
  68. p->eleByteCnt = newEleByteCnt;
  69. if( cmIsFlag( flags, kZeroArrayFl ))
  70. memset(p->ptr,0,p->eleByteCnt);
  71. }
  72. return p->ptr;
  73. }
  74. void cmArrayReallocDestroyV(cmArray* p, int eleByteCnt,unsigned flags, ... )
  75. {
  76. unsigned i;
  77. unsigned eleCnt = 0;
  78. unsigned argCnt = 0;
  79. va_list vl0,vl1;
  80. assert(eleByteCnt>0);
  81. va_start(vl0,flags);
  82. va_copy(vl1,vl0);
  83. while( va_arg(vl0,void**) != NULL )
  84. {
  85. int argEleCnt = va_arg(vl0,int);
  86. assert(argEleCnt>0);
  87. eleCnt += argEleCnt;
  88. ++argCnt;
  89. }
  90. va_end(vl0);
  91. char* a = cmArrayReallocDestroy(p,eleCnt,eleByteCnt,flags);
  92. for(i=0; i<argCnt; ++i)
  93. {
  94. void** vp = va_arg(vl1,void**);
  95. unsigned n = va_arg(vl1,unsigned);
  96. *vp = a;
  97. a += n*eleByteCnt;
  98. }
  99. va_end(vl1);
  100. }
  101. char* cmArrayReallocPreserve(cmArray* p, unsigned newEleCnt, unsigned newEleByteCnt, unsigned flags )
  102. {
  103. unsigned cn = p->eleCnt * p->eleByteCnt;
  104. unsigned dn = newEleCnt * newEleByteCnt;
  105. if( dn > p->allocByteCnt )
  106. p->allocByteCnt = dn;
  107. p->ptr = cmIsFlag(flags,kZeroArrayFl ) ? cmMemResizePZ( char, p->ptr, cn ) : cmMemResizeP( char, p->ptr, cn);
  108. p->eleCnt = newEleCnt;
  109. p->eleByteCnt= newEleByteCnt;
  110. return p->ptr;
  111. }
  112. //------------------------------------------------------------------------------------------------------------
  113. cmAudioFileWr* cmAudioFileWrAlloc( cmCtx* c, cmAudioFileWr* ap, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
  114. {
  115. cmAudioFileWr* p = cmObjAlloc( cmAudioFileWr, c, ap );
  116. if( cmAudioFileWrInit( p, procSmpCnt, fn, srate, chCnt, bitsPerSample ) != cmOkRC )
  117. cmObjFree(&p);
  118. return p;
  119. }
  120. cmRC_t cmAudioFileWrFree( cmAudioFileWr** pp )
  121. {
  122. cmRC_t rc = cmOkRC;
  123. if( pp != NULL && *pp != NULL )
  124. {
  125. cmAudioFileWr* p = *pp;
  126. if((rc = cmAudioFileWrFinal(p)) == cmOkRC )
  127. {
  128. cmMemPtrFree(&p->bufV);
  129. cmMemPtrFree(&p->fn );
  130. cmObjFree(pp);
  131. }
  132. }
  133. return rc;
  134. }
  135. cmRC_t cmAudioFileWrInit( cmAudioFileWr* p, unsigned procSmpCnt, const char* fn, double srate, unsigned chCnt, unsigned bitsPerSample )
  136. {
  137. cmRC_t rc;
  138. cmRC_t afRC;
  139. if((rc = cmAudioFileWrFinal( p)) != cmOkRC )
  140. return rc;
  141. p->h = cmAudioFileNewCreate( fn, srate, bitsPerSample, chCnt, &afRC, p->obj.err.rpt );
  142. if( afRC != kOkAfRC )
  143. return cmCtxRtCondition( &p->obj, afRC, "Unable to open the audio file:'%s'", fn );
  144. p->bufV = cmMemResize( cmSample_t, p->bufV, procSmpCnt * chCnt );
  145. p->procSmpCnt = procSmpCnt;
  146. p->chCnt = chCnt;
  147. p->curChCnt = 0;
  148. p->fn = cmMemResizeZ( cmChar_t, p->fn, strlen(fn)+1 );
  149. strcpy(p->fn,fn);
  150. return rc;
  151. }
  152. cmRC_t cmAudioFileWrFinal( cmAudioFileWr* p )
  153. {
  154. cmRC_t afRC;
  155. if( p != NULL )
  156. {
  157. if( cmAudioFileIsValid( p->h ) )
  158. if(( afRC = cmAudioFileDelete( &p->h )) != kOkAfRC )
  159. return cmCtxRtCondition( &p->obj, afRC, "Unable to close the audio file:'%s'", p->fn );
  160. }
  161. return cmOkRC;
  162. }
  163. cmRC_t cmAudioFileWrExec( cmAudioFileWr* p, unsigned chIdx, const cmSample_t* sp, unsigned sn )
  164. {
  165. cmRC_t afRC;
  166. assert( sn <= p->procSmpCnt && chIdx < p->chCnt );
  167. cmSample_t* buf = p->bufV + (chIdx * p->procSmpCnt);
  168. cmVOS_Copy( buf, sn, sp);
  169. if( sn < p->procSmpCnt )
  170. cmVOS_Fill( buf+sn, p->procSmpCnt-sn, 0 );
  171. p->curChCnt++;
  172. if( p->curChCnt == p->chCnt )
  173. {
  174. p->curChCnt = 0;
  175. cmSample_t* bufPtrPtr[ p->chCnt ];
  176. unsigned i = 0;
  177. for(i=0; i<p->chCnt; ++i)
  178. bufPtrPtr[i] = p->bufV + (i*p->procSmpCnt);
  179. if((afRC = cmAudioFileWriteSample( p->h, p->procSmpCnt, p->chCnt, bufPtrPtr )) != kOkAfRC )
  180. return cmCtxRtCondition( &p->obj, afRC, "Write failed on audio file:'%s'", p->fn );
  181. }
  182. return cmOkRC;
  183. }
  184. void cmAudioFileWrTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  185. {
  186. const char* fn = "/home/kevin/src/cm/test0.aif";
  187. double durSecs = 10;
  188. double srate = 44100;
  189. unsigned chCnt = 2;
  190. unsigned bitsPerSmp = 16;
  191. unsigned procSmpCnt = 64;
  192. double hz = 1000;
  193. unsigned overToneCnt= 1;
  194. unsigned smpCnt = durSecs * srate;
  195. unsigned i;
  196. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
  197. cmSigGen* sgp = cmSigGenAlloc( c, NULL, procSmpCnt, srate, kWhiteWfId, hz, overToneCnt );
  198. cmAudioFileWr* awp = cmAudioFileWrAlloc( c, NULL, procSmpCnt, fn, srate, chCnt, bitsPerSmp );
  199. for(i=0; i<smpCnt; ++i)
  200. {
  201. cmSigGenExec( sgp );
  202. cmAudioFileWrExec( awp, 0, sgp->outV, sgp->outN );
  203. cmAudioFileWrExec( awp, 1, sgp->outV, sgp->outN );
  204. i += sgp->outN;
  205. }
  206. printf("Frames:%i\n",smpCnt);
  207. cmAudioFileWrFree(&awp);
  208. cmSigGenFree( &sgp );
  209. cmCtxFree(&c);
  210. cmAudioFileReportFn( fn, 0, 20, rpt );
  211. }
  212. //------------------------------------------------------------------------------------------------------------
  213. cmMatrixBuf* cmMatrixBufAllocFile( cmCtx* c, cmMatrixBuf* p, const char* fn )
  214. {
  215. cmRC_t rc;
  216. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  217. if( fn != NULL )
  218. if((rc = cmMatrixBufInitFile(op,fn)) != cmOkRC )
  219. cmObjFree(&op);
  220. return op;
  221. }
  222. cmMatrixBuf* cmMatrixBufAllocCopy(cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
  223. {
  224. cmRC_t rc;
  225. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  226. if( sp != NULL && rn > 0 && cn > 0 )
  227. if((rc = cmMatrixBufInitCopy(op,rn,cn,sp)) != cmOkRC )
  228. cmObjFree(&op);
  229. return op;
  230. }
  231. cmMatrixBuf* cmMatrixBufAlloc( cmCtx* c, cmMatrixBuf* p, unsigned rn, unsigned cn )
  232. {
  233. cmRC_t rc;
  234. cmMatrixBuf* op = cmObjAlloc( cmMatrixBuf, c, p );
  235. if( rn > 0 && cn > 0 )
  236. if((rc = cmMatrixBufInit(op,rn,cn)) != cmOkRC )
  237. cmObjFree(&op);
  238. return op;
  239. }
  240. cmRC_t cmMatrixBufFree( cmMatrixBuf** pp )
  241. {
  242. cmRC_t rc = cmOkRC;
  243. if( pp != NULL && *pp != NULL )
  244. {
  245. cmMatrixBuf* p = *pp;
  246. if((rc = cmMatrixBufFinal(p)) == cmOkRC )
  247. {
  248. cmMemPtrFree(&p->bufPtr);
  249. cmObjFree(pp);
  250. }
  251. }
  252. return rc;
  253. }
  254. void _cmMatrixBufGetFileSize( FILE* fp, unsigned* lineCharCntPtr, unsigned* lineCntPtr )
  255. {
  256. *lineCharCntPtr = 0;
  257. *lineCntPtr = 0;
  258. while( !feof(fp) )
  259. {
  260. char ch;
  261. unsigned charCnt = 0;
  262. while( (ch = getc(fp)) != EOF )
  263. {
  264. charCnt++;
  265. if( ch == '\n' )
  266. break;
  267. }
  268. *lineCntPtr += 1;
  269. if(charCnt > *lineCharCntPtr )
  270. *lineCharCntPtr = charCnt;
  271. }
  272. *lineCharCntPtr += 5; // add a safety margin
  273. }
  274. cmRC_t _cmMatrixBufGetMatrixSize( cmObj* op, FILE* fp, unsigned lineCharCnt, unsigned lineCnt, unsigned* rowCntPtr, unsigned * colCntPtr, const char* fn )
  275. {
  276. unsigned i;
  277. char lineBuf[ lineCharCnt + 1 ];
  278. *rowCntPtr = 0;
  279. *colCntPtr = 0;
  280. for(i=0; i<lineCnt; ++i)
  281. {
  282. if(fgets(lineBuf,lineCharCnt,fp)==NULL)
  283. {
  284. // if the last line is blank then return from here
  285. if( feof(fp) )
  286. return cmOkRC;
  287. return cmCtxRtCondition( op, cmSystemErrorRC, "A read error occured on the matrix file:'%s'.",fn);
  288. }
  289. assert( strlen(lineBuf) < lineCharCnt );
  290. char* lp = lineBuf;
  291. char* tp;
  292. // eat any leading white space
  293. while( (*lp) && isspace(*lp) )
  294. ++lp;
  295. // if the line was blank then skip it
  296. if( strlen(lp) == 0 || *lp == '#' )
  297. continue;
  298. (*rowCntPtr) += 1;
  299. unsigned colCnt;
  300. for(colCnt=0; (tp = strtok(lp," ")) != NULL; ++colCnt )
  301. lp = NULL;
  302. if( colCnt > *colCntPtr )
  303. *colCntPtr = colCnt;
  304. }
  305. return cmOkRC;
  306. }
  307. double _cmMatrixBufStrToNum( cmObj* op, const char* cp )
  308. {
  309. double v;
  310. if( sscanf(cp,"%le ",&v) != 1 )
  311. cmCtxRtCondition( op, cmArgAssertRC, "Parse error reading matrix file.");
  312. return v;
  313. }
  314. cmRC_t _cmMatrixBufReadFile(cmObj* op, FILE* fp, cmSample_t* p, unsigned lineCharCnt, unsigned rn, unsigned cn)
  315. {
  316. char lineBuf[ lineCharCnt+1 ];
  317. unsigned ci = 0;
  318. unsigned ri = 0;
  319. while( fgets(lineBuf,lineCharCnt,fp) != NULL )
  320. {
  321. char* lp = lineBuf;
  322. char* tp;
  323. while( (*lp) && isspace(*lp) )
  324. lp++;
  325. if( strlen(lp) == 0 || *lp == '#' )
  326. continue;
  327. for(ci=0; (tp = strtok(lp," ")) != NULL; ++ci )
  328. {
  329. p[ (ci*rn) + ri ] = _cmMatrixBufStrToNum(op,tp); //atof(tp);
  330. lp = NULL;
  331. }
  332. ++ri;
  333. }
  334. return cmOkRC;
  335. }
  336. cmRC_t cmMatrixBufInitFile( cmMatrixBuf* p, const char* fn )
  337. {
  338. cmRC_t rc;
  339. FILE* fp;
  340. unsigned lineCharCnt;
  341. unsigned lineCnt;
  342. unsigned rn;
  343. unsigned cn;
  344. if((fp = fopen(fn,"rt")) == NULL )
  345. return cmCtxRtCondition( &p->obj, cmSystemErrorRC, "Unable to open the matrix file:'%s'", fn );
  346. // get the length of the longest line in the file
  347. _cmMatrixBufGetFileSize(fp,&lineCharCnt,&lineCnt);
  348. rewind(fp);
  349. // get the count of matrix rows and columns
  350. if((rc=_cmMatrixBufGetMatrixSize( &p->obj, fp, lineCharCnt, lineCnt, &rn, &cn, fn )) != cmOkRC )
  351. goto errLabel;
  352. rewind(fp);
  353. // allocate the matrix memory
  354. cmMatrixBufInit(p,rn,cn);
  355. // fill the matrix from the file
  356. rc = _cmMatrixBufReadFile(&p->obj,fp,p->bufPtr,lineCharCnt,rn,cn);
  357. errLabel:
  358. if( rc != cmOkRC )
  359. cmMatrixBufFinal(p);
  360. fclose(fp);
  361. return rc;
  362. }
  363. cmRC_t cmMatrixBufInitCopy( cmMatrixBuf* p, unsigned rn, unsigned cn, const cmSample_t* sp )
  364. {
  365. cmRC_t rc;
  366. if((rc = cmMatrixBufInit(p,rn,cn)) != cmOkRC )
  367. return rc;
  368. cmVOS_Copy(p->bufPtr,(rn*cn),sp);
  369. return rc;
  370. }
  371. cmRC_t cmMatrixBufInit( cmMatrixBuf* p, unsigned rn, unsigned cn )
  372. {
  373. cmRC_t rc;
  374. if((rc = cmMatrixBufFinal(p)) != cmOkRC )
  375. return rc;
  376. p->rn = rn;
  377. p->cn = cn;
  378. p->bufPtr = cmMemResize( cmSample_t, p->bufPtr, rn*cn );
  379. return cmOkRC;
  380. }
  381. cmRC_t cmMatrixBufFinal( cmMatrixBuf* p )
  382. { return cmOkRC; }
  383. cmSample_t* cmMatrixBufColPtr( cmMatrixBuf* p, unsigned ci )
  384. { assert(ci<p->cn); return p->bufPtr + (ci * p->rn); }
  385. cmSample_t* cmMatrixBufRowPtr( cmMatrixBuf* p, unsigned ri )
  386. { assert(ri<p->rn); return p->bufPtr + ri; }
  387. void cmMatrixBufTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  388. {
  389. cmSample_t v[] = {1,2,2,3};
  390. cmCtx* c = cmCtxAlloc(NULL,rpt,lhH,stH);
  391. cmMatrixBuf* mbp = cmMatrixBufAllocFile(c, NULL, "temp.mat" );
  392. cmMatrixBuf* vbp = cmMatrixBufAllocCopy(c, NULL, 4,1,v);
  393. unsigned i;
  394. printf("rn:%i cn:%i\n",mbp->rn,mbp->cn);
  395. //cmVOS_Print( stdout, 10, 10, mbp->bufPtr );
  396. printf("%.1f\n ",cmVOS_Median( cmMatrixBufColPtr(vbp,0),vbp->rn));
  397. for(i=0; i<mbp->cn; ++i)
  398. {
  399. //cmVOS_Print( stdout, 1, mbp->cn, cmMatrixBufColPtr(c,mbp,i) );
  400. printf("%.1f, ",cmVOS_Median( cmMatrixBufColPtr(mbp,i),mbp->rn));
  401. }
  402. printf("\n");
  403. cmMatrixBufFree(&mbp);
  404. cmMatrixBufFree(&vbp);
  405. cmCtxFree(&c);
  406. }
  407. //------------------------------------------------------------------------------------------------------------
  408. cmSigGen* cmSigGenAlloc( cmCtx* c, cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
  409. {
  410. cmSigGen* op = cmObjAlloc( cmSigGen, c, p );
  411. if( procSmpCnt > 0 && srate > 0 && wfId != kInvalidWfId )
  412. if( cmSigGenInit( op, procSmpCnt, srate, wfId, fundFrqHz, overToneCnt ) != cmOkRC )
  413. cmObjFree(&op);
  414. return op;
  415. }
  416. cmRC_t cmSigGenFree( cmSigGen** pp )
  417. {
  418. cmRC_t rc = cmOkRC;
  419. if( pp != NULL && *pp != NULL )
  420. {
  421. cmSigGen* p = *pp;
  422. if((rc = cmSigGenFinal(p)) == cmOkRC )
  423. {
  424. cmMemPtrFree(&p->outV);
  425. cmObjFree(pp);
  426. }
  427. }
  428. return rc;
  429. }
  430. cmRC_t cmSigGenInit( cmSigGen* p, unsigned procSmpCnt, double srate, unsigned wfId, double fundFrqHz, unsigned overToneCnt )
  431. {
  432. assert( srate > 0 && procSmpCnt > 0 );
  433. p->outV = cmMemResize( cmSample_t, p->outV, procSmpCnt );
  434. p->outN = procSmpCnt;
  435. p->wfId = wfId;
  436. p->overToneCnt = overToneCnt;
  437. p->fundFrqHz = fundFrqHz;
  438. p->phase = 0;
  439. p->delaySmp = 0;
  440. p->srate = srate;
  441. return cmOkRC;
  442. }
  443. cmRC_t cmSigGenFinal( cmSigGen* p )
  444. { return cmOkRC; }
  445. cmRC_t cmSigGenExec( cmSigGen* p )
  446. {
  447. switch( p->wfId )
  448. {
  449. case kSineWfId: p->phase = cmVOS_SynthSine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  450. case kCosWfId: p->phase = cmVOS_SynthCosine( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  451. case kSquareWfId: p->phase = cmVOS_SynthSquare( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  452. case kTriangleWfId: p->phase = cmVOS_SynthTriangle( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  453. case kSawtoothWfId: p->phase = cmVOS_SynthSawtooth( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  454. case kWhiteWfId: cmVOS_Random( p->outV, p->outN, -1.0, 1.0 ); break;
  455. case kPinkWfId: p->delaySmp = cmVOS_SynthPinkNoise(p->outV, p->outN, p->delaySmp ); break;
  456. case kPulseWfId: p->phase = cmVOS_SynthPulseCos( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz, p->overToneCnt ); break;
  457. case kImpulseWfId: p->phase = cmVOS_SynthImpulse( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  458. case kSilenceWfId: cmVOS_Fill( p->outV, p->outN, 0 ); break;
  459. case kPhasorWfId: p->phase = cmVOS_SynthPhasor( p->outV, p->outN, p->phase, p->srate, p->fundFrqHz ); break;
  460. case kSeqWfId: p->phase = cmVOS_Seq( p->outV, p->outN, p->phase, 1 ); break;
  461. case kInvalidWfId:
  462. default:
  463. return cmCtxRtAssertFailed( &p->obj, 0, "Invalid waveform shape.");
  464. }
  465. return cmOkRC;
  466. }
  467. //------------------------------------------------------------------------------------------------------------
  468. cmDelay* cmDelayAlloc( cmCtx* c, cmDelay* ap, unsigned procSmpCnt, unsigned delaySmpCnt )
  469. {
  470. cmDelay* p = cmObjAlloc( cmDelay, c, ap );
  471. if( procSmpCnt > 0 && delaySmpCnt > 0 )
  472. if( cmDelayInit( p,procSmpCnt,delaySmpCnt) != cmOkRC && ap == NULL )
  473. cmObjFree(&p);
  474. return p;
  475. }
  476. cmRC_t cmDelayFree( cmDelay** pp )
  477. {
  478. cmRC_t rc = cmOkRC;
  479. if( pp != NULL && *pp != NULL )
  480. {
  481. cmDelay* p = *pp;
  482. if((rc = cmDelayFinal(*pp)) == cmOkRC )
  483. {
  484. cmMemPtrFree(&p->bufPtr);
  485. cmObjFree(pp);
  486. }
  487. }
  488. return rc;
  489. }
  490. cmRC_t cmDelayInit( cmDelay* p, unsigned procSmpCnt, unsigned delaySmpCnt )
  491. {
  492. p->procSmpCnt = procSmpCnt;
  493. p->delaySmpCnt = delaySmpCnt;
  494. p->bufSmpCnt = delaySmpCnt + procSmpCnt;
  495. p->bufPtr = cmMemResizeZ( cmSample_t, p->bufPtr, p->bufSmpCnt);
  496. p->delayInIdx = 0;
  497. p->outCnt = 1;
  498. p->outV[0] = p->bufPtr;
  499. p->outN[0] = p->procSmpCnt;
  500. p->outV[1] = NULL;
  501. p->outN[1] = 0;
  502. return cmOkRC;
  503. }
  504. cmRC_t cmDelayFinal( cmDelay* p )
  505. { return cmOkRC; }
  506. cmRC_t cmDelayCopyIn( cmDelay* p, const cmSample_t* sp, unsigned sn )
  507. {
  508. assert(sn<=p->procSmpCnt);
  509. unsigned n0 = cmMin(sn,p->bufSmpCnt - p->delayInIdx);
  510. // copy as many samples as possible from the input to the delayInIdx
  511. cmVOS_Copy(p->bufPtr + p->delayInIdx, n0, sp);
  512. p->delayInIdx = (p->delayInIdx + n0) % p->bufSmpCnt;
  513. // if there was not enough room to copy all the samples into the end of the buffer ....
  514. if( n0 < sn )
  515. {
  516. assert( p->delayInIdx == 0 );
  517. // ... then copy the rest to the beginning of the buffer
  518. unsigned n1 = sn - n0;
  519. cmVOS_Copy(p->bufPtr,n1, sp + n0 );
  520. p->delayInIdx = (p->delayInIdx + n1) % p->bufSmpCnt;
  521. }
  522. return cmOkRC;
  523. }
  524. cmRC_t cmDelayAdvance( cmDelay* p, unsigned sn )
  525. {
  526. // advance the output by sn and make sn samples available
  527. int delayOutIdx = ((p->outV[0] - p->bufPtr) + sn) % p->bufSmpCnt;
  528. p->outV[0] = p->bufPtr + delayOutIdx;
  529. p->outN[0] = cmMin(p->bufSmpCnt - delayOutIdx , sn );
  530. p->outCnt = p->outN[0] == sn ? 1 : 2 ;
  531. p->outV[1] = p->outCnt == 1 ? NULL : p->bufPtr;
  532. p->outN[1] = p->outCnt == 1 ? 0 : sn - p->outN[0];
  533. return cmOkRC;
  534. }
  535. cmRC_t cmDelayExec( cmDelay* p, const cmSample_t* sp, unsigned sn, bool bypassFl )
  536. {
  537. cmRC_t rc = cmOkRC;
  538. if( bypassFl )
  539. memcpy(p->outV,sp,sn*sizeof(cmSample_t));
  540. else
  541. {
  542. cmDelayCopyIn(p,sp,sn);
  543. rc = cmDelayAdvance(p,sn);
  544. }
  545. return rc;
  546. }
  547. void cmDelayTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  548. {
  549. cmCtx ctx;
  550. cmDelay delay;
  551. cmSigGen sigGen;
  552. unsigned procCnt = 4;
  553. unsigned procSmpCnt = 5;
  554. unsigned delaySmpCnt = 3;
  555. unsigned i;
  556. cmCtx* c = cmCtxAlloc( &ctx, rpt, lhH, stH );
  557. cmDelay* dlp = cmDelayAlloc( c, &delay, procSmpCnt, delaySmpCnt );
  558. cmSigGen* sgp = cmSigGenAlloc( c, &sigGen, procSmpCnt, 0, kSeqWfId,0, 0);
  559. for(i=0; i<procCnt; ++i)
  560. {
  561. cmSigGenExec(sgp);
  562. cmDelayExec(dlp,sgp->outV,sgp->outN,false);
  563. //cmVOS_Print( c->outFp, 1, sgp->outN, sgp->outV, 5, 0 );
  564. cmCtxPrint(c,"%i %i : ",i,0);
  565. cmVOS_PrintE( rpt, 1, dlp->outN[0], dlp->outV[0] );
  566. if( dlp->outN[1] > 0 )
  567. {
  568. cmCtxPrint(c,"%i %i : ",i,1);
  569. cmVOS_PrintE( rpt, 1, dlp->outN[1], dlp->outV[1] );
  570. }
  571. }
  572. cmSigGenFinal(sgp);
  573. cmDelayFinal(dlp);
  574. cmCtxFinal(c);
  575. }
  576. //------------------------------------------------------------------------------------------------------------
  577. cmFIR* cmFIRAllocKaiser(cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
  578. {
  579. cmFIR* op = cmObjAlloc( cmFIR, c, p );
  580. if( procSmpCnt > 0 && srate > 0 )
  581. if( cmFIRInitKaiser(op,procSmpCnt,srate,passHz,stopHz,passDb,stopDb,flags) != cmOkRC )
  582. cmObjFree(&op);
  583. return op;
  584. }
  585. cmFIR* cmFIRAllocSinc( cmCtx* c, cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
  586. {
  587. cmFIR* op = cmObjAlloc( cmFIR, c, p );
  588. if( srate > 0 && sincSmpCnt > 0 )
  589. if( cmFIRInitSinc(op,procSmpCnt,srate,sincSmpCnt,fcHz,flags,wndV) != cmOkRC )
  590. cmObjFree(&op);
  591. return op;
  592. }
  593. cmRC_t cmFIRFree( cmFIR** pp )
  594. {
  595. cmRC_t rc = cmOkRC;
  596. if( pp != NULL && *pp != NULL)
  597. {
  598. cmFIR* p = *pp;
  599. if((rc = cmFIRFinal(*pp)) == cmOkRC )
  600. {
  601. cmMemPtrFree(&p->coeffV);
  602. cmMemPtrFree(&p->outV);
  603. cmMemPtrFree(&p->delayV);
  604. cmObjFree(pp);
  605. }
  606. }
  607. return rc;
  608. }
  609. cmRC_t cmFIRInitKaiser( cmFIR* p, unsigned procSmpCnt, double srate, double passHz, double stopHz, double passDb, double stopDb, unsigned flags )
  610. {
  611. // pass/stop frequencies above nyquist produce incorrect results
  612. assert( passHz <= srate/2 && stopHz<=srate/2);
  613. // based on Orfandis, Introduction to Signal Processing, p.551 Prentice Hall, 1996
  614. double fcHz = (passHz + stopHz) / 2; // fc is half way between passHz and stopHz
  615. double dHz = fabs(stopHz-passHz);
  616. // convert ripple spec from db to linear
  617. double dPass = (pow(10,passDb/20)-1) / (pow(10,passDb/20)+1);
  618. double dStop = pow(10,-stopDb/20);
  619. // in practice the ripple must be equal in the stop and pass band - so take the minimum between the two
  620. double d = cmMin(dPass,dStop);
  621. // convert the ripple back to db
  622. double A = -20 * log10(d);
  623. // compute the kaiser alpha coeff
  624. double alpha = 0;
  625. if( A >= 50.0 ) // for ripple > 50
  626. alpha = 0.1102 * (A-8.7);
  627. else // for ripple <= 21
  628. {
  629. if( A > 21 )
  630. alpha = (0.5842 * (pow(A-21.0,0.4))) + (0.07886*(A-21));
  631. }
  632. double D = 0.922;
  633. if( A > 21 )
  634. D = (A - 7.95) / 14.36;
  635. // compute the filter order
  636. unsigned N = (unsigned)(floor(D * srate / dHz) + 1);
  637. //if N is even
  638. if( cmIsEvenU(N) )
  639. N = N + 1;
  640. //printf("fc=%f df=%f dPass=%f dStop=%f d=%f alpha=%f A=%f D=%f N=%i\n",fcHz,dHz,dPass,dStop,d,alpha,A,D,N);
  641. // compute a kaiser function to truncate the sinc
  642. double wnd[ N ];
  643. cmVOD_Kaiser( wnd, N, alpha );
  644. // form an ideal FIR LP impulse response based on a sinc function
  645. cmFIRInitSinc(p,procSmpCnt,srate,N,fcHz,flags, wnd);
  646. //cmVOD_Print(stdout,1,p->coeffCnt,p->coeffV);
  647. return cmOkRC;
  648. }
  649. cmRC_t cmFIRInitSinc( cmFIR* p, unsigned procSmpCnt, double srate, unsigned sincSmpCnt, double fcHz, unsigned flags, const double* wndV )
  650. {
  651. cmRC_t rc;
  652. if((rc = cmFIRFinal(p)) != cmOkRC )
  653. return rc;
  654. p->coeffCnt = sincSmpCnt;
  655. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  656. p->outN = procSmpCnt;
  657. p->coeffV = cmMemResizeZ( double, p->coeffV, p->coeffCnt );
  658. p->delayV = cmMemResizeZ( double, p->delayV, p->coeffCnt-1 ); // there is always one less delay than coeff
  659. p->delayIdx = 0;
  660. unsigned lp_flags = kNormalize_LPSincFl;
  661. lp_flags |= cmIsFlag(flags,kHighPassFIRFl) ? kHighPass_LPSincFl : 0;
  662. cmVOD_LP_Sinc(p->coeffV, p->coeffCnt, wndV, srate, fcHz, lp_flags );
  663. return cmOkRC;
  664. }
  665. cmRC_t cmFIRFinal( cmFIR* p )
  666. { return cmOkRC; }
  667. cmRC_t cmFIRExec( cmFIR* p, const cmSample_t* sbp, unsigned sn )
  668. {
  669. unsigned delayCnt = p->coeffCnt-1;
  670. int di = p->delayIdx;
  671. const cmSample_t* sep = sbp + sn;
  672. cmSample_t* op = p->outV;
  673. assert( di < delayCnt );
  674. assert( sn <= p->outN );
  675. // for each input sample
  676. while( sbp < sep )
  677. {
  678. // advance the delay line
  679. p->delayIdx = (p->delayIdx + 1) % delayCnt;
  680. const double* cbp = p->coeffV;
  681. const double* cep = cbp + p->coeffCnt;
  682. // mult input sample by coeff[0]
  683. double v = *sbp * *cbp++;
  684. // calc the output sample
  685. while( cbp<cep)
  686. {
  687. // note that the delay is being iterated backwards
  688. if( di == -1 )
  689. di=delayCnt-1;
  690. v += *cbp++ * p->delayV[di];
  691. --di;
  692. }
  693. // store the output sample
  694. *op++ = v;
  695. // insert the input sample
  696. p->delayV[ p->delayIdx ] = *sbp++;
  697. // store the position of the newest ele in the delay line
  698. di = p->delayIdx;
  699. }
  700. return cmOkRC;
  701. }
  702. void cmFIRTest0( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  703. {
  704. unsigned N = 512;
  705. cmKbRecd kb;
  706. cmCtx c;
  707. cmCtxInit(&c,rpt,lhH,stH);
  708. double srate = N;
  709. unsigned procSmpCnt = N;
  710. cmPlotSetup("Test Proc Impl",2,1);
  711. cmSample_t in[ procSmpCnt ];
  712. cmVOS_Fill(in,procSmpCnt,0);
  713. in[0] = 1;
  714. cmVOS_Random(in,procSmpCnt, -1.0, 1.0 );
  715. cmFIR* ffp = cmFIRAllocKaiser( &c, NULL, procSmpCnt,srate, srate*0.025, srate/2, 10, 60, 0 );
  716. //cmFIR* ffp = cmFIRAllocSinc( &c, NULL, 32, 1000, 0 );
  717. cmFftSR* ftp = cmFftAllocSR( &c, NULL, ffp->outV, ffp->outN, kToPolarFftFl );
  718. cmFIRExec( ffp, in, procSmpCnt );
  719. cmFftExecSR( ftp, NULL, 0 );
  720. cmVOR_AmplitudeToDb(ftp->magV,ftp->binCnt,ftp->magV);
  721. printf("coeff cnt:%i\n",ffp->coeffCnt );
  722. cmPlotClear();
  723. cmPlotLineR( "test", NULL, ftp->magV, NULL, ftp->binCnt, NULL, kSolidPlotLineId );
  724. cmPlotDraw();
  725. cmKeyPress(&kb);
  726. cmFftFreeSR(&ftp);
  727. cmFIRFree(&ffp);
  728. }
  729. void cmFIRTest1( cmCtx* ctx )
  730. {
  731. const char* sfn = "/home/kevin/temp/sig.va";
  732. const char* ffn = "/home/kevin/temp/fir.va";
  733. unsigned N = 44100;
  734. unsigned srate = N;
  735. unsigned procSmpCnt = N;
  736. double passHz = 15000;
  737. double stopHz = 14000;
  738. double passDb = 1.0;
  739. double stopDb = 60.0;
  740. unsigned flags = kHighPassFIRFl;
  741. cmSample_t x[ procSmpCnt ];
  742. cmVOS_Fill(x,procSmpCnt,0);
  743. x[0] = 1;
  744. cmVOS_Random(x,procSmpCnt, -1.0, 1.0 );
  745. cmFIR* f = cmFIRAllocKaiser( ctx, NULL, procSmpCnt, srate, passHz, stopHz, stopDb, passDb, flags );
  746. cmFIRExec( f, x, procSmpCnt );
  747. cmVectArrayWriteMatrixS(ctx, ffn, f->outV, 1, f->outN );
  748. cmVectArrayWriteMatrixS(ctx, sfn, x, 1, N );
  749. cmFIRFree(&f);
  750. }
  751. //------------------------------------------------------------------------------------------------------------
  752. cmFuncFilter* cmFuncFilterAlloc( cmCtx* c, cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
  753. {
  754. cmRC_t rc;
  755. cmFuncFilter* op = cmObjAlloc( cmFuncFilter,c, p );
  756. if( procSmpCnt > 0 && funcPtr != NULL && wndSmpCnt > 0 )
  757. {
  758. if( cmShiftBufAlloc(c,&p->shiftBuf,0,0,0) != NULL )
  759. if((rc = cmFuncFilterInit(op,procSmpCnt,funcPtr,userPtr,wndSmpCnt)) != cmOkRC )
  760. {
  761. cmShiftBuf* sbp = &p->shiftBuf;
  762. cmShiftBufFree(&sbp);
  763. cmObjFree(&op);
  764. }
  765. }
  766. return op;
  767. }
  768. cmRC_t cmFuncFilterFree( cmFuncFilter** pp )
  769. {
  770. cmRC_t rc = cmOkRC;
  771. if( pp!=NULL && *pp != NULL )
  772. {
  773. cmFuncFilter* p = *pp;
  774. if((rc = cmFuncFilterFinal(*pp)) == cmOkRC )
  775. {
  776. cmShiftBuf* sbp = &p->shiftBuf;
  777. cmShiftBufFree(&sbp);
  778. cmMemPtrFree(&p->outV);
  779. cmObjFree(pp);
  780. }
  781. }
  782. return rc;
  783. }
  784. cmRC_t cmFuncFilterInit( cmFuncFilter* p, unsigned procSmpCnt, cmFuncFiltPtr_t funcPtr, void* userPtr, unsigned wndSmpCnt )
  785. {
  786. cmRC_t rc;
  787. if(( rc = cmFuncFilterFinal(p)) != cmOkRC )
  788. return rc;
  789. // The shift buffer always consits of the p->wndSmpCnt-1 samples from the previous
  790. // exec followed by the latest procSmpCnt samples at the end of the buffer
  791. cmShiftBufInit( &p->shiftBuf, procSmpCnt, wndSmpCnt + procSmpCnt - 1, procSmpCnt );
  792. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt);
  793. p->outN = procSmpCnt;
  794. p->funcPtr = funcPtr;
  795. p->curWndSmpCnt = 1;
  796. p->wndSmpCnt = wndSmpCnt;
  797. return rc;
  798. }
  799. cmRC_t cmFuncFilterFinal( cmFuncFilter* p )
  800. { return cmOkRC; }
  801. cmRC_t cmFuncFilterExec( cmFuncFilter* p, const cmSample_t* sp, unsigned sn )
  802. {
  803. assert( sn <= p->outN);
  804. // The window used by this function is always causal. At the very beginning of the signal
  805. // the window length begins at 1 and increases until is has the length p->wndSmpCnt.
  806. // Note that this approach ignores any zeros automatically prepended to the beginning of the
  807. // signal by the shift buffer. The first window processed always has a length of 1 and
  808. // begins with the first actual sample given to the shift buffer. Successive windows increase
  809. // by one and start at the first actual sample until the full window length is available
  810. // from the shift buffer. At this point the window length remains constant and it is hopped
  811. // by one sample for each window.
  812. while(cmShiftBufExec(&p->shiftBuf,sp,sn))
  813. {
  814. const cmSample_t* fsp = p->shiftBuf.outV;
  815. cmSample_t* dp = p->outV;
  816. cmSample_t* ep = p->outV + sn; // produce as many output values as there are input samples
  817. // for each output sample
  818. while( dp < ep )
  819. {
  820. // the source range should never extend outside the shift buffer
  821. assert( fsp + p->curWndSmpCnt <= p->shiftBuf.outV + p->shiftBuf.wndSmpCnt );
  822. // calc the next output value
  823. *dp++ = p->funcPtr( fsp, p->curWndSmpCnt, p->userPtr );
  824. // if the window has not yet achieved its full length ...
  825. if( p->curWndSmpCnt < p->wndSmpCnt )
  826. ++p->curWndSmpCnt; // ... then increase its length by 1
  827. else
  828. ++fsp; // ... otherwise shift it ahead by 1
  829. }
  830. }
  831. return cmOkRC;
  832. }
  833. cmSample_t cmFuncFiltTestFunc( const cmSample_t* sp, unsigned sn, void* vp )
  834. {
  835. //printf("% f % f %p % i\n",*sp,*sp+(sn-1),sp,sn);
  836. cmSample_t v = cmVOS_Median(sp,sn);
  837. printf("%f ",v);
  838. return v;
  839. //return *sp;
  840. }
  841. void cmFuncFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  842. {
  843. unsigned procSmpCnt = 1;
  844. unsigned N = 32;
  845. cmSample_t v[N];
  846. cmCtx c;
  847. unsigned i;
  848. cmCtxAlloc(&c,rpt,lhH,stH);
  849. cmVOS_Seq(v,N,0,1);
  850. cmVOS_Print(rpt,1,32,v);
  851. cmFuncFilter* ffp = NULL;
  852. ffp = cmFuncFilterAlloc( &c, NULL, procSmpCnt, cmFuncFiltTestFunc, NULL, 5 );
  853. for(i=0; i<N; ++i)
  854. cmFuncFilterExec(ffp,v+(i*procSmpCnt),procSmpCnt);
  855. cmFuncFilterFree( &ffp );
  856. cmCtxFinal(&c);
  857. //unsigned v1n = 9;
  858. //cmSample_t v1[9] = { 1, 75, 91, 35, 6, 80, 40, 91, 79};
  859. //cmSample_t v1[10] = {53, 64, 48, 78, 30, 59, 7, 50, 71, 53 };
  860. //printf("Median: %f \n",cmVOS_Median(v1,v1+v1n));
  861. }
  862. //------------------------------------------------------------------------------------------------------------
  863. cmDhmm* cmDhmmAlloc( cmCtx* c, cmDhmm* ap, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
  864. {
  865. cmDhmm* p = cmObjAlloc( cmDhmm, c, ap );
  866. if( stateN > 0 && symN > 0 )
  867. if( cmDhmmInit(p, stateN, symN, initV, transM, stsM ) != cmOkRC )
  868. cmObjFree(&p);
  869. return p;
  870. }
  871. cmRC_t cmDhmmFree( cmDhmm** pp )
  872. {
  873. cmRC_t rc = cmOkRC;
  874. cmDhmm* p = *pp;
  875. if( pp==NULL || *pp==NULL )
  876. return cmOkRC;
  877. if((rc = cmDhmmFinal(p)) != cmOkRC )
  878. return cmOkRC;
  879. cmObjFree(pp);
  880. return rc;
  881. }
  882. cmRC_t cmDhmmInit( cmDhmm* p, unsigned stateN, unsigned symN, cmReal_t* initV, cmReal_t* transM, cmReal_t* stsM )
  883. {
  884. cmRC_t rc;
  885. if((rc = cmDhmmFinal(p)) != cmOkRC )
  886. return rc;
  887. p->stateN = stateN;
  888. p->symN = symN;
  889. p->initV = initV;
  890. p->transM = transM;
  891. p->stsM = stsM;
  892. return cmOkRC;
  893. }
  894. cmRC_t cmDhmmFinal( cmDhmm* p )
  895. { return cmOkRC; }
  896. cmRC_t cmDhmmExec( cmDhmm* p )
  897. {
  898. return cmOkRC;
  899. }
  900. // Generate a random matrix with rows that sum to 1.0.
  901. void _cmDhmmGenRandMatrix( cmReal_t* dp, unsigned rn, unsigned cn )
  902. {
  903. cmReal_t v[ cn ];
  904. unsigned i,j;
  905. for(i=0; i<rn; ++i)
  906. {
  907. cmVOR_Random( v, cn, 0.0, 1.0 );
  908. cmVOR_NormalizeProbability( v, cn);
  909. for(j=0; j<cn; ++j)
  910. dp[ (j * rn) + i ] = v[j];
  911. }
  912. }
  913. enum { kEqualProbHmmFl=0x01, kRandProbHmmFl=0x02, kManualProbHmmFl=0x04 };
  914. void _cmDhmmGenProb( cmReal_t* dp, unsigned rn, unsigned cn, unsigned flags, const cmReal_t* sp )
  915. {
  916. switch( flags )
  917. {
  918. case kRandProbHmmFl:
  919. _cmDhmmGenRandMatrix( dp, rn, cn );
  920. break;
  921. case kEqualProbHmmFl:
  922. {
  923. // equal prob
  924. cmReal_t pr = 1.0/cn;
  925. unsigned i,j;
  926. for(i=0; i<rn; ++i)
  927. for(j=0; j<cn; ++j)
  928. dp[ (j*rn) + i ] = pr;
  929. }
  930. break;
  931. case kManualProbHmmFl:
  932. cmVOR_Copy( dp, (rn*cn), sp );
  933. break;
  934. default:
  935. assert(0);
  936. }
  937. }
  938. // generate a random integer in the range 0 to probN-1 where probV[ probN ] contains
  939. // the probability of generating each of the possible values.
  940. unsigned _cmDhmmGenRandInt( const cmReal_t* probV, unsigned probN, unsigned stride )
  941. {
  942. cmReal_t tmp[ probN ];
  943. cmReal_t cumSumV[ probN+1 ];
  944. const cmReal_t* sp = probV;
  945. cumSumV[0] = 0;
  946. if( stride > 1 )
  947. {
  948. cmVOR_CopyStride( tmp, probN, probV, stride );
  949. sp = tmp;
  950. }
  951. cmVOR_CumSum( cumSumV+1, probN, sp );
  952. return cmVOR_BinIndex( cumSumV, probN+1, (cmReal_t)rand()/RAND_MAX );
  953. }
  954. cmRC_t cmDhmmGenObsSequence( cmDhmm* p, unsigned* dbp, unsigned dn )
  955. {
  956. const unsigned* dep = dbp + dn;
  957. // generate the first state based on the init state prob. vector
  958. unsigned state = _cmDhmmGenRandInt( p->initV, p->stateN, 1 );
  959. // generate an observation from the state based on the symbol prob. vector
  960. *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
  961. while( dbp < dep )
  962. {
  963. // get the next state based on the previous state
  964. state = _cmDhmmGenRandInt( p->transM + state, p->stateN, p->stateN );
  965. // given a state generate an observation
  966. *dbp++ = _cmDhmmGenRandInt( p->stsM + state, p->symN, p->stateN );
  967. }
  968. return cmOkRC;
  969. }
  970. /// Perform a forward evaluation of the model given a set of observations.
  971. /// initPrV[ stateN ] is the probability of the model being in each state at the start of the evaluation.
  972. /// alphaM[ stateN, obsN ] is a return value and represents the probability of seeing each symbol at each time step.
  973. enum { kNoLogScaleHmmFl = 0x00, kLogScaleHmmFl = 0x01 };
  974. cmRC_t cmDHmmForwardEval( cmDhmm* p, const cmReal_t* initPrV, const unsigned* obsV, unsigned obsN, cmReal_t* alphaM, unsigned flags, cmReal_t* logProbPtr )
  975. {
  976. bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
  977. cmReal_t logProb = 0;
  978. cmReal_t* abp = alphaM; // define first dest. column
  979. const cmReal_t* aep = abp + p->stateN;
  980. const cmReal_t* sts = p->stsM + (obsV[0] * p->stateN); // stsM[] column for assoc'd with first obs. symbol
  981. unsigned i;
  982. // calc the prob of begining in each state given the obs. symbol
  983. for(i=0; abp < aep; ++i )
  984. *abp++ = *initPrV++ * *sts++;
  985. // scale to prevent underflow
  986. if( scaleFl )
  987. {
  988. cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
  989. if( sum > 0 )
  990. {
  991. cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
  992. logProb += log(sum);
  993. }
  994. }
  995. // for each time step
  996. for(i=1; i<obsN; ++i)
  997. {
  998. // next state 0 (first col, first row) is calc'd first
  999. const cmReal_t* tm = p->transM;
  1000. // pick the stsM[] column assoc'd with ith observation symbol
  1001. const cmReal_t* sts = p->stsM + (obsV[i] * p->stateN);
  1002. // store a pointer to the alpha column assoc'd with obsV[i-1]
  1003. const cmReal_t* app0 = abp - p->stateN;
  1004. aep = abp + p->stateN;
  1005. // for each dest state
  1006. while( abp < aep )
  1007. {
  1008. // prob of being in each state on the previous time step
  1009. const cmReal_t* app = app0;
  1010. const cmReal_t* ape = app + p->stateN;
  1011. *abp = 0;
  1012. // for each src state - calc prob. of trans from src to dest
  1013. while( app<ape )
  1014. *abp += *app++ * *tm++;
  1015. // calc prob of obs symbol in dest state
  1016. *abp++ *= *sts++;
  1017. }
  1018. // scale to prevent underflow
  1019. if( scaleFl )
  1020. {
  1021. cmReal_t sum = cmVOR_Sum(abp-p->stateN,p->stateN);
  1022. if( sum > 0 )
  1023. {
  1024. cmVOR_DivVS( abp-p->stateN,p->stateN,sum);
  1025. logProb += log(sum);
  1026. }
  1027. }
  1028. }
  1029. if( logProbPtr != NULL )
  1030. *logProbPtr = logProb;
  1031. return cmOkRC;
  1032. }
  1033. cmRC_t cmDHmmBcmkwardEval( cmDhmm* p, const unsigned* obsV, unsigned obsN, cmReal_t* betaM, unsigned flags )
  1034. {
  1035. bool scaleFl = cmIsFlag(flags,kLogScaleHmmFl);
  1036. int i,j,t;
  1037. cmVOR_Fill(betaM+((obsN-1)*p->stateN),p->stateN,1.0);
  1038. // for each time step
  1039. for(t=obsN-2; t>=0; --t)
  1040. {
  1041. // for each state at t
  1042. for(i=0; i<p->stateN; ++i)
  1043. {
  1044. double Bt = 0;
  1045. // for each state at t+1
  1046. for(j=0; j<p->stateN; ++j)
  1047. {
  1048. double aij = p->transM[ (j * p->stateN) + i ];
  1049. double bj = p->stsM[ (obsV[t+1] * p->stateN) + j ];
  1050. double Bt1 = betaM[ ((t+1) * p->stateN) + j ];
  1051. Bt += aij * bj * Bt1;
  1052. }
  1053. betaM[ (t * p->stateN) + i ] = Bt;
  1054. }
  1055. if( scaleFl )
  1056. {
  1057. double* bp = betaM + (t * p->stateN);
  1058. double sum = cmVOR_Sum(bp, p->stateN );
  1059. if( sum > 0 )
  1060. cmVOR_DivVS( bp, p->stateN, sum );
  1061. }
  1062. }
  1063. return cmOkRC;
  1064. }
  1065. void _cmDhmmNormRow( cmReal_t* p, unsigned pn, unsigned stride, const cmReal_t* sp )
  1066. {
  1067. if( sp == NULL )
  1068. sp = p;
  1069. cmReal_t sum = 0;
  1070. unsigned n = pn * stride;
  1071. const cmReal_t* bp = sp;
  1072. const cmReal_t* ep = bp + n;
  1073. for(; bp<ep; bp+=stride)
  1074. sum += *bp;
  1075. for(ep = p+n; p<ep; p+=stride,sp+=stride)
  1076. *p = *sp / sum;
  1077. }
  1078. void _cmDhmmNormMtxRows( cmReal_t* dp, unsigned rn, unsigned cn, const cmReal_t* sp )
  1079. {
  1080. const cmReal_t* erp = sp + rn;
  1081. while( sp < erp )
  1082. _cmDhmmNormRow( dp++, cn, rn, sp++ );
  1083. }
  1084. cmRC_t cmDhmmTrainEM( cmDhmm* p, const unsigned* obsV, unsigned obsN, unsigned iterCnt, unsigned flags )
  1085. {
  1086. unsigned i,j,k,t;
  1087. cmReal_t alphaM[ p->stateN * obsN ];
  1088. cmReal_t betaM[ p->stateN * obsN ];
  1089. cmReal_t g[ p->stateN * obsN ];
  1090. cmReal_t q[ p->stateN * p->symN ];
  1091. cmReal_t E[ p->stateN * p->stateN ];
  1092. cmReal_t logProb = 0;
  1093. //cmDhmmReport(p->obj.ctx,p);
  1094. for(k=0; k<iterCnt; ++k)
  1095. {
  1096. cmVOR_Fill( q, (p->stateN * p->symN), 0 );
  1097. cmVOR_Fill( E, (p->stateN * p->stateN), 0 );
  1098. // calculate alpha and beta
  1099. cmDHmmForwardEval( p, p->initV, obsV, obsN, alphaM, flags, &logProb);
  1100. cmDHmmBcmkwardEval( p, obsV, obsN, betaM, flags );
  1101. // gamma[ stateN, obsN ] = alphaM .* betaM - gamma is the probability of being in each state at each time step
  1102. cmVOR_MultVVV( g,(p->stateN*obsN), alphaM, betaM );
  1103. // normalize gamma
  1104. for(i=0; i<obsN; ++i)
  1105. cmVOR_NormalizeProbability( g + (i*p->stateN), p->stateN );
  1106. //printf("ITER:%i logProb:%f\n",k,logProb);
  1107. // count the number of times state i emits obsV[0] in the starting location
  1108. cmVOR_Copy( q + (obsV[0] * p->stateN), p->stateN, g );
  1109. for(t=0; t<obsN-1; ++t)
  1110. {
  1111. // point to alpha[:,t] and beta[:,t+1]
  1112. const cmReal_t* alpha_t0 = alphaM + (t*p->stateN);
  1113. const cmReal_t* beta_t1 = betaM + ((t+1)*p->stateN);
  1114. cmReal_t Et[ p->stateN * p->stateN ];
  1115. cmReal_t Esum = 0;
  1116. // for each source state
  1117. for(i=0; i<p->stateN; ++i)
  1118. {
  1119. // for each dest state
  1120. for(j=0; j<p->stateN; ++j)
  1121. {
  1122. // prob of transitioning from state i to j and emitting obs[t] at time t
  1123. cmReal_t Eps = alpha_t0[i] * p->transM[ (j*p->stateN) + i ] * p->stsM[ (obsV[t+1]*p->stateN) + j ] * beta_t1[j];
  1124. // count the number of transitions from i to j
  1125. Et[ (j*p->stateN) + i ] = Eps;
  1126. Esum += Eps;
  1127. }
  1128. // count the number of times state i emits obsV[t]
  1129. q[ (obsV[t+1] * p->stateN) + i ] += g[ ((t+1)*p->stateN) + i ];
  1130. }
  1131. // normalize Et and sum it into E
  1132. cmVOR_DivVS( Et, (p->stateN*p->stateN), Esum );
  1133. cmVOR_AddVV( E, (p->stateN*p->stateN), Et );
  1134. }
  1135. // update the model
  1136. _cmDhmmNormMtxRows( p->initV, 1, p->stateN, g );
  1137. _cmDhmmNormMtxRows( p->transM, p->stateN, p->stateN, E );
  1138. _cmDhmmNormMtxRows( p->stsM, p->stateN, p->symN, q );
  1139. }
  1140. return cmOkRC;
  1141. }
  1142. cmRC_t cmDhmmReport( cmDhmm* p )
  1143. {
  1144. cmVOR_PrintL("initV:\n", p->obj.err.rpt, 1, p->stateN, p->initV );
  1145. cmVOR_PrintL("transM:\n", p->obj.err.rpt, p->stateN, p->stateN, p->transM );
  1146. cmVOR_PrintL("symM:\n", p->obj.err.rpt, p->stateN, p->symN, p->stsM );
  1147. return cmOkRC;
  1148. }
  1149. void cmDhmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1150. {
  1151. unsigned stateN = 2;
  1152. unsigned symN = 3;
  1153. unsigned obsN = 4;
  1154. unsigned iterN = 10;
  1155. cmReal_t initV0[ stateN ];
  1156. cmReal_t transM0[ stateN * stateN ];
  1157. cmReal_t stsM0[ symN * stateN ];
  1158. cmReal_t initV1[ stateN ];
  1159. cmReal_t transM1[ stateN * stateN ];
  1160. cmReal_t stsM1[ symN * stateN ];
  1161. unsigned obsV[ obsN ];
  1162. unsigned hist[ symN ];
  1163. unsigned genFl = kManualProbHmmFl;
  1164. cmReal_t initV[] =
  1165. {
  1166. 0.44094,
  1167. 0.55906
  1168. };
  1169. cmReal_t transM[] =
  1170. {
  1171. 0.48336,
  1172. 0.81353,
  1173. 0.51664,
  1174. 0.18647,
  1175. };
  1176. cmReal_t stsM[] =
  1177. {
  1178. 0.20784,
  1179. 0.18698,
  1180. 0.43437,
  1181. 0.24102,
  1182. 0.35779,
  1183. 0.57199
  1184. };
  1185. unsigned obsM[] = { 2, 2, 2, 0 };
  1186. cmReal_t initV2[] = { 0.79060, 0.20940 };
  1187. cmReal_t transM2[] = { 0.508841, 0.011438, 0.491159, 0.988562 };
  1188. cmReal_t stsM2[] = { 0.25789, 0.35825, 0.61981, 0.42207, 0.12230, 0.21969 };
  1189. //srand( time(NULL) );
  1190. // generate a random HMM
  1191. _cmDhmmGenProb( initV0, 1, stateN, genFl, initV );
  1192. _cmDhmmGenProb( transM0, stateN, stateN, genFl, transM );
  1193. _cmDhmmGenProb( stsM0, stateN, symN, genFl, stsM );
  1194. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH);
  1195. cmDhmm* h0p = cmDhmmAlloc( c, NULL, stateN, symN, initV0, transM0, stsM0 );
  1196. // generate an observation sequence based on the random HMM
  1197. //cmDhmmGenObsSequence(c, h0p, obsV, obsN );
  1198. memcpy(obsV,obsM,obsN*sizeof(unsigned));
  1199. if( 0 )
  1200. {
  1201. // print the HMM
  1202. cmDhmmReport( h0p);
  1203. // print the observation symbols
  1204. cmVOU_PrintL("obs:\n", rpt, 1, obsN, obsV );
  1205. // print the histogram of the obs. symbols
  1206. cmVOU_Hist( hist, symN, obsV, obsN );
  1207. cmVOU_PrintL("hist:\n", rpt, 1, symN, hist );
  1208. // calc alpha (the forward probabilities)
  1209. cmReal_t alphaM[ h0p->stateN*obsN ];
  1210. cmReal_t logProb=0;
  1211. cmDHmmForwardEval( h0p, h0p->initV, obsV, obsN, alphaM, kLogScaleHmmFl, &logProb);
  1212. printf("log prob:%f\n alpha:\n", logProb );
  1213. cmVOR_Print( rpt, h0p->stateN, obsN, alphaM );
  1214. // calc beta (the bcmkward probabilities)
  1215. cmReal_t betaM[ h0p->stateN*obsN ];
  1216. logProb=0;
  1217. cmDHmmBcmkwardEval( h0p, obsV, obsN, betaM, kLogScaleHmmFl);
  1218. printf("log prob:%f\n beta:\n", logProb );
  1219. cmVOR_Print( h0p->obj.err.rpt, h0p->stateN, obsN, betaM );
  1220. }
  1221. // initialize a second HMM with random probabilities
  1222. _cmDhmmGenProb( initV1, 1, stateN, kManualProbHmmFl, initV2 );
  1223. _cmDhmmGenProb( transM1, stateN, stateN, kManualProbHmmFl, transM2 );
  1224. _cmDhmmGenProb( stsM1, stateN, symN, kManualProbHmmFl, stsM2 );
  1225. cmDhmm* h1p = cmDhmmAlloc( c, NULL, stateN, symN, initV1, transM1, stsM1 );
  1226. cmDhmmTrainEM( h1p, obsV, obsN, iterN, kLogScaleHmmFl );
  1227. cmDhmmFree(&h1p);
  1228. cmDhmmFree(&h0p);
  1229. cmCtxFree(&c);
  1230. }
  1231. //------------------------------------------------------------------------------------------------------------
  1232. cmConvolve* cmConvolveAlloc( cmCtx* c, cmConvolve* ap, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
  1233. {
  1234. cmConvolve* p = cmObjAlloc( cmConvolve, c, ap);
  1235. p->fft = cmFftAllocSR( c,NULL,NULL,0,kNoConvertFftFl);
  1236. p->ifft= cmIFftAllocRS(c,NULL,p->fft->binCnt);
  1237. if( hn > 0 && procSmpCnt > 0 )
  1238. if( cmConvolveInit(p,h,hn,procSmpCnt) != cmOkRC )
  1239. cmObjFree(&p);
  1240. return p;
  1241. }
  1242. cmRC_t cmConvolveFree( cmConvolve** pp )
  1243. {
  1244. cmRC_t rc;
  1245. cmConvolve* p = *pp;
  1246. if( pp == NULL || *pp == NULL )
  1247. return cmOkRC;
  1248. if((rc = cmConvolveFinal(p)) != cmOkRC )
  1249. return cmOkRC;
  1250. cmFftFreeSR(&p->fft);
  1251. cmIFftFreeRS(&p->ifft);
  1252. cmMemPtrFree(&p->H);
  1253. cmMemPtrFree(&p->outV);
  1254. cmObjFree(pp);
  1255. return cmOkRC;
  1256. }
  1257. cmRC_t cmConvolveInit( cmConvolve* p, const cmSample_t* h, unsigned hn, unsigned procSmpCnt )
  1258. {
  1259. cmRC_t rc;
  1260. unsigned i;
  1261. unsigned cn = cmNextPowerOfTwo( hn + procSmpCnt - 1 );
  1262. if((rc = cmConvolveFinal(p)) != cmOkRC )
  1263. return rc;
  1264. cmFftInitSR( p->fft, NULL, cn, kNoConvertFftFl );
  1265. cmIFftInitRS( p->ifft, p->fft->binCnt);
  1266. p->H = cmMemResizeZ( cmComplexR_t,p->H, p->fft->binCnt );
  1267. p->outV = cmMemResizeZ( cmSample_t,p->outV, cn );
  1268. p->olaV = p->outV + procSmpCnt;
  1269. p->outN = procSmpCnt;
  1270. p->hn = hn;
  1271. // take the FFT of the impulse response
  1272. cmFftExecSR( p->fft, h, hn );
  1273. // copy the FFT of the impulse response to p->H[]
  1274. for(i=0; i<p->fft->binCnt; ++i)
  1275. p->H[i] = p->fft->complexV[i] / p->fft->wndSmpCnt;
  1276. return cmOkRC;
  1277. }
  1278. cmRC_t cmConvolveFinal( cmConvolve* p )
  1279. { return cmOkRC; }
  1280. cmRC_t cmConvolveExec( cmConvolve* p, const cmSample_t* x, unsigned xn )
  1281. {
  1282. unsigned i;
  1283. // take FT of input signal
  1284. cmFftExecSR( p->fft, x, xn );
  1285. // multiply the signal spectra of the input signal and impulse response
  1286. for(i=0; i<p->fft->binCnt; ++i)
  1287. p->ifft->complexV[i] = p->H[i] * p->fft->complexV[i];
  1288. // take the IFFT of the convolved spectrum
  1289. cmIFftExecRS(p->ifft,NULL);
  1290. // sum with previous impulse response tail
  1291. cmVOS_AddVVV( p->outV, p->outN-1, p->olaV, p->ifft->outV );
  1292. // first sample of the impulse response tail is complete
  1293. p->outV[p->outN-1] = p->ifft->outV[p->outN-1];
  1294. // store the new impulse response tail
  1295. cmVOS_Copy(p->olaV,p->hn-1,p->ifft->outV + p->outN );
  1296. return cmOkRC;
  1297. }
  1298. cmRC_t cmConvolveSignal( cmCtx* c, const cmSample_t* h, unsigned hn, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn )
  1299. {
  1300. cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
  1301. cmConvolveExec(p,x,xn);
  1302. unsigned n = cmMin(p->outN,yn);
  1303. cmVOS_Copy(y,n,p->outV);
  1304. if( yn > p->outN )
  1305. {
  1306. unsigned m = cmMin(yn-p->outN,p->hn-1);
  1307. cmVOS_Copy(y+n,m,p->olaV);
  1308. }
  1309. cmConvolveFree(&p);
  1310. return cmOkRC;
  1311. }
  1312. cmRC_t cmConvolveTest(cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1313. {
  1314. cmCtx *c = cmCtxAlloc(NULL,rpt,lhH,stH);
  1315. cmSample_t h[] = { 1, .5, .25, 0, 0 };
  1316. unsigned hn = sizeof(h) / sizeof(h[0]);
  1317. cmSample_t x[] = { 1, 0, 0, 0, 1, 0, 0, 0 };
  1318. unsigned xn = sizeof(x) / sizeof(x[0]);
  1319. unsigned yn = xn+hn-1;
  1320. cmSample_t y[yn];
  1321. //cmVOS_Hann(h,5);
  1322. cmConvolve* p = cmConvolveAlloc(c,NULL,h,hn,xn);
  1323. cmConvolveExec(p,x,xn);
  1324. cmVOS_Print( rpt, 1, p->outN, p->outV );
  1325. cmVOS_Print( rpt, 1, p->hn-1, p->olaV );
  1326. cmConvolveFree(&p);
  1327. cmConvolveSignal(c,h,hn,x,xn,y,yn);
  1328. cmVOS_Print( rpt, 1, hn+xn-1, y );
  1329. cmCtxFree(&c);
  1330. return cmOkRC;
  1331. }
  1332. //------------------------------------------------------------------------------------------------------------
  1333. cmBfcc* cmBfccAlloc( cmCtx* ctx, cmBfcc* ap, unsigned bandCnt, unsigned binCnt, double binHz )
  1334. {
  1335. cmBfcc* p = cmObjAlloc( cmBfcc, ctx, ap );
  1336. if( bandCnt > 0 )
  1337. if( cmBfccInit( p, bandCnt, binCnt, binHz ) != cmOkRC )
  1338. cmBfccFree(&p);
  1339. return p;
  1340. }
  1341. cmRC_t cmBfccFree( cmBfcc** pp )
  1342. {
  1343. cmRC_t rc;
  1344. if( pp== NULL || *pp==NULL)
  1345. return cmOkRC;
  1346. cmBfcc* p = *pp;
  1347. if((rc = cmBfccFinal(p)) != cmOkRC )
  1348. return rc;
  1349. cmMemPtrFree(&p->dctMtx);
  1350. cmMemPtrFree(&p->filtMask);
  1351. cmMemPtrFree(&p->outV);
  1352. cmObjFree(pp);
  1353. return rc;
  1354. }
  1355. cmRC_t cmBfccInit( cmBfcc* p, unsigned bandCnt, unsigned binCnt, double binHz )
  1356. {
  1357. cmRC_t rc;
  1358. if((rc = cmBfccFinal(p)) != cmOkRC )
  1359. return rc;
  1360. p->dctMtx = cmMemResizeZ( cmReal_t, p->dctMtx, bandCnt*bandCnt);
  1361. p->filtMask = cmMemResizeZ( cmReal_t, p->filtMask, bandCnt*binCnt);
  1362. p->outV = cmMemResizeZ( cmReal_t, p->outV, bandCnt );
  1363. p->binCnt = binCnt;
  1364. p->bandCnt = bandCnt;
  1365. cmVOR_BarkMask( p->filtMask, bandCnt, binCnt, binHz );
  1366. cmVOR_DctMatrix(p->dctMtx, bandCnt, bandCnt );
  1367. return rc;
  1368. }
  1369. cmRC_t cmBfccFinal( cmBfcc* p )
  1370. { return cmOkRC; }
  1371. cmRC_t cmBfccExec( cmBfcc* p, const cmReal_t* magV, unsigned binCnt )
  1372. {
  1373. assert( binCnt <= p->binCnt );
  1374. cmReal_t t[ p->bandCnt ];
  1375. cmReal_t v[ binCnt ];
  1376. // convert magnitude to power
  1377. cmVOR_PowVVS(v,binCnt,magV,2.0);
  1378. // apply the filter mask to the power spectrum
  1379. cmVOR_MultVMV( t, p->bandCnt, p->filtMask, binCnt, v );
  1380. //cmVOR_PrintL("\t:\n", p->obj.ctx->outFuncPtr, 1, p->bandCnt, t);
  1381. cmVOR_ReplaceLte( t, p->bandCnt, t, 0, 0.1e-5 );
  1382. cmVOR_LogV( t, p->bandCnt, t );
  1383. // decorellate the bands with a DCT
  1384. cmVOR_MultVMV( p->outV, p->bandCnt, p->dctMtx, p->bandCnt, t );
  1385. return cmOkRC;
  1386. }
  1387. void cmBfccTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH )
  1388. {
  1389. double srate = 11025;
  1390. unsigned binCnt = 129;
  1391. double binHz = srate/(binCnt-1);
  1392. unsigned bandCnt = kDefaultBarkBandCnt;
  1393. cmCtx* c = cmCtxAlloc( NULL, rpt, lhH, stH );
  1394. cmBfcc* b = cmBfccAlloc( c, NULL, bandCnt, binCnt, binHz );
  1395. cmReal_t powV[] = {
  1396. 0.8402, 0.3944, 0.7831, 0.7984, 0.9116, 0.1976, 0.3352, 0.7682, 0.2778, 0.5540,
  1397. 0.4774, 0.6289, 0.3648, 0.5134, 0.9522, 0.9162, 0.6357, 0.7173, 0.1416, 0.6070,
  1398. 0.0163, 0.2429, 0.1372, 0.8042, 0.1567, 0.4009, 0.1298, 0.1088, 0.9989, 0.2183,
  1399. 0.5129, 0.8391, 0.6126, 0.2960, 0.6376, 0.5243, 0.4936, 0.9728, 0.2925, 0.7714,
  1400. 0.5267, 0.7699, 0.4002, 0.8915, 0.2833, 0.3525, 0.8077, 0.9190, 0.0698, 0.9493,
  1401. 0.5260, 0.0861, 0.1922, 0.6632, 0.8902, 0.3489, 0.0642, 0.0200, 0.4577, 0.0631,
  1402. 0.2383, 0.9706, 0.9022, 0.8509, 0.2667, 0.5398, 0.3752, 0.7602, 0.5125, 0.6677,
  1403. 0.5316, 0.0393, 0.4376, 0.9318, 0.9308, 0.7210, 0.2843, 0.7385, 0.6400, 0.3540,
  1404. 0.6879, 0.1660, 0.4401, 0.8801, 0.8292, 0.3303, 0.2290, 0.8934, 0.3504, 0.6867,
  1405. 0.9565, 0.5886, 0.6573, 0.8587, 0.4396, 0.9240, 0.3984, 0.8148, 0.6842, 0.9110,
  1406. 0.4825, 0.2158, 0.9503, 0.9201, 0.1477, 0.8811, 0.6411, 0.4320, 0.6196, 0.2811,
  1407. 0.7860, 0.3075, 0.4470, 0.2261, 0.1875, 0.2762, 0.5564, 0.4165, 0.1696, 0.9068,
  1408. 0.1032, 0.1261, 0.4954, 0.7605, 0.9848, 0.9350, 0.6844, 0.3832, 0.7498 };
  1409. //cmVOR_Random(powV, binCnt, 0.0, 1.0 );
  1410. cmBfccExec(b,powV,binCnt);
  1411. //cmVOR_PrintL("\nin:\n", rpt, 1, binCnt, powV);
  1412. //cmVOR_PrintL("\nfilt:\n", rpt, bandCnt, binCnt, b->filtMask);
  1413. //cmVOR_PrintL("\ndct:\n", rpt, bandCnt, bandCnt,b->dctMtx);
  1414. cmVOR_PrintL("\nbfcc:\n", rpt, 1, bandCnt, b->outV);
  1415. cmBfccFree(&b);
  1416. cmCtxFree(&c);
  1417. }
  1418. //------------------------------------------------------------------------------------------------------------
  1419. cmCeps* cmCepsAlloc( cmCtx* ctx, cmCeps* ap, unsigned binCnt, unsigned outN )
  1420. {
  1421. cmCeps* p = cmObjAlloc( cmCeps, ctx, ap );
  1422. //cmIFftAllocRR( ctx, &p->ft, 0 );
  1423. if( binCnt > 0 )
  1424. if( cmCepsInit( p, binCnt, outN ) != cmOkRC )
  1425. cmCepsFree(&p);
  1426. return p;
  1427. }
  1428. cmRC_t cmCepsFree( cmCeps** pp )
  1429. {
  1430. cmRC_t rc;
  1431. if( pp== NULL || *pp==NULL)
  1432. return cmOkRC;
  1433. cmCeps* p = *pp;
  1434. if((rc = cmCepsFinal(p)) != cmOkRC )
  1435. return rc;
  1436. //cmObjFreeStatic( cmIFftFreeRR, cmIFftRR, p->ft );
  1437. cmMemPtrFree(&p->dctM);
  1438. cmMemPtrFree(&p->outV);
  1439. cmObjFree(pp);
  1440. return rc;
  1441. }
  1442. cmRC_t cmCepsInit( cmCeps* p, unsigned binCnt, unsigned outN )
  1443. {
  1444. cmRC_t rc;
  1445. if((rc = cmCepsFinal(p)) != cmOkRC )
  1446. return rc;
  1447. //cmIFftInitRR( &p->ft, binCnt );
  1448. p->dct_cn = (binCnt-1)*2;
  1449. p->dctM = cmMemResize( cmReal_t, p->dctM, outN*p->dct_cn );
  1450. p->outN = outN; //p->ft.outN;
  1451. p->outV = cmMemResizeZ( cmReal_t, p->outV, outN ); //p->ft.outV;
  1452. p->binCnt = binCnt;
  1453. assert( outN <= p->dct_cn );
  1454. cmVOR_DctMatrix( p->dctM, outN, p->dct_cn );
  1455. return rc;
  1456. }
  1457. cmRC_t cmCepsFinal( cmCeps* p )
  1458. { return cmOkRC; }
  1459. cmRC_t cmCepsExec( cmCeps* p, const cmReal_t* magV, const cmReal_t* phsV, unsigned binCnt )
  1460. {
  1461. assert( binCnt == p->binCnt );
  1462. cmReal_t v[ p->dct_cn ];
  1463. // guard against zeros in the magn spectrum
  1464. cmVOR_ReplaceLte(v,binCnt,magV,0.0,0.00001);
  1465. // take the log of the spectrum
  1466. cmVOR_LogV(v,binCnt,v);
  1467. // reconstruct the negative frequencies
  1468. int i,j;
  1469. for(i=1,j=p->dct_cn-1; i<binCnt; ++i,--j)
  1470. v[j] = v[i];
  1471. // take the DCT
  1472. cmVOR_MultVMV( p->outV, p->outN, p->dctM, p->dct_cn, v );
  1473. //cmIFftExecPolarRR( &p->ft, v, phsV );
  1474. return cmOkRC;
  1475. }
  1476. //------------------------------------------------------------------------------------------------------------
  1477. cmOla* cmOlaAlloc( cmCtx* ctx, cmOla* ap, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
  1478. {
  1479. cmOla* p = cmObjAlloc( cmOla, ctx, ap );
  1480. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1481. if( wndSmpCnt > 0 )
  1482. if( cmOlaInit(p,wndSmpCnt,hopSmpCnt,procSmpCnt,wndTypeId) != cmOkRC )
  1483. cmOlaFree(&p);
  1484. return p;
  1485. }
  1486. cmRC_t cmOlaFree( cmOla** pp )
  1487. {
  1488. cmRC_t rc;
  1489. if( pp==NULL || *pp==NULL )
  1490. return cmOkRC;
  1491. cmOla* p = *pp;
  1492. if(( rc = cmOlaFinal(p)) != cmOkRC )
  1493. return rc;
  1494. cmMemPtrFree(&p->bufV);
  1495. cmMemPtrFree(&p->outV);
  1496. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1497. cmObjFree(pp);
  1498. return rc;
  1499. }
  1500. cmRC_t cmOlaInit( cmOla* p, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned procSmpCnt, unsigned wndTypeId )
  1501. {
  1502. cmRC_t rc;
  1503. if((rc = cmOlaFinal(p)) != cmOkRC )
  1504. return rc;
  1505. if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
  1506. return rc;
  1507. p->bufV = cmMemResizeZ( cmSample_t, p->bufV, wndSmpCnt );
  1508. p->outV = cmMemResizeZ( cmSample_t, p->outV, hopSmpCnt );
  1509. p->outPtr = p->outV + hopSmpCnt;
  1510. // hopSmpCnt must be an even multiple of procSmpCnt
  1511. assert( hopSmpCnt % procSmpCnt == 0 );
  1512. assert( wndSmpCnt >= hopSmpCnt );
  1513. p->wndSmpCnt = wndSmpCnt;
  1514. p->hopSmpCnt = hopSmpCnt;
  1515. p->procSmpCnt= procSmpCnt;
  1516. p->idx = 0;
  1517. return rc;
  1518. }
  1519. cmRC_t cmOlaFinal( cmOla* p )
  1520. { return cmOkRC; }
  1521. // The incoming buffer and the ola buf (bufV)
  1522. // can be divided into three logical parts:
  1523. //
  1524. // [head][middle][tail]
  1525. //
  1526. // head = hopSmpCnt values
  1527. // tail = hopSmpCnt values
  1528. // middle = wndSmpCnt - (2*hopSmpCnt) values
  1529. //
  1530. // Each exec can be broken into three phases:
  1531. //
  1532. // outV = bufV[tail] + in[head]
  1533. // bufV[middle] += in[middle]
  1534. // bufV[tail] = in[tail]
  1535. //
  1536. cmRC_t cmOlaExecS( cmOla* p, const cmSample_t* sp, unsigned sN )
  1537. {
  1538. assert( sN == p->wndSmpCnt );
  1539. cmRC_t rc = cmOkRC;
  1540. const cmSample_t* ep = sp + sN;
  1541. const cmSample_t* wp = p->wf.wndV;
  1542. int i,j,k,n;
  1543. // [Sum head of incoming samples with tail of ola buf]
  1544. // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
  1545. for(i=0; i<p->hopSmpCnt; ++i)
  1546. {
  1547. p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
  1548. if( p->idx == p->wndSmpCnt )
  1549. p->idx = 0;
  1550. }
  1551. // [Sum middle of incoming samples with middle of ola buf]
  1552. // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
  1553. n = p->wndSmpCnt - (2*p->hopSmpCnt);
  1554. k = p->idx;
  1555. for(j=0; j<n; ++j)
  1556. {
  1557. p->bufV[k++] += (*sp++ * *wp++);
  1558. if( k == p->wndSmpCnt )
  1559. k = 0;
  1560. }
  1561. // [Assign tail of incoming to tail of ola buf]
  1562. // assign ending samples from sp[] into bufV[]
  1563. while( sp < ep )
  1564. {
  1565. p->bufV[k++] = (*sp++ * *wp++);
  1566. if( k == p->wndSmpCnt )
  1567. k = 0;
  1568. }
  1569. p->outPtr = p->outV;
  1570. return rc;
  1571. }
  1572. cmRC_t cmOlaExecR( cmOla* p, const cmReal_t* sp, unsigned sN )
  1573. {
  1574. assert( sN == p->wndSmpCnt );
  1575. cmRC_t rc = cmOkRC;
  1576. const cmReal_t* ep = sp + sN;
  1577. const cmSample_t* wp = p->wf.wndV;
  1578. int i,j,k,n;
  1579. // fill outV with the bufV[idx:idx+hopSmpCnt] + sp[hopSmpCnt]
  1580. for(i=0; i<p->hopSmpCnt; ++i)
  1581. {
  1582. p->outV[i] = p->bufV[p->idx++] + (*sp++ * *wp++);
  1583. if( p->idx == p->wndSmpCnt )
  1584. p->idx = 0;
  1585. }
  1586. // sum next wndSmpCnt - hopSmpCnt samples of sp[] into bufV[]
  1587. n = p->wndSmpCnt - (2*p->hopSmpCnt);
  1588. k = p->idx;
  1589. for(j=0; j<n; ++j)
  1590. {
  1591. p->bufV[k++] += (*sp++ * *wp++);
  1592. if( k == p->wndSmpCnt )
  1593. k = 0;
  1594. }
  1595. // assign ending samples from sp[] into bufV[]
  1596. while( sp < ep )
  1597. {
  1598. p->bufV[k++] = (*sp++ * *wp++);
  1599. if( k == p->wndSmpCnt )
  1600. k = 0;
  1601. }
  1602. p->outPtr = p->outV;
  1603. return rc;
  1604. }
  1605. const cmSample_t* cmOlaExecOut(cmOla* p)
  1606. {
  1607. const cmSample_t* sp = p->outPtr;
  1608. if( sp >= p->outV + p->hopSmpCnt )
  1609. return NULL;
  1610. p->outPtr += p->procSmpCnt;
  1611. return sp;
  1612. }
  1613. //------------------------------------------------------------------------------------------------------------
  1614. cmPhsToFrq* cmPhsToFrqAlloc( cmCtx* c, cmPhsToFrq* ap, double srate, unsigned binCnt, unsigned hopSmpCnt )
  1615. {
  1616. cmPhsToFrq* p = cmObjAlloc( cmPhsToFrq, c, ap );
  1617. if( srate != 0 )
  1618. if( cmPhsToFrqInit( p, srate, binCnt, hopSmpCnt ) != cmOkRC )
  1619. cmPhsToFrqFree(&p);
  1620. return p;
  1621. }
  1622. cmRC_t cmPhsToFrqFree( cmPhsToFrq** pp )
  1623. {
  1624. cmRC_t rc = cmOkRC;
  1625. cmPhsToFrq* p = *pp;
  1626. if( pp==NULL || *pp== NULL )
  1627. return rc;
  1628. if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
  1629. return rc;
  1630. cmMemPtrFree(&p->hzV);
  1631. cmMemPtrFree(&p->phsV);
  1632. cmMemPtrFree(&p->wV);
  1633. cmObjFree(pp);
  1634. return rc;
  1635. }
  1636. cmRC_t cmPhsToFrqInit( cmPhsToFrq* p, double srate, unsigned binCnt, unsigned hopSmpCnt )
  1637. {
  1638. cmRC_t rc;
  1639. unsigned i;
  1640. if((rc = cmPhsToFrqFinal(p)) != cmOkRC )
  1641. return rc;
  1642. p->hzV = cmMemResizeZ( cmReal_t, p->hzV, binCnt );
  1643. p->phsV = cmMemResizeZ( cmReal_t, p->phsV, binCnt );
  1644. p->wV = cmMemResizeZ( cmReal_t, p->wV, binCnt );
  1645. p->srate = srate;
  1646. p->binCnt = binCnt;
  1647. p->hopSmpCnt = hopSmpCnt;
  1648. for(i=0; i<binCnt; ++i)
  1649. p->wV[i] = M_PI * i * hopSmpCnt / (binCnt-1);
  1650. return rc;
  1651. }
  1652. cmRC_t cmPhsToFrqFinal(cmPhsToFrq* p )
  1653. { return cmOkRC; }
  1654. cmRC_t cmPhsToFrqExec( cmPhsToFrq* p, const cmReal_t* phsV )
  1655. {
  1656. cmRC_t rc = cmOkRC;
  1657. unsigned i;
  1658. double twoPi = 2.0 * M_PI;
  1659. double den = twoPi * p->hopSmpCnt;
  1660. for(i=0; i<p->binCnt; ++i)
  1661. {
  1662. cmReal_t dPhs = phsV[i] - p->phsV[i];
  1663. // unwrap phase - see phase_study.m for explanation
  1664. cmReal_t k = round( (p->wV[i] - dPhs) / twoPi);
  1665. // convert phase change to Hz
  1666. p->hzV[i] = (k * twoPi + dPhs) * p->srate / den;
  1667. // store phase for next iteration
  1668. p->phsV[i] = phsV[i];
  1669. }
  1670. return rc;
  1671. }
  1672. //------------------------------------------------------------------------------------------------------------
  1673. cmPvAnl* cmPvAnlAlloc( cmCtx* ctx, cmPvAnl* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
  1674. {
  1675. cmRC_t rc;
  1676. cmPvAnl* p = cmObjAlloc( cmPvAnl, ctx, ap );
  1677. cmShiftBufAlloc(ctx, &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt );
  1678. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1679. cmFftAllocSR( ctx, &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl);
  1680. cmPhsToFrqAlloc(ctx, &p->pf, srate, p->ft.binCnt, hopSmpCnt );
  1681. if( procSmpCnt > 0 )
  1682. if((rc = cmPvAnlInit(p,procSmpCnt,srate,wndSmpCnt,hopSmpCnt,flags)) != cmOkRC )
  1683. cmPvAnlFree(&p);
  1684. return p;
  1685. }
  1686. cmRC_t cmPvAnlFree( cmPvAnl** pp )
  1687. {
  1688. cmRC_t rc;
  1689. if( pp==NULL || *pp==NULL )
  1690. return cmOkRC;
  1691. cmPvAnl* p = *pp;
  1692. if((rc = cmPvAnlFinal(p) ) != cmOkRC )
  1693. return rc;
  1694. cmObjFreeStatic( cmPhsToFrqFree, cmPhsToFrq, p->pf );
  1695. cmObjFreeStatic( cmFftFreeSR, cmFftSR, p->ft );
  1696. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1697. cmObjFreeStatic( cmShiftBufFree, cmShiftBuf, p->sb );
  1698. cmObjFree(pp);
  1699. return rc;
  1700. }
  1701. cmRC_t cmPvAnlInit( cmPvAnl* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned flags )
  1702. {
  1703. cmRC_t rc;
  1704. if((rc = cmPvAnlFinal(p)) != cmOkRC )
  1705. return rc;
  1706. if((rc = cmShiftBufInit( &p->sb, procSmpCnt, wndSmpCnt, hopSmpCnt )) != cmOkRC )
  1707. return rc;
  1708. if((rc = cmWndFuncInit( &p->wf, kHannWndId | kNormByLengthWndFl, wndSmpCnt, 0)) != cmOkRC )
  1709. return rc;
  1710. if((rc = cmFftInitSR( &p->ft, p->wf.outV, wndSmpCnt, kToPolarFftFl)) != cmOkRC )
  1711. return rc;
  1712. if((rc = cmPhsToFrqInit( &p->pf, srate, p->ft.binCnt, hopSmpCnt)) != cmOkRC )
  1713. return rc;
  1714. // if the window was just initialized
  1715. // divide the window to indirectly apply the magnitude normalization
  1716. //if( p->wndSmpCnt != wndSmpCnt )
  1717. // cmVOS_DivVS( p->wf.wndV, p->wf.outN, wndSmpCnt );
  1718. p->flags = flags;
  1719. p->procSmpCnt = procSmpCnt;
  1720. p->wndSmpCnt = wndSmpCnt;
  1721. p->hopSmpCnt = hopSmpCnt;
  1722. p->binCnt = p->ft.binCnt;
  1723. p->magV = p->ft.magV;
  1724. p->phsV = p->ft.phsV;
  1725. p->hzV = p->pf.hzV;
  1726. return rc;
  1727. }
  1728. cmRC_t cmPvAnlFinal(cmPvAnl* p )
  1729. { return cmOkRC; }
  1730. bool cmPvAnlExec( cmPvAnl* p, const cmSample_t* x, unsigned xN )
  1731. {
  1732. bool fl = false;
  1733. while( cmShiftBufExec(&p->sb,x,xN) )
  1734. {
  1735. cmWndFuncExec(&p->wf, p->sb.outV, p->sb.wndSmpCnt );
  1736. cmFftExecSR(&p->ft,NULL,0);
  1737. if( cmIsFlag(p->flags,kCalcHzPvaFl) )
  1738. cmPhsToFrqExec(&p->pf,p->phsV);
  1739. fl = true;
  1740. }
  1741. return fl;
  1742. }
  1743. //------------------------------------------------------------------------------------------------------------
  1744. cmPvSyn* cmPvSynAlloc( cmCtx* ctx, cmPvSyn* ap, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
  1745. {
  1746. cmRC_t rc;
  1747. cmPvSyn* p = cmObjAlloc( cmPvSyn, ctx, ap );
  1748. cmWndFuncAlloc( ctx, &p->wf, kHannWndId, wndSmpCnt, 0);
  1749. cmIFftAllocRS( ctx, &p->ft, wndSmpCnt/2+1 );
  1750. cmOlaAlloc( ctx, &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId );
  1751. if( procSmpCnt )
  1752. if((rc = cmPvSynInit(p,procSmpCnt,outSrate,wndSmpCnt,hopSmpCnt,wndTypeId)) != cmOkRC )
  1753. cmPvSynFree(&p);
  1754. return p;
  1755. }
  1756. cmRC_t cmPvSynFree( cmPvSyn** pp )
  1757. {
  1758. cmRC_t rc;
  1759. if( pp==NULL || *pp==NULL )
  1760. return cmOkRC;
  1761. cmPvSyn* p = *pp;
  1762. if((rc = cmPvSynFinal(p)) != cmOkRC )
  1763. return rc;
  1764. cmMemPtrFree(&p->minRphV);
  1765. cmMemPtrFree(&p->maxRphV);
  1766. cmMemPtrFree(&p->itrV);
  1767. cmMemPtrFree(&p->phs0V);
  1768. cmMemPtrFree(&p->phsV);
  1769. cmMemPtrFree(&p->mag0V);
  1770. cmMemPtrFree(&p->magV);
  1771. cmObjFreeStatic( cmOlaFree, cmOla, p->ola);
  1772. cmObjFreeStatic( cmIFftFreeRS, cmIFftRS, p->ft );
  1773. cmObjFreeStatic( cmWndFuncFree, cmWndFunc, p->wf );
  1774. cmObjFree(pp);
  1775. return cmOkRC;
  1776. }
  1777. cmRC_t cmPvSynInit( cmPvSyn* p, unsigned procSmpCnt, double outSrate, unsigned wndSmpCnt, unsigned hopSmpCnt, unsigned wndTypeId )
  1778. {
  1779. cmRC_t rc;
  1780. int k;
  1781. double twoPi = 2.0 * M_PI;
  1782. bool useHannFl = true;
  1783. int m = useHannFl ? 2 : 1;
  1784. if((rc = cmPvSynFinal(p)) != cmOkRC )
  1785. return rc;
  1786. p->outSrate = outSrate;
  1787. p->procSmpCnt = procSmpCnt;
  1788. p->wndSmpCnt = wndSmpCnt;
  1789. p->hopSmpCnt = hopSmpCnt;
  1790. p->binCnt = wndSmpCnt / 2 + 1;
  1791. p->minRphV = cmMemResizeZ( cmReal_t, p->minRphV, p->binCnt );
  1792. p->maxRphV = cmMemResizeZ( cmReal_t, p->maxRphV, p->binCnt );
  1793. p->itrV = cmMemResizeZ( cmReal_t, p->itrV, p->binCnt );
  1794. p->phs0V = cmMemResizeZ( cmReal_t, p->phs0V, p->binCnt );
  1795. p->phsV = cmMemResizeZ( cmReal_t, p->phsV, p->binCnt );
  1796. p->mag0V = cmMemResizeZ( cmReal_t, p->mag0V, p->binCnt );
  1797. p->magV = cmMemResizeZ( cmReal_t, p->magV, p->binCnt );
  1798. if((rc = cmWndFuncInit( &p->wf, wndTypeId, wndSmpCnt, 0)) != cmOkRC )
  1799. return rc;
  1800. if((rc = cmIFftInitRS( &p->ft, p->binCnt )) != cmOkRC )
  1801. return rc;
  1802. if((rc = cmOlaInit( &p->ola, wndSmpCnt, hopSmpCnt, procSmpCnt, wndTypeId )) != cmOkRC )
  1803. return rc;
  1804. for(k=0; k<p->binCnt; ++k)
  1805. {
  1806. // complete revolutions per hop in radians
  1807. p->itrV[k] = twoPi * floor((double)k * hopSmpCnt / wndSmpCnt );
  1808. p->minRphV[k] = ((cmReal_t)(k-m)) * hopSmpCnt * twoPi / wndSmpCnt;
  1809. p->maxRphV[k] = ((cmReal_t)(k+m)) * hopSmpCnt * twoPi / wndSmpCnt;
  1810. //printf("%f %f %f\n",p->itrV[k],p->minRphV[k],p->maxRphV[k]);
  1811. }
  1812. return rc;
  1813. }
  1814. cmRC_t cmPvSynFinal(cmPvSyn* p )
  1815. { return cmOkRC; }
  1816. cmRC_t cmPvSynExec( cmPvSyn* p, const cmReal_t* magV, const cmReal_t* phsV )
  1817. {
  1818. double twoPi = 2.0 * M_PI;
  1819. unsigned k;
  1820. for(k=0; k<p->binCnt; ++k)
  1821. {
  1822. // phase dist between cur and prv frame
  1823. cmReal_t dp = phsV[k] - p->phs0V[k];
  1824. // dist must be positive (accum phase always increases)
  1825. if( dp < -0.00001 )
  1826. dp += twoPi;
  1827. // add in complete revolutions based on the bin frequency
  1828. // (these would have been lost from 'dp' due to phase wrap)
  1829. dp += p->itrV[k];
  1830. // constrain the phase change to lie within the range of the kth bin
  1831. if( dp < p->minRphV[k] )
  1832. dp += twoPi;
  1833. if( dp > p->maxRphV[k] )
  1834. dp -= twoPi;
  1835. p->phsV[k] = p->phs0V[k] + dp;
  1836. p->magV[k] = p->mag0V[k];
  1837. p->phs0V[k] = phsV[k];
  1838. p->mag0V[k] = magV[k];
  1839. }
  1840. cmIFftExecPolarRS( &p->ft, magV, phsV );
  1841. cmOlaExecS( &p->ola, p->ft.outV, p->ft.outN );
  1842. //printf("%i %i\n",p->binCnt,p->ft.binCnt );
  1843. //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, magV );
  1844. //cmVOR_Print( p->obj.ctx->outFuncPtr, 1, p->binCnt, p->phsV );
  1845. //cmVOS_Print( p->obj.ctx->outFuncPtr, 1, 10, p->ft.outV );
  1846. return cmOkRC;
  1847. }
  1848. cmRC_t cmPvSynDoIt( cmPvSyn* p, const cmSample_t* v )
  1849. {
  1850. cmOlaExecS( &p->ola, v, p->wndSmpCnt );
  1851. //printf("%f\n",cmVOS_RMS(s,p->wndSmpCnt,p->wndSmpCnt));
  1852. return cmOkRC;
  1853. }
  1854. const cmSample_t* cmPvSynExecOut(cmPvSyn* p )
  1855. { return cmOlaExecOut(&p->ola); }
  1856. //------------------------------------------------------------------------------------------------------------
  1857. cmMidiSynth* cmMidiSynthAlloc( cmCtx* ctx, cmMidiSynth* ap, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
  1858. {
  1859. cmMidiSynth* p = cmObjAlloc( cmMidiSynth, ctx, ap );
  1860. if( pgmArray != NULL )
  1861. if( cmMidiSynthInit( p, pgmArray, pgmCnt, voiceCnt, procSmpCnt, outChCnt, srate ) != cmOkRC )
  1862. cmMidiSynthFree(&p);
  1863. return p;
  1864. }
  1865. cmRC_t cmMidiSynthFree( cmMidiSynth** pp )
  1866. {
  1867. cmRC_t rc;
  1868. if( pp==NULL || *pp==NULL)
  1869. return cmOkRC;
  1870. cmMidiSynth* p = *pp;
  1871. if((rc = cmMidiSynthFinal(p)) != cmOkRC )
  1872. return rc;
  1873. cmMemPtrFree(&p->voiceArray);
  1874. cmMemPtrFree(&p->outM);
  1875. cmMemPtrFree(&p->outChArray);
  1876. cmObjFree(pp);
  1877. return cmOkRC;
  1878. }
  1879. cmRC_t cmMidiSynthInit( cmMidiSynth* p, const cmMidiSynthPgm* pgmArray, unsigned pgmCnt, unsigned voiceCnt, unsigned procSmpCnt, unsigned outChCnt, cmReal_t srate )
  1880. {
  1881. // at least one pgm must be given
  1882. assert( pgmCnt > 0 );
  1883. unsigned i;
  1884. cmRC_t rc;
  1885. if((rc = cmMidiSynthFinal(p)) != cmOkRC )
  1886. return rc;
  1887. p->voiceArray = cmMemResizeZ( cmMidiVoice, p->voiceArray, voiceCnt );
  1888. p->outM = cmMemResizeZ( cmSample_t, p->outM, outChCnt * procSmpCnt );
  1889. p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
  1890. p->avail = p->voiceArray;
  1891. p->voiceCnt = voiceCnt;
  1892. p->activeVoiceCnt = 0;
  1893. p->voiceStealCnt = 0;
  1894. p->procSmpCnt = procSmpCnt;
  1895. p->outChCnt = outChCnt;
  1896. p->srate = srate;
  1897. for(i=0; i<outChCnt; ++i)
  1898. p->outChArray[i] = p->outM + (i*procSmpCnt);
  1899. for(i=0; i<kMidiChCnt; ++i)
  1900. {
  1901. p->chArray[i].pgm = 0;
  1902. p->chArray[i].active = NULL;
  1903. p->chArray[i].pitchBend = 0;
  1904. p->chArray[i].synthPtr = p;
  1905. memset(p->chArray[i].midiCtl, 0, kMidiCtlCnt * sizeof(cmMidiByte_t));
  1906. }
  1907. for(i=0; i<voiceCnt; ++i)
  1908. {
  1909. p->voiceArray[i].index = i;
  1910. p->voiceArray[i].flags = 0;
  1911. p->voiceArray[i].pitch = kInvalidMidiPitch;
  1912. p->voiceArray[i].velocity = kInvalidMidiVelocity;
  1913. p->voiceArray[i].pgm.pgm = kInvalidMidiPgm;
  1914. p->voiceArray[i].pgm.cbPtr = NULL;
  1915. p->voiceArray[i].pgm.cbDataPtr = NULL;
  1916. p->voiceArray[i].chPtr = NULL;
  1917. p->voiceArray[i].link = i<voiceCnt-1 ? p->voiceArray + i + 1 : NULL;
  1918. }
  1919. for(i=0; i<pgmCnt; ++i)
  1920. {
  1921. unsigned idx = pgmArray[i].pgm;
  1922. if( idx >= kMidiPgmCnt )
  1923. rc = cmCtxRtCondition( &p->obj, cmArgAssertRC, "MIDI program change values must be less than %i.",kMidiPgmCnt);
  1924. else
  1925. {
  1926. p->pgmArray[ idx ].cbPtr = pgmArray[i].cbPtr;
  1927. p->pgmArray[ idx ].cbDataPtr = pgmArray[i].cbDataPtr;
  1928. p->pgmArray[ idx ].pgm = idx;
  1929. }
  1930. }
  1931. return rc;
  1932. }
  1933. cmRC_t cmMidiSynthFinal( cmMidiSynth* p )
  1934. { return cmOkRC; }
  1935. cmRC_t _cmMidiSynthOnNoteOn( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
  1936. {
  1937. assert( ch < kMidiChCnt );
  1938. if( p->activeVoiceCnt == p->voiceCnt )
  1939. {
  1940. ++p->voiceStealCnt;
  1941. return cmOkRC;
  1942. }
  1943. assert( p->avail != NULL );
  1944. cmMidiSynthCh* chPtr = p->chArray + ch;
  1945. cmMidiVoice* vp = p->avail;
  1946. ++p->activeVoiceCnt;
  1947. // update avail
  1948. p->avail = p->avail->link;
  1949. // update active
  1950. vp->flags |= kActiveMsFl | kKeyGateMsFl;
  1951. vp->pitch = pitch;
  1952. vp->velocity = vel;
  1953. vp->pgm = p->pgmArray[ chPtr->pgm ];
  1954. vp->chPtr = chPtr;
  1955. vp->link = chPtr->active;
  1956. chPtr->active = vp;
  1957. vp->pgm.cbPtr( vp, kAttackMsId, NULL, 0 );
  1958. return cmOkRC;
  1959. }
  1960. cmRC_t _cmMidiSynthOnNoteOff( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t pitch, cmMidiByte_t vel )
  1961. {
  1962. assert( ch < kMidiChCnt );
  1963. cmMidiSynthCh* cp = p->chArray + ch;
  1964. cmMidiVoice* vp = cp->active;
  1965. // find the voice for the given pitch
  1966. while( vp != NULL )
  1967. {
  1968. if( (vp->pitch == pitch) && (cmIsFlag(vp->flags,kKeyGateMsFl)==true) )
  1969. break;
  1970. vp = vp->link;
  1971. }
  1972. // if no voice had a key down on this pitch
  1973. if( vp == NULL )
  1974. {
  1975. return cmOkRC;
  1976. }
  1977. // mark the key as 'up'
  1978. vp->flags = cmClrFlag(vp->flags,kKeyGateMsFl);
  1979. // if the sustain pedal is up
  1980. if( cp->midiCtl[ kSustainCtlMdId ] == 0 )
  1981. vp->pgm.cbPtr( vp, kReleaseMsId, NULL, 0 );
  1982. return cmOkRC;
  1983. }
  1984. cmRC_t _cmMidiSynthOnCtl( cmMidiSynth* p, cmMidiByte_t ch, cmMidiByte_t ctlId, cmMidiByte_t ctlValue )
  1985. {
  1986. assert( ch < kMidiChCnt && ctlId < kMidiCtlCnt );
  1987. cmMidiSynthCh* cp = p->chArray + ch;
  1988. cp->midiCtl[ ctlId ] = ctlValue;
  1989. // if the sustain pedal is going up
  1990. if( ctlId == kSustainCtlMdId && ctlValue == 0 )
  1991. {
  1992. cmMidiVoice* vp = cp->active;
  1993. while(vp != NULL)
  1994. {
  1995. if( cmIsFlag(vp->flags,kKeyGateMsFl)==false )
  1996. vp->pgm.cbPtr(vp, kReleaseMsId, NULL, 0 );
  1997. vp = vp->link;
  1998. }
  1999. }
  2000. //printf("%i %i %f\n",ctlId,ctlValue,ctlValue/127.0);
  2001. return cmOkRC;
  2002. }
  2003. cmRC_t cmMidiSynthOnMidi( cmMidiSynth* p, const cmMidiPacket_t* pktArray, unsigned pktCnt )
  2004. {
  2005. unsigned i=0;
  2006. for(i=0; i<pktCnt; ++i)
  2007. if( pktArray[i].msgArray != NULL )
  2008. {
  2009. unsigned j;
  2010. for(j=0; j<pktArray[i].msgCnt; ++j)
  2011. {
  2012. const cmMidiMsg* mp = pktArray[i].msgArray + j;
  2013. cmMidiByte_t ch = mp->status & 0x0f;
  2014. cmMidiByte_t status = mp->status & 0xf0;
  2015. switch( status )
  2016. {
  2017. case kNoteOnMdId:
  2018. if( mp->d1 != 0 )
  2019. {
  2020. _cmMidiSynthOnNoteOn(p,ch,mp->d0,mp->d1);
  2021. break;
  2022. }
  2023. // fall through
  2024. case kNoteOffMdId:
  2025. _cmMidiSynthOnNoteOff(p,ch,mp->d0,mp->d1);
  2026. break;
  2027. case kPolyPresMdId:
  2028. break;
  2029. case kCtlMdId:
  2030. _cmMidiSynthOnCtl( p, ch, mp->d0, mp->d1 );
  2031. break;
  2032. case kPgmMdId:
  2033. break;
  2034. case kChPresMdId:
  2035. break;
  2036. case kPbendMdId:
  2037. break;
  2038. default:
  2039. printf("Unknown MIDI status:%i %i\n",(int)status,(int)mp->status);
  2040. break;
  2041. }
  2042. }
  2043. }
  2044. return cmOkRC;
  2045. }
  2046. cmRC_t cmMidiSynthExec( cmMidiSynth* p, cmSample_t* outChArray[], unsigned outChCnt )
  2047. {
  2048. unsigned i;
  2049. cmSample_t** chArray = outChArray == NULL ? p->outChArray : outChArray;
  2050. unsigned chCnt = outChArray == NULL ? p->outChCnt : outChCnt;
  2051. // FIX: make one active chain attached to cmMidiSynth rather than many
  2052. // active chains attached to each channel - this will avoid the extra
  2053. // iterations below.
  2054. // for each channel
  2055. for(i=0; i<kMidiChCnt; ++i)
  2056. {
  2057. cmMidiVoice* vp = p->chArray[i].active;
  2058. cmMidiVoice* prv = NULL;
  2059. // for each voice assigned to this channel
  2060. while(vp != NULL)
  2061. {
  2062. // tell the voice to perform its DSP function - returns 0 if the voice is no longer active
  2063. if( vp->pgm.cbPtr( vp, kDspMsId, chArray, chCnt ) )
  2064. {
  2065. prv = vp;
  2066. vp = vp->link;
  2067. }
  2068. else
  2069. {
  2070. cmMidiVoice* nvp = vp->link;
  2071. // remove vp from the active chain
  2072. if( prv != NULL )
  2073. prv->link = vp->link;
  2074. else
  2075. {
  2076. assert( vp == p->chArray[i].active );
  2077. // vp is first recd on active chain, nvp becomes first ...
  2078. p->chArray[i].active = vp->link;
  2079. prv = NULL; // ... so prv must be NULL
  2080. }
  2081. // insert this voice on the available chain
  2082. vp->link = p->avail;
  2083. p->avail = vp;
  2084. --p->activeVoiceCnt;
  2085. vp = nvp;
  2086. }
  2087. }
  2088. }
  2089. return cmOkRC;
  2090. }
  2091. //------------------------------------------------------------------------------------------------------------
  2092. cmWtVoice* cmWtVoiceAlloc( cmCtx* ctx, cmWtVoice* ap, unsigned procSmpCnt, cmReal_t hz )
  2093. {
  2094. cmWtVoice* p = cmObjAlloc( cmWtVoice, ctx, ap );
  2095. if( procSmpCnt != 0 )
  2096. if( cmWtVoiceInit( p, procSmpCnt, hz ) != cmOkRC )
  2097. cmWtVoiceFree(&p);
  2098. return p;
  2099. }
  2100. cmRC_t cmWtVoiceFree( cmWtVoice** pp )
  2101. {
  2102. cmRC_t rc = cmOkRC;
  2103. if( pp==NULL || *pp==NULL )
  2104. return cmOkRC;
  2105. cmWtVoice* p = *pp;
  2106. if((rc = cmWtVoiceFinal(p)) != cmOkRC )
  2107. return rc;
  2108. cmMemPtrFree(&p->outV);
  2109. cmObjFree(pp);
  2110. return rc;
  2111. }
  2112. cmRC_t cmWtVoiceInit( cmWtVoice* p, unsigned procSmpCnt, cmReal_t hz )
  2113. {
  2114. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  2115. p->outN = procSmpCnt;
  2116. p->hz = hz;
  2117. p->level = 0;
  2118. p->durSmpCnt = 0;
  2119. p->phase = 0;
  2120. p->state = kOffWtId;
  2121. return cmOkRC;
  2122. }
  2123. cmRC_t cmWtVoiceFinal( cmWtVoice* p )
  2124. { return cmOkRC; }
  2125. int cmWtVoiceExec( cmWtVoice* p, struct cmMidiVoice_str* mvp, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
  2126. {
  2127. switch( sel )
  2128. {
  2129. case kAttackMsId:
  2130. p->state = kAtkWtId;
  2131. p->hz = (13.75 * pow(2,(-9.0/12.0))) * pow(2,((double)mvp->pitch / 12));
  2132. //printf("%fhz\n",p->hz);
  2133. break;
  2134. case kReleaseMsId:
  2135. p->state = kRlsWtId;
  2136. //printf("rls:%f\n",p->phase);
  2137. break;
  2138. case kDspMsId:
  2139. {
  2140. if( p->state == kRlsWtId )
  2141. {
  2142. p->state = kOffWtId;
  2143. return 0;
  2144. }
  2145. cmMidiSynth* sp = mvp->chPtr->synthPtr;
  2146. cmSample_t* dp = outChCnt == 0 ? p->outV : outChArray[0];
  2147. cmSample_t* ep = dp + p->outN;
  2148. cmReal_t rps = (2.0 * M_PI * p->hz) / sp->srate;
  2149. cmReal_t sum=0;
  2150. unsigned i=0;
  2151. for(; dp < ep; ++dp)
  2152. {
  2153. *dp += (cmSample_t)(0.5 * sin( p->phase ));
  2154. sum += *dp;
  2155. ++i;
  2156. p->phase += rps;
  2157. }
  2158. //printf("(%f %f %i %i %p) ",p->phase,sum,i,p->outN,outChArray[0] );
  2159. }
  2160. break;
  2161. default:
  2162. assert(0);
  2163. break;
  2164. }
  2165. return 1;
  2166. }
  2167. //------------------------------------------------------------------------------------------------------------
  2168. cmWtVoiceBank* cmWtVoiceBankAlloc( cmCtx* ctx, cmWtVoiceBank* ap, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
  2169. {
  2170. cmWtVoiceBank* p = cmObjAlloc( cmWtVoiceBank, ctx, ap );
  2171. if( srate != 0 )
  2172. if( cmWtVoiceBankInit( p, srate, procSmpCnt, voiceCnt, chCnt ) != cmOkRC )
  2173. cmWtVoiceBankFree(&p);
  2174. return p;
  2175. }
  2176. cmRC_t cmWtVoiceBankFree( cmWtVoiceBank** pp )
  2177. {
  2178. cmRC_t rc;
  2179. if( pp==NULL || *pp==NULL)
  2180. return cmOkRC;
  2181. cmWtVoiceBank* p = *pp;
  2182. if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
  2183. return rc;
  2184. cmMemPtrFree(&p->voiceArray);
  2185. cmMemPtrFree(&p->chArray);
  2186. cmMemPtrFree(&p->buf);
  2187. cmObjFree(pp);
  2188. return rc;
  2189. }
  2190. cmRC_t cmWtVoiceBankInit( cmWtVoiceBank* p, double srate, unsigned procSmpCnt, unsigned voiceCnt, unsigned chCnt )
  2191. {
  2192. cmRC_t rc;
  2193. unsigned i;
  2194. if((rc = cmWtVoiceBankFinal(p)) != cmOkRC )
  2195. return rc;
  2196. p->voiceArray = cmMemResizeZ( cmWtVoice*, p->voiceArray, voiceCnt );
  2197. for(i=0; i<voiceCnt; ++i)
  2198. p->voiceArray[i] = cmWtVoiceAlloc(p->obj.ctx,NULL,procSmpCnt,0);
  2199. p->voiceCnt = voiceCnt;
  2200. p->buf = cmMemResizeZ( cmSample_t, p->buf, chCnt * procSmpCnt );
  2201. p->chArray = cmMemResizeZ( cmSample_t*, p->chArray, chCnt );
  2202. for(i=0; i<chCnt; ++i)
  2203. p->chArray[i] = p->buf + (i*procSmpCnt);
  2204. p->chCnt = chCnt;
  2205. p->procSmpCnt = procSmpCnt;
  2206. return cmOkRC;
  2207. }
  2208. cmRC_t cmWtVoiceBankFinal( cmWtVoiceBank* p )
  2209. {
  2210. unsigned i;
  2211. for(i=0; i<p->voiceCnt; ++i)
  2212. cmWtVoiceFree(&p->voiceArray[i]);
  2213. return cmOkRC;
  2214. }
  2215. int cmWtVoiceBankExec( cmWtVoiceBank* p, struct cmMidiVoice_str* voicePtr, unsigned sel, cmSample_t* outChArray[], unsigned outChCnt )
  2216. {
  2217. cmWtVoice* vp = p->voiceArray[ voicePtr->index ];
  2218. bool fl = outChArray==NULL || outChCnt==0;
  2219. cmSample_t** chArray = fl ? p->chArray : outChArray;
  2220. unsigned chCnt = fl ? p->chCnt : outChCnt;
  2221. return cmWtVoiceExec( vp, voicePtr, sel, chArray, chCnt );
  2222. }
  2223. //------------------------------------------------------------------------------------------------------------
  2224. cmAudioFileBuf* cmAudioFileBufAlloc( cmCtx* ctx, cmAudioFileBuf* ap, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
  2225. {
  2226. cmAudioFileBuf* p = cmObjAlloc( cmAudioFileBuf, ctx, ap );
  2227. if( procSmpCnt != 0 )
  2228. if( cmAudioFileBufInit( p, procSmpCnt, fn, audioChIdx, begSmpIdx, durSmpCnt ) != cmOkRC )
  2229. cmAudioFileBufFree(&p);
  2230. return p;
  2231. }
  2232. cmRC_t cmAudioFileBufFree( cmAudioFileBuf** pp )
  2233. {
  2234. cmRC_t rc;
  2235. if( pp==NULL || *pp==NULL)
  2236. return cmOkRC;
  2237. cmAudioFileBuf* p = *pp;
  2238. if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
  2239. return rc;
  2240. cmMemPtrFree(&p->bufV);
  2241. cmMemPtrFree(&p->fn);
  2242. cmObjFree(pp);
  2243. return rc;
  2244. }
  2245. cmRC_t cmAudioFileBufInit( cmAudioFileBuf* p, unsigned procSmpCnt, const char* fn, unsigned audioChIdx, unsigned begSmpIdx, unsigned durSmpCnt )
  2246. {
  2247. cmAudioFileH_t afH;
  2248. cmRC_t rc;
  2249. if((rc = cmAudioFileBufFinal(p)) != cmOkRC )
  2250. return rc;
  2251. // open the audio file for reading
  2252. if( cmAudioFileIsValid( afH = cmAudioFileNewOpen( fn, &p->info, &rc, p->obj.err.rpt ))==false || rc != kOkAfRC )
  2253. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file '%s' could not be opend.",fn );
  2254. // validate the audio channel
  2255. if( audioChIdx >= p->info.chCnt )
  2256. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"The audio file channel index %i is out of range for the audio file '%s'.",audioChIdx,fn);
  2257. // validate the start sample index
  2258. if( begSmpIdx > p->info.frameCnt )
  2259. return cmCtxRtCondition(&p->obj, cmOkRC, "The start sample index %i is past the end of the audio file '%s'.",begSmpIdx,fn);
  2260. if( durSmpCnt == cmInvalidCnt )
  2261. durSmpCnt = p->info.frameCnt - begSmpIdx;
  2262. // validate the duration
  2263. if( begSmpIdx + durSmpCnt > p->info.frameCnt )
  2264. {
  2265. unsigned newDurSmpCnt = p->info.frameCnt - begSmpIdx;
  2266. cmCtxRtCondition(&p->obj, cmOkRC, "The selected sample duration %i is past the end of the audio file '%s' and has been shorted to %i samples.",durSmpCnt,fn,newDurSmpCnt);
  2267. durSmpCnt = newDurSmpCnt;
  2268. }
  2269. // seek to the starting sample
  2270. if( cmAudioFileSeek( afH, begSmpIdx ) != kOkAfRC )
  2271. return cmCtxRtCondition(&p->obj, cmArgAssertRC,"Seek to sample index %i failed on the audio file '%s'.",begSmpIdx,fn);
  2272. // allocate the buffer memory
  2273. p->bufV = cmMemResizeZ( cmSample_t, p->bufV, durSmpCnt );
  2274. p->fn = cmMemResize( char, p->fn, strlen(fn)+1 );
  2275. p->bufN = durSmpCnt;
  2276. p->begSmpIdx = begSmpIdx;
  2277. p->chIdx = audioChIdx;
  2278. strcpy(p->fn,fn);
  2279. cmSample_t* outV = p->bufV;
  2280. // read the file into the buffer
  2281. unsigned rdSmpCnt = cmMin(4096,durSmpCnt);
  2282. unsigned cmc = 0;
  2283. while( cmc < durSmpCnt )
  2284. {
  2285. unsigned actualReadCnt = 0;
  2286. unsigned n = rdSmpCnt;
  2287. cmSample_t* chArray[] = {outV};
  2288. if( cmc + n > durSmpCnt )
  2289. n = durSmpCnt - cmc;
  2290. if((rc=cmAudioFileReadSample( afH, n, audioChIdx, 1, chArray, &actualReadCnt)) != kOkAfRC )
  2291. break;
  2292. cmc += actualReadCnt;
  2293. outV += actualReadCnt;
  2294. }
  2295. if( rc==kOkAfRC || (rc != kOkAfRC && cmAudioFileIsEOF(afH)))
  2296. rc = cmOkRC;
  2297. return rc;
  2298. }
  2299. cmRC_t cmAudioFileBufFinal(cmAudioFileBuf* p )
  2300. { return cmOkRC; }
  2301. unsigned cmAudioFileBufExec( cmAudioFileBuf* p, unsigned smpIdx, cmSample_t* outV, unsigned outN, bool sumIntoOutFl )
  2302. {
  2303. if( outV == NULL || outN == 0 || smpIdx >= p->bufN )
  2304. return 0;
  2305. unsigned n = cmMin(outN,p->bufN-smpIdx);
  2306. if( sumIntoOutFl )
  2307. cmVOS_AddVV(outV,n,p->bufV + smpIdx);
  2308. else
  2309. cmVOS_Copy(outV,n,p->bufV + smpIdx );
  2310. if( n < outN )
  2311. memset(outV+n,0,(outN-n)*sizeof(cmSample_t));
  2312. return n;
  2313. }
  2314. //------------------------------------------------------------------------------------------------------------
  2315. cmMDelay* cmMDelayAlloc( cmCtx* ctx, cmMDelay* ap, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
  2316. {
  2317. cmMDelay* p = cmObjAlloc( cmMDelay, ctx, ap );
  2318. if( procSmpCnt != 0 )
  2319. if( cmMDelayInit( p, procSmpCnt, srate, fbCoeff, delayCnt, delayMsArray, delayGainArray ) != cmOkRC )
  2320. cmMDelayFree(&p);
  2321. return p;
  2322. }
  2323. cmRC_t cmMDelayFree( cmMDelay** pp )
  2324. {
  2325. cmRC_t rc;
  2326. if( pp == NULL || *pp==NULL)
  2327. return cmOkRC;
  2328. cmMDelay* p = *pp;
  2329. if((rc = cmMDelayFinal(p)) != cmOkRC )
  2330. return rc;
  2331. unsigned i;
  2332. for(i=0; i<p->delayCnt; ++i)
  2333. cmMemPtrFree(&p->delayArray[i].delayBuf);
  2334. cmMemPtrFree(&p->delayArray);
  2335. cmMemPtrFree(&p->outV);
  2336. cmObjFree(pp);
  2337. return cmOkRC;
  2338. }
  2339. cmRC_t cmMDelayInit( cmMDelay* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t fbCoeff, unsigned delayCnt, const cmReal_t* delayMsArray, const cmReal_t* delayGainArray )
  2340. {
  2341. cmRC_t rc;
  2342. if((rc = cmMDelayFinal(p)) != cmOkRC )
  2343. return rc;
  2344. if( delayCnt <= 0 )
  2345. return rc;
  2346. p->delayArray = cmMemResizeZ( cmMDelayHead, p->delayArray, delayCnt );
  2347. unsigned i;
  2348. for(i=0; i<delayCnt; ++i)
  2349. {
  2350. p->delayArray[i].delayGain = delayGainArray == NULL ? 1.0 : delayGainArray[i];
  2351. p->delayArray[i].delayMs = delayMsArray[i];
  2352. p->delayArray[i].delaySmpFrac = delayMsArray[i] * srate / 1000.0;
  2353. p->delayArray[i].delayBufSmpCnt = ceil(delayMsArray[i] * srate / 1000)+2;
  2354. p->delayArray[i].delayBuf = cmMemResizeZ( cmSample_t, p->delayArray[i].delayBuf, p->delayArray[i].delayBufSmpCnt );
  2355. p->delayArray[i].inIdx = 0;
  2356. }
  2357. p->delayCnt= delayCnt;
  2358. p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt );
  2359. p->outN = procSmpCnt;
  2360. p->fbCoeff = fbCoeff;
  2361. p->srate = srate;
  2362. return cmOkRC;
  2363. }
  2364. cmRC_t cmMDelayFinal( cmMDelay* p )
  2365. { return cmOkRC; }
  2366. void _cmMDelayExec( cmMDelay* p, cmMDelayHead* hp, const cmSample_t inV[], cmSample_t outV[], unsigned sigN )
  2367. {
  2368. cmSample_t* dl = hp->delayBuf; // ptr to the base of the delay line
  2369. cmReal_t dfi = (cmReal_t)(hp->inIdx - hp->delaySmpFrac) + hp->delayBufSmpCnt; // fractional delay in samples
  2370. int dii0 = ((int)dfi) % hp->delayBufSmpCnt; // index to the sample just before the delay position
  2371. int dii1 = (dii0 + 1) % hp->delayBufSmpCnt; // index to the sample just after the delay position
  2372. //cmReal_t frac = 0; //dfi - dii0; // interpolation coeff.
  2373. unsigned i;
  2374. for(i=0; i<sigN; i++)
  2375. {
  2376. /*
  2377. outPtr[i] = -(((f+0)*(f-1)*(f-2)/6) * _wtPtr[iPhs0])
  2378. +(((f+1)*(f-1)*(f-2)/2) * _wtPtr[iPhs0+1])
  2379. -(((f+1)*(f-0)*(f-2)/2) * _wtPtr[iPhs0+2])
  2380. +(((f+1)*(f-0)*(f-1)/6) * _wtPtr[iPhs0+3]);
  2381. */
  2382. cmSample_t outSmp = dl[dii0]; // + (frac * (dl[dii1]-dl[dii0]));
  2383. outV[i] += outSmp/p->delayCnt;
  2384. dl[hp->inIdx] = (p->fbCoeff * outSmp) + inV[i];
  2385. hp->inIdx = (hp->inIdx+1) % hp->delayBufSmpCnt;
  2386. dii0 = (dii0+1) % hp->delayBufSmpCnt;
  2387. dii1 = (dii1+1) % hp->delayBufSmpCnt;
  2388. }
  2389. }
  2390. cmRC_t cmMDelayExec( cmMDelay* p, const cmSample_t* inV, cmSample_t* outV, unsigned sigN, bool bypassFl )
  2391. {
  2392. assert( sigN <= p->outN);
  2393. if( outV == NULL )
  2394. {
  2395. outV = p->outV;
  2396. sigN = cmMin(sigN,p->outN);
  2397. cmVOS_Fill(outV,sigN,0);
  2398. }
  2399. else
  2400. {
  2401. cmVOS_Zero(outV,sigN);
  2402. }
  2403. if( inV == NULL )
  2404. return cmOkRC;
  2405. if( bypassFl )
  2406. {
  2407. memcpy(outV,inV,sigN*sizeof(cmSample_t));
  2408. return cmOkRC;
  2409. }
  2410. unsigned di;
  2411. for( di=0; di<p->delayCnt; ++di)
  2412. {
  2413. cmMDelayHead* hp = p->delayArray + di;
  2414. hp->delaySmpFrac = hp->delayMs * p->srate / 1000.0;
  2415. _cmMDelayExec(p,hp,inV,outV,sigN);
  2416. }
  2417. return cmOkRC;
  2418. }
  2419. void cmMDelaySetTapMs( cmMDelay* p, unsigned tapIdx, cmReal_t ms )
  2420. {
  2421. assert( tapIdx < p->delayCnt );
  2422. p->delayArray[tapIdx].delayMs = ms;
  2423. }
  2424. void cmMDelaySetTapGain(cmMDelay* p, unsigned tapIdx, cmReal_t gain )
  2425. {
  2426. assert( tapIdx < p->delayCnt );
  2427. p->delayArray[tapIdx].delayGain = gain;
  2428. }
  2429. void cmMDelayReport( cmMDelay* p, cmRpt_t* rpt )
  2430. {
  2431. cmRptPrintf(rpt,"tap cnt:%i fb:%f sr:%f\n",p->delayCnt,p->fbCoeff,p->srate);
  2432. }
  2433. //------------------------------------------------------------------------------------------------------------
  2434. cmAudioSegPlayer* cmAudioSegPlayerAlloc( cmCtx* ctx, cmAudioSegPlayer* ap, unsigned procSmpCnt, unsigned outChCnt )
  2435. {
  2436. cmAudioSegPlayer* p = cmObjAlloc( cmAudioSegPlayer, ctx, ap );
  2437. if( procSmpCnt != 0 )
  2438. if( cmAudioSegPlayerInit( p, procSmpCnt, outChCnt ) != cmOkRC )
  2439. cmAudioSegPlayerFree(&p);
  2440. return p;
  2441. }
  2442. cmRC_t cmAudioSegPlayerFree( cmAudioSegPlayer** pp )
  2443. {
  2444. if( pp == NULL || *pp == NULL )
  2445. return cmOkRC;
  2446. cmAudioSegPlayer* p = *pp;
  2447. cmMemPtrFree(&p->segArray);
  2448. cmMemPtrFree(&p->outM);
  2449. cmObjFree(pp);
  2450. return cmOkRC;
  2451. }
  2452. cmRC_t cmAudioSegPlayerInit( cmAudioSegPlayer* p, unsigned procSmpCnt, unsigned outChCnt )
  2453. {
  2454. cmRC_t rc = cmOkRC;
  2455. if((rc = cmAudioSegPlayerFinal(p)) != cmOkRC )
  2456. return rc;
  2457. p->procSmpCnt = procSmpCnt;
  2458. p->outChCnt = outChCnt;
  2459. p->segCnt = 0;
  2460. if( outChCnt )
  2461. {
  2462. unsigned i;
  2463. p->outM = cmMemResizeZ( cmSample_t, p->outM, procSmpCnt * outChCnt );
  2464. p->outChArray = cmMemResizeZ( cmSample_t*, p->outChArray, outChCnt );
  2465. for(i=0; i<outChCnt; ++i)
  2466. p->outChArray[i] = p->outM + (i*procSmpCnt);
  2467. }
  2468. return rc;
  2469. }
  2470. cmRC_t cmAudioSegPlayerFinal( cmAudioSegPlayer* p )
  2471. { return cmOkRC; }
  2472. cmRC_t _cmAudioSegPlayerSegSetup( cmAudioSeg* sp, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2473. {
  2474. sp->bufPtr = bufPtr;
  2475. sp->id = id;
  2476. sp->smpIdx = smpIdx;
  2477. sp->smpCnt = smpCnt;
  2478. sp->outChIdx = outChIdx;
  2479. sp->outSmpIdx = 0;
  2480. sp->flags = 0;
  2481. return cmOkRC;
  2482. }
  2483. cmAudioSeg* _cmAudioSegPlayerIdToSegPtr( cmAudioSegPlayer* p, unsigned id, bool ignoreErrFl )
  2484. {
  2485. unsigned i = 0;
  2486. for(i=0; i<p->segCnt; ++i)
  2487. if( p->segArray[i].id == id )
  2488. return p->segArray + i;
  2489. if( !ignoreErrFl )
  2490. cmCtxRtCondition(&p->obj, cmArgAssertRC,"Unable to locate an audio segment with id=%i.",id);
  2491. return NULL;
  2492. }
  2493. cmRC_t cmAudioSegPlayerInsert( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2494. {
  2495. cmRC_t rc;
  2496. assert( _cmAudioSegPlayerIdToSegPtr( p, id, true ) == NULL );
  2497. p->segArray = cmMemResizePZ( cmAudioSeg, p->segArray, p->segCnt + 1 );
  2498. cmAudioSeg* sp = p->segArray + p->segCnt;
  2499. if((rc = _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx )) == cmOkRC )
  2500. ++p->segCnt;
  2501. return rc;
  2502. }
  2503. cmRC_t cmAudioSegPlayerEdit( cmAudioSegPlayer* p, unsigned id, cmAudioFileBuf* bufPtr, unsigned smpIdx, unsigned smpCnt, unsigned outChIdx )
  2504. {
  2505. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2506. return _cmAudioSegPlayerSegSetup( sp, id, bufPtr, smpIdx, smpCnt, outChIdx );
  2507. }
  2508. cmRC_t cmAudioSegPlayerRemove( cmAudioSegPlayer* p, unsigned id, bool delFl )
  2509. {
  2510. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2511. if( sp == NULL )
  2512. return cmArgAssertRC;
  2513. sp->flags = cmEnaFlag( sp->flags, kDelAspFl, delFl );
  2514. return cmOkRC;
  2515. }
  2516. cmRC_t cmAudioSegPlayerEnable( cmAudioSegPlayer* p, unsigned id, bool enableFl, unsigned outSmpIdx )
  2517. {
  2518. cmAudioSeg* sp = _cmAudioSegPlayerIdToSegPtr(p,id,false);
  2519. if( sp == NULL )
  2520. return cmArgAssertRC;
  2521. if( outSmpIdx != cmInvalidIdx )
  2522. sp->outSmpIdx = outSmpIdx;
  2523. sp->flags = cmEnaFlag( sp->flags, kEnableAspFl, enableFl );
  2524. return cmOkRC;
  2525. }
  2526. void _cmAudioSegPlayerResetSeg( cmAudioSeg* sp )
  2527. {
  2528. sp->outSmpIdx = 0;
  2529. sp->flags = cmClrFlag(sp->flags, kEnableAspFl );
  2530. }
  2531. cmRC_t cmAudioSegPlayerReset( cmAudioSegPlayer* p )
  2532. {
  2533. unsigned i;
  2534. for(i=0; i<p->segCnt; ++i)
  2535. {
  2536. cmAudioSeg* sp = p->segArray + i;
  2537. _cmAudioSegPlayerResetSeg(sp);
  2538. }
  2539. return cmOkRC;
  2540. }
  2541. cmRC_t cmAudioSegPlayerExec( cmAudioSegPlayer* p, cmSample_t** outChPtr, unsigned outChCnt, unsigned procSmpCnt )
  2542. {
  2543. unsigned i;
  2544. if( outChPtr == NULL || outChCnt == 0 )
  2545. {
  2546. assert( p->outChCnt > 0 );
  2547. outChPtr = p->outChArray;
  2548. outChCnt = p->outChCnt;
  2549. assert( p->procSmpCnt <= procSmpCnt );
  2550. }
  2551. for(i=0; i<p->segCnt; ++i)
  2552. {
  2553. cmAudioSeg* sp = p->segArray + i;
  2554. // if the output channel is valid and the segment is enabled and not deleted
  2555. if( sp->outChIdx < outChCnt && (sp->flags & (kEnableAspFl | kDelAspFl)) == kEnableAspFl )
  2556. {
  2557. unsigned bufSmpIdx = sp->smpIdx + sp->outSmpIdx;
  2558. unsigned bufSmpCnt = 0;
  2559. // if all the samples have been played
  2560. if( sp->bufPtr->bufN <= bufSmpIdx )
  2561. _cmAudioSegPlayerResetSeg(sp);
  2562. else
  2563. {
  2564. // prevent playing past the end of the buffer
  2565. bufSmpCnt = cmMin( procSmpCnt, sp->bufPtr->bufN - bufSmpIdx );
  2566. // limit the number of samples to the segment length
  2567. bufSmpCnt = cmMin( bufSmpCnt, sp->smpCnt - sp->outSmpIdx );
  2568. // sum the samples into the output channel
  2569. cmVOS_AddVV( outChPtr[ sp->outChIdx ], bufSmpCnt, sp->bufPtr->bufV + bufSmpIdx );
  2570. // incr the next output sample index
  2571. sp->outSmpIdx += bufSmpCnt;
  2572. }
  2573. if( bufSmpCnt < procSmpCnt )
  2574. cmVOS_Zero( outChPtr[ sp->outChIdx ] + bufSmpCnt, procSmpCnt - bufSmpCnt );
  2575. }
  2576. }
  2577. return cmOkRC;
  2578. }
  2579. //------------------------------------------------------------------------------------------------------------
  2580. /*
  2581. cmCluster0* cmCluster0Alloc( cmCtx* ctx, cmCluster0* ap, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* dstUserPtr )
  2582. {
  2583. cmCluster0* p = cmObjAlloc( cmCluster0, ctx, ap );
  2584. if( stateCnt != 0 )
  2585. if( cmCluster0Init( p, stateCnt, binCnt, flags, distFunc, distUserPtr ) != cmOkRC )
  2586. cmCluster0Free(&p);
  2587. return p;
  2588. }
  2589. cmRC_t cmCluster0Free( cmCluster0** pp )
  2590. {
  2591. if( pp == NULL || *pp == NULL )
  2592. return cmOkRC;
  2593. cmCluster0* p = *pp;
  2594. cmMemPtrFree(&p->oM);
  2595. cmMemPtrFree(&p->tM);
  2596. cmMemPtrFree(&p->dV);
  2597. cmObjFree(pp);
  2598. return cmOkRC;
  2599. }
  2600. cmRC_t cmCluster0Init( cmCluster0* p, unsigned stateCnt, unsigned binCnt, unsigned flags, cmCluster0DistFunc_t distFunc, void* distUserPtr )
  2601. {
  2602. cmRC_t rc;
  2603. if((rc = cmCluster0Final(p)) != cmOkRC )
  2604. return rc;
  2605. p->oM = cmMemResizeZ( cmReal_t, p->oM, binCnt * stateCnt );
  2606. p->tM = cmMemResizeZ( cmReal_t, p->tM, stateCnt * stateCnt );
  2607. p->stateCnt = stateCnt;
  2608. p->binCnt = binCnt;
  2609. p->flags = flags;
  2610. p->distFunc = distFunc;
  2611. p->distUserPtr = distUserPtr;
  2612. p->cnt = 0;
  2613. }
  2614. cmRC_t cmCluster0Final( cmCluster0* p )
  2615. { return cmOkRC; }
  2616. cmRC_t cmCluster0Exec( cmCluster0* p, const cmReal_t* v, unsigned vn )
  2617. {
  2618. assert( vn <= p->binCnt );
  2619. ++cnt;
  2620. if( cnt <= stateCnt )
  2621. {
  2622. cmVOR_Copy( p->oM + ((cnt-1)*binCnt), vn, v );
  2623. return cmOkRC;
  2624. }
  2625. return cmOkRC;
  2626. }
  2627. */
  2628. cmNmf_t* cmNmfAlloc( cmCtx* ctx, cmNmf_t* ap, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
  2629. {
  2630. cmNmf_t* p = cmObjAlloc( cmNmf_t, ctx, ap );
  2631. if( n != 0 )
  2632. if( cmNmfInit( p, n, m, r, maxIterCnt, convergeCnt ) != cmOkRC )
  2633. cmNmfFree(&p);
  2634. return p;
  2635. }
  2636. cmRC_t cmNmfFree( cmNmf_t** pp )
  2637. {
  2638. if( pp== NULL || *pp == NULL )
  2639. return cmOkRC;
  2640. cmNmf_t* p = *pp;
  2641. cmMemPtrFree(&p->V);
  2642. cmMemPtrFree(&p->W);
  2643. cmMemPtrFree(&p->H);
  2644. cmMemPtrFree(&p->tr);
  2645. cmMemPtrFree(&p->x);
  2646. cmMemPtrFree(&p->t0nm);
  2647. cmMemPtrFree(&p->t1nm);
  2648. cmMemPtrFree(&p->Wt);
  2649. cmMemPtrFree(&p->trm);
  2650. cmMemPtrFree(&p->crm);
  2651. cmMemPtrFree(&p->c0);
  2652. cmMemPtrFree(&p->c1);
  2653. cmMemPtrFree(&p->idxV);
  2654. cmObjFree(pp);
  2655. return cmOkRC;
  2656. }
  2657. cmRC_t cmNmfInit( cmNmf_t* p, unsigned n, unsigned m, unsigned r, unsigned maxIterCnt, unsigned convergeCnt )
  2658. {
  2659. cmRC_t rc;
  2660. if((rc = cmNmfFinal(p)) != cmOkRC )
  2661. return rc;
  2662. p->n = n;
  2663. p->m = m;
  2664. p->r = r;
  2665. p->maxIterCnt = maxIterCnt;
  2666. p->convergeCnt= convergeCnt;
  2667. p->V = cmMemResizeZ(cmReal_t, p->V, n*m );
  2668. p->W = cmMemResize( cmReal_t, p->W, n*r );
  2669. p->H = cmMemResize( cmReal_t, p->H, r*m );
  2670. p->tr = cmMemResize( cmReal_t, p->tr, r );
  2671. p->x = cmMemResize( cmReal_t, p->x, r*cmMax(m,n) );
  2672. p->t0nm = cmMemResize( cmReal_t, p->t0nm, cmMax(r,n)*m );
  2673. p->Ht = p->t0nm;
  2674. p->t1nm = cmMemResize( cmReal_t, p->t1nm, n*m );
  2675. p->Wt = cmMemResize( cmReal_t, p->Wt, r*n );
  2676. p->trm = cmMemResize( cmReal_t, p->trm, r*cmMax(m,n) );
  2677. p->crm = cmMemResizeZ(unsigned, p->crm, r*m);
  2678. p->tnr = p->trm;
  2679. p->c0 = cmMemResizeZ(unsigned, p->c0, m*m);
  2680. p->c1 = cmMemResizeZ(unsigned, p->c1, m*m);
  2681. p->idxV = cmMemResizeZ(unsigned, p->idxV, m );
  2682. p->c0m = p->c0;
  2683. p->c1m = p->c1;
  2684. cmVOR_Random(p->W,n*r,0.0,1.0);
  2685. cmVOR_Random(p->H,r*m,0.0,1.0);
  2686. return rc;
  2687. }
  2688. cmRC_t cmNmfFinal(cmNmf_t* p )
  2689. { return cmOkRC; }
  2690. // NMF base on: Lee and Seung, 2001, Algo's for Non-negative Matrix Fcmtorization
  2691. // Connectivity stopping technique based on: http://www.broadinstitute.org/mpr/publications/projects/NMF/nmf.m
  2692. cmRC_t cmNmfExec( cmNmf_t* p, const cmReal_t* vM, unsigned cn )
  2693. {
  2694. cmRC_t rc = cmOkRC;
  2695. unsigned i,j,k;
  2696. unsigned n = p->n;
  2697. unsigned m = p->m;
  2698. unsigned r = p->r;
  2699. unsigned stopIter = 0;
  2700. assert(cn <= m );
  2701. // shift in the incoming columns of V[]
  2702. if( cn < m )
  2703. cmVOR_Shift(p->V, n*m, n*cn,0);
  2704. cmVOR_Copy( p->V, n*cn,vM );
  2705. // shift H[] by the same amount as V[]
  2706. if( cn < m )
  2707. cmVOR_Shift( p->H, r*m, r*cn,0);
  2708. cmVOR_Random(p->H, r*cn, 0.0, 1.0 );
  2709. cmVOU_Zero( p->c1m, m*m );
  2710. for(i=0,j=0; i<p->maxIterCnt && stopIter<p->convergeCnt; ++i)
  2711. {
  2712. // x[r,m] =repmat(sum(W,1)',1,m);
  2713. cmVOR_SumM( p->W, n, r, p->tr );
  2714. for(j=0; j<m; ++j)
  2715. cmVOR_Copy( p->x + (j*r), r, p->tr );
  2716. cmVOR_Transpose(p->Wt,p->W,n,r);
  2717. //H=H.*(W'*(V./(W*H)))./x;
  2718. cmVOR_MultMMM(p->t0nm,n,m,p->W,p->H,r); // t0nm[n,m] = W*H
  2719. cmVOR_DivVVV( p->t1nm,n*m,p->V,p->t0nm); // t1nm[n,m] = V./(W*H)
  2720. cmVOR_MultMMM(p->trm,r,m,p->Wt,p->t1nm,n); // trm[r,m] = W'*(V./(W*H))
  2721. cmVOR_MultVV(p->H,r*m,p->trm); // H[r,m] = H .* (W'*(V./(W*H)))
  2722. cmVOR_DivVV(p->H,r*m, p->x ); // H[r,m] = (H .* (W'*(V./(W*H)))) ./ x
  2723. // x[n,r]=repmat(sum(H,2)',n,1);
  2724. cmVOR_SumMN(p->H, r, m, p->tr );
  2725. for(j=0; j<n; ++j)
  2726. cmVOR_CopyN(p->x + j, r, n, p->tr, 1 );
  2727. cmVOR_Transpose(p->Ht,p->H,r,m);
  2728. // W=W.*((V./(W*H))*H')./x;
  2729. cmVOR_MultMMM(p->tnr,n,r,p->t1nm,p->Ht,m); // tnr[n,r] = (V./(W*H))*Ht
  2730. cmVOR_MultVV(p->W,n*r,p->tnr); // W[n,r] = W.*(V./(W*H))*Ht
  2731. cmVOR_DivVV(p->W,n*r,p->x); // W[n,r] = W.*(V./(W*H))*Ht ./x
  2732. if( i % 10 == 0 )
  2733. {
  2734. cmVOR_ReplaceLte( p->H, r*m, p->H, 2.2204e-16, 2.2204e-16 );
  2735. cmVOR_ReplaceLte( p->W, n*r, p->W, 2.2204e-16, 2.2204e-16 );
  2736. cmVOR_MaxIndexM( p->idxV, p->H, r, m );
  2737. unsigned mismatchCnt = 0;
  2738. for(j=0; j<m; ++j)
  2739. for(k=0; k<m; ++k)
  2740. {
  2741. unsigned c_idx = (j*m)+k;
  2742. p->c0m[ c_idx ] = p->idxV[j] == p->idxV[k];
  2743. mismatchCnt += p->c0m[ c_idx ] != p->c1m[ c_idx ];
  2744. }
  2745. if( mismatchCnt == 0 )
  2746. ++stopIter;
  2747. else
  2748. stopIter = 0;
  2749. printf("%i %i %i\n",i,stopIter,mismatchCnt);
  2750. fflush(stdout);
  2751. unsigned* tcm = p->c0m;
  2752. p->c0m = p->c1m;
  2753. p->c1m = tcm;
  2754. }
  2755. }
  2756. return rc;
  2757. }
  2758. //------------------------------------------------------------------------------------------------------------
  2759. unsigned _cmVectArrayTypeByteCnt( cmVectArray_t* p, unsigned flags )
  2760. {
  2761. switch( flags & kVaMask )
  2762. {
  2763. case kFloatVaFl: return sizeof(float);
  2764. case kDoubleVaFl: return sizeof(double);
  2765. case kIntVaFl: return sizeof(int);
  2766. case kUIntVaFl: return sizeof(unsigned);
  2767. }
  2768. if( p != NULL )
  2769. cmCtxRtCondition(&p->obj,cmInvalidArgRC,"Unknown data type.");
  2770. return 0;
  2771. }
  2772. cmRC_t _cmVectArrayAppend( cmVectArray_t* p, const void* v, unsigned typeByteCnt, unsigned valCnt )
  2773. {
  2774. cmRC_t rc = cmSubSysFailRC;
  2775. cmVectArrayVect_t* ep = NULL;
  2776. unsigned byteCnt = typeByteCnt * valCnt;
  2777. if( byteCnt == 0 || v == NULL )
  2778. return rc;
  2779. // verify that all vectors written to this vector array contain the same data type.
  2780. if( typeByteCnt != _cmVectArrayTypeByteCnt(p,p->flags) )
  2781. return cmCtxRtCondition(&p->obj,cmInvalidArgRC,"All data stored to a cmVectArray_t must be a consistent type.");
  2782. // allocate space for the link record
  2783. if((ep = cmMemAllocZ(cmVectArrayVect_t,1)) == NULL )
  2784. goto errLabel;
  2785. // allocate space for the vector data
  2786. if((ep->u.v = cmMemAlloc(char,typeByteCnt*valCnt)) == NULL )
  2787. goto errLabel;
  2788. // append the link recd to the end of the element list
  2789. if( p->ep != NULL )
  2790. p->ep->link = ep;
  2791. else
  2792. {
  2793. p->bp = ep;
  2794. p->cur = p->bp;
  2795. }
  2796. p->ep = ep;
  2797. // store the length of the vector
  2798. ep->n = valCnt;
  2799. // copy in the vector data
  2800. memcpy(ep->u.v,v,byteCnt);
  2801. // track the number of vectors stored
  2802. p->vectCnt += 1;
  2803. // track the longest data vector
  2804. if( valCnt > p->maxEleCnt )
  2805. p->maxEleCnt = valCnt;
  2806. rc = cmOkRC;
  2807. errLabel:
  2808. if(rc != cmOkRC )
  2809. {
  2810. cmMemFree(ep->u.v);
  2811. cmMemFree(ep);
  2812. }
  2813. return rc;
  2814. }
  2815. cmVectArray_t* cmVectArrayAlloc( cmCtx* ctx, unsigned flags )
  2816. {
  2817. cmRC_t rc = cmOkRC;
  2818. cmVectArray_t* p = cmObjAlloc(cmVectArray_t,ctx,NULL);
  2819. assert(p != NULL);
  2820. switch( flags & kVaMask )
  2821. {
  2822. case kIntVaFl:
  2823. p->flags |= kIntVaFl;
  2824. p->typeByteCnt = sizeof(int);
  2825. break;
  2826. case kUIntVaFl:
  2827. p->flags |= kUIntVaFl;
  2828. p->typeByteCnt = sizeof(unsigned);
  2829. break;
  2830. case kFloatVaFl:
  2831. p->flags |= kFloatVaFl;
  2832. p->typeByteCnt = sizeof(float);
  2833. break;
  2834. case kDoubleVaFl:
  2835. p->flags |= kDoubleVaFl;
  2836. p->typeByteCnt = sizeof(double);
  2837. break;
  2838. default:
  2839. rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
  2840. }
  2841. if(rc != cmOkRC)
  2842. cmVectArrayFree(&p);
  2843. return p;
  2844. }
  2845. cmVectArray_t* cmVectArrayAllocFromFile(cmCtx* ctx, const char* fn )
  2846. {
  2847. cmRC_t rc = cmOkRC;
  2848. FILE* fp = NULL;
  2849. char* buf = NULL;
  2850. cmVectArray_t* p = NULL;
  2851. unsigned hn = 4;
  2852. unsigned hdr[hn];
  2853. // create the file
  2854. if((fp = fopen(fn,"rb")) == NULL )
  2855. {
  2856. rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file '%s' could not be opened.",cmStringNullGuard(fn));
  2857. goto errLabel;
  2858. }
  2859. if( fread(hdr,sizeof(unsigned),hn,fp) != hn )
  2860. {
  2861. rc = cmCtxRtCondition(&ctx->obj,cmSystemErrorRC,"The vector array file header could not be read from '%s'.",cmStringNullGuard(fn));
  2862. goto errLabel;
  2863. }
  2864. unsigned flags = hdr[0];
  2865. unsigned typeByteCnt = hdr[1];
  2866. unsigned vectCnt = hdr[2];
  2867. unsigned maxEleCnt = hdr[3];
  2868. unsigned i;
  2869. buf = cmMemAlloc(char,maxEleCnt*typeByteCnt);
  2870. if((p = cmVectArrayAlloc(ctx, flags )) == NULL )
  2871. goto errLabel;
  2872. for(i=0; i<vectCnt; ++i)
  2873. {
  2874. unsigned vn;
  2875. if( fread(&vn,sizeof(unsigned),1,fp) != 1 )
  2876. {
  2877. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file element count read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2878. goto errLabel;
  2879. }
  2880. assert( vn <= maxEleCnt );
  2881. if( fread(buf,typeByteCnt,vn,fp) != vn )
  2882. {
  2883. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array data read failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2884. goto errLabel;
  2885. }
  2886. if((rc = _cmVectArrayAppend(p,buf, typeByteCnt, vn )) != cmOkRC )
  2887. {
  2888. rc = cmCtxRtCondition(&p->obj,rc,"The vector array data store failed on vector index:%i in '%s'.",i,cmStringNullGuard(fn));
  2889. goto errLabel;
  2890. }
  2891. }
  2892. errLabel:
  2893. if( fp != NULL )
  2894. fclose(fp);
  2895. cmMemFree(buf);
  2896. if(rc != cmOkRC && p != NULL)
  2897. cmVectArrayFree(&p);
  2898. return p;
  2899. }
  2900. cmRC_t cmVectArrayFree( cmVectArray_t** pp )
  2901. {
  2902. cmRC_t rc = cmOkRC;
  2903. if( pp == NULL || *pp == NULL )
  2904. return rc;
  2905. cmVectArray_t* p = *pp;
  2906. if((rc = cmVectArrayClear(p)) != cmOkRC )
  2907. return rc;
  2908. cmMemFree(p->tempV);
  2909. cmObjFree(pp);
  2910. return rc;
  2911. }
  2912. cmRC_t cmVectArrayClear( cmVectArray_t* p )
  2913. {
  2914. cmVectArrayVect_t* ep = p->bp;
  2915. while( ep!=NULL )
  2916. {
  2917. cmVectArrayVect_t* np = ep->link;
  2918. cmMemFree(ep->u.v);
  2919. cmMemFree(ep);
  2920. ep = np;
  2921. }
  2922. p->bp = NULL;
  2923. p->ep = NULL;
  2924. p->maxEleCnt = 0;
  2925. p->vectCnt = 0;
  2926. return cmOkRC;
  2927. }
  2928. unsigned cmVectArrayCount( const cmVectArray_t* p )
  2929. { return p->vectCnt; }
  2930. unsigned cmVectArrayMaxRowCount( const cmVectArray_t* p )
  2931. {
  2932. const cmVectArrayVect_t* np = p->bp;
  2933. unsigned maxN = 0;
  2934. for(; np!=NULL; np=np->link)
  2935. if( np->n > maxN )
  2936. maxN = np->n;
  2937. return maxN;
  2938. }
  2939. cmRC_t cmVectArrayAppendV( cmVectArray_t* p, const void* v, unsigned vn )
  2940. { return _cmVectArrayAppend(p,v,_cmVectArrayTypeByteCnt(p,p->flags), vn); }
  2941. cmRC_t cmVectArrayAppendS( cmVectArray_t* p, const cmSample_t* v, unsigned vn )
  2942. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2943. cmRC_t cmVectArrayAppendR( cmVectArray_t* p, const cmReal_t* v, unsigned vn )
  2944. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2945. cmRC_t cmVectArrayAppendF( cmVectArray_t* p, const float* v, unsigned vn )
  2946. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2947. cmRC_t cmVectArrayAppendD( cmVectArray_t* p, const double* v, unsigned vn )
  2948. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2949. cmRC_t cmVectArrayAppendI( cmVectArray_t* p, const int* v, unsigned vn )
  2950. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2951. cmRC_t cmVectArrayAppendU( cmVectArray_t* p, const unsigned* v, unsigned vn )
  2952. { return _cmVectArrayAppend(p,v,sizeof(v[0]),vn); }
  2953. cmRC_t cmVectArrayWrite( cmVectArray_t* p, const char* fn )
  2954. {
  2955. cmRC_t rc = cmOkRC;
  2956. FILE* fp = NULL;
  2957. cmVectArrayVect_t* ep;
  2958. unsigned i;
  2959. unsigned hn = 4;
  2960. unsigned hdr[hn];
  2961. hdr[0] = p->flags;
  2962. hdr[1] = p->typeByteCnt;
  2963. hdr[2] = p->vectCnt;
  2964. hdr[3] = p->maxEleCnt;
  2965. // create the file
  2966. if((fp = fopen(fn,"wb")) == NULL )
  2967. return cmCtxRtCondition(&p->obj,cmSystemErrorRC,"The vector array file '%s' could not be created.",cmStringNullGuard(fn));
  2968. // write the header
  2969. if( fwrite(hdr,sizeof(unsigned),hn,fp) != hn )
  2970. {
  2971. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file header write failed in '%s'.",cmStringNullGuard(fn));
  2972. goto errLabel;
  2973. }
  2974. // write each vector element
  2975. for(ep=p->bp,i=0; ep!=NULL; ep=ep->link,++i)
  2976. {
  2977. // write the count of data values in the vector
  2978. if( fwrite(&ep->n,sizeof(ep->n),1,fp) != 1 )
  2979. {
  2980. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on element header %i in '%s'.",i,cmStringNullGuard(fn));
  2981. goto errLabel;
  2982. }
  2983. // write the vector
  2984. if(fwrite(ep->u.v,p->typeByteCnt,ep->n,fp) != ep->n )
  2985. {
  2986. rc = cmCtxRtCondition(&p->obj,cmSystemErrorRC,"Vector array file write failed on data vector %i in '%s'.",i,cmStringNullGuard(fn));
  2987. goto errLabel;
  2988. }
  2989. }
  2990. errLabel:
  2991. if( fp != NULL )
  2992. fclose(fp);
  2993. return rc;
  2994. }
  2995. cmRC_t cmVectArrayWriteDirFn(cmVectArray_t* p, const char* dir, const char* fn )
  2996. {
  2997. assert( dir!=NULL && fn!=NULL );
  2998. const cmChar_t* path = cmFsMakeFn( dir, fn, NULL, NULL );
  2999. cmRC_t rc = cmVectArrayWrite(p,path);
  3000. cmFsFreeFn(path);
  3001. return rc;
  3002. }
  3003. cmRC_t cmVectArrayPrint( cmVectArray_t* p, cmRpt_t* rpt )
  3004. {
  3005. cmRC_t rc = cmOkRC;
  3006. cmVectArrayVect_t* rp = p->bp;
  3007. for(; rp!=NULL; rp=rp->link)
  3008. {
  3009. switch( p->flags & kVaMask )
  3010. {
  3011. case kFloatVaFl:
  3012. cmVOF_Print(rpt,1,rp->n,rp->u.fV);
  3013. break;
  3014. case kDoubleVaFl:
  3015. cmVOD_Print(rpt,1,rp->n,rp->u.dV);
  3016. break;
  3017. case kIntVaFl:
  3018. cmVOI_Print(rpt,1,rp->n,rp->u.iV);
  3019. break;
  3020. case kUIntVaFl:
  3021. cmVOU_Print(rpt,1,rp->n,rp->u.uV);
  3022. break;
  3023. default:
  3024. rc = cmCtxRtCondition(&p->obj,cmInvalidArgRC,"The vector array value type flag was not recognized.");
  3025. break;
  3026. }
  3027. }
  3028. return rc;
  3029. }
  3030. unsigned cmVectArrayForEachS( cmVectArray_t* p, unsigned idx, unsigned cnt, cmVectArrayForEachFuncS_t func, void* arg )
  3031. {
  3032. cmVectArrayVect_t* ep = p->bp;
  3033. unsigned i = 0;
  3034. unsigned n = 0;
  3035. // for each sub-array
  3036. for(; ep!=NULL && n<cnt; ep=ep->link )
  3037. {
  3038. // if the cur sub-array is in the range of idx:idx+cnt
  3039. if( i <= idx && idx < i + ep->n )
  3040. {
  3041. unsigned j = idx - i; // starting idx into cur sub-array
  3042. assert(j<ep->n);
  3043. unsigned m = cmMin(ep->n - j,cnt-n); // cnt of ele's to send from cur sub-array
  3044. // do callback
  3045. if( func(arg, idx, ep->u.sV + j, m ) != cmOkRC )
  3046. break;
  3047. idx += m;
  3048. n += m;
  3049. }
  3050. i += ep->n;
  3051. }
  3052. return n;
  3053. }
  3054. cmRC_t _cmVectArrayWriteMatrix( cmCtx* ctx, const char* fn, unsigned flags, const void* m, unsigned rn, unsigned cn )
  3055. {
  3056. cmRC_t rc = cmOkRC;
  3057. cmVectArray_t* p;
  3058. const char* b = (const char*)m;
  3059. unsigned tbc = _cmVectArrayTypeByteCnt( NULL, flags );
  3060. unsigned ri = 0;
  3061. char* vv = cmMemAlloc(char,cn*tbc);
  3062. if((p = cmVectArrayAlloc(ctx,flags)) == NULL )
  3063. return cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to allocate a cmVectArray_t in %s().",__FUNCTION__);
  3064. for(ri=0; ri<rn; ++ri)
  3065. {
  3066. // get ptr to first element in row 'ri' or m[]
  3067. const char* v = b + ri*tbc;
  3068. unsigned ci;
  3069. // for each column in m[ri,:]
  3070. for(ci=0; ci<cn; ++ci)
  3071. memcpy(vv + ci*tbc, v + ci*rn*tbc, tbc );
  3072. // append the row to the VectArray
  3073. if((rc = cmVectArrayAppendV(p,vv,cn)) != cmOkRC )
  3074. {
  3075. rc = cmCtxRtCondition(&p->obj,rc,"Vector append failed in %s().",__FUNCTION__);
  3076. goto errLabel;
  3077. }
  3078. }
  3079. if((rc = cmVectArrayWrite(p,fn)) != cmOkRC )
  3080. rc = cmCtxRtCondition(&p->obj,rc,"Vector array write failed in %s().",__FUNCTION__);
  3081. errLabel:
  3082. if((rc = cmVectArrayFree(&p)) != cmOkRC )
  3083. rc = cmCtxRtCondition(&ctx->obj,rc,"Vector array free failed in %s().",__FUNCTION__);
  3084. cmMemFree(vv);
  3085. return rc;
  3086. }
  3087. cmRC_t cmVectArrayWriteVectorV( cmCtx* ctx, const char* fn, const void* v, unsigned vn, unsigned flags )
  3088. { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, 1, vn ); }
  3089. cmRC_t cmVectArrayWriteVectorS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned vn )
  3090. { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, 1, vn ); }
  3091. cmRC_t cmVectArrayWriteVectorR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned vn )
  3092. { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, 1, vn ); }
  3093. cmRC_t cmVectArrayWriteVectorD( cmCtx* ctx, const char* fn, const double* v, unsigned vn )
  3094. { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, 1, vn ); }
  3095. cmRC_t cmVectArrayWriteVectorF( cmCtx* ctx, const char* fn, const float* v, unsigned vn )
  3096. { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, 1, vn ); }
  3097. cmRC_t cmVectArrayWriteVectorI( cmCtx* ctx, const char* fn, const int* v, unsigned vn )
  3098. { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, 1, vn ); }
  3099. cmRC_t cmVectArrayWriteVectorU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned vn )
  3100. { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, 1, vn ); }
  3101. cmRC_t cmVectArrayWriteMatrixV( cmCtx* ctx, const char* fn, const void* v, unsigned rn, unsigned cn, unsigned flags )
  3102. { return _cmVectArrayWriteMatrix( ctx, fn, flags, v, rn, cn); }
  3103. cmRC_t cmVectArrayWriteMatrixS( cmCtx* ctx, const char* fn, const cmSample_t* v, unsigned rn, unsigned cn )
  3104. { return _cmVectArrayWriteMatrix( ctx, fn, kSampleVaFl, v, rn, cn); }
  3105. cmRC_t cmVectArrayWriteMatrixR( cmCtx* ctx, const char* fn, const cmReal_t* v, unsigned rn, unsigned cn )
  3106. { return _cmVectArrayWriteMatrix( ctx, fn, kRealVaFl, v, rn, cn); }
  3107. cmRC_t cmVectArrayWriteMatrixD( cmCtx* ctx, const char* fn, const double* v, unsigned rn, unsigned cn )
  3108. { return _cmVectArrayWriteMatrix( ctx, fn, kDoubleVaFl, v, rn, cn); }
  3109. cmRC_t cmVectArrayWriteMatrixF( cmCtx* ctx, const char* fn, const float* v, unsigned rn, unsigned cn )
  3110. { return _cmVectArrayWriteMatrix( ctx, fn, kFloatVaFl, v, rn, cn); }
  3111. cmRC_t cmVectArrayWriteMatrixI( cmCtx* ctx, const char* fn, const int* v, unsigned rn, unsigned cn )
  3112. { return _cmVectArrayWriteMatrix( ctx, fn, kIntVaFl, v, rn, cn); }
  3113. cmRC_t cmVectArrayWriteMatrixU( cmCtx* ctx, const char* fn, const unsigned* v, unsigned rn, unsigned cn )
  3114. { return _cmVectArrayWriteMatrix( ctx, fn, kUIntVaFl, v, rn, cn); }
  3115. // Fill v[(*vnRef)*tbc] with the data from the current row of p.
  3116. // Return the count of elements copied to v[] in *vnRef.
  3117. cmRC_t _cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef, unsigned tbc )
  3118. {
  3119. assert( tbc == p->typeByteCnt );
  3120. if( cmVectArrayIsEOL(p) )
  3121. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"%s failed because the state is EOL.",__FUNCTION__);
  3122. unsigned n = cmMin((*vnRef)*tbc, p->cur->n * p->typeByteCnt );
  3123. memcpy(v, p->cur->u.v, n );
  3124. *vnRef = n/tbc;
  3125. return cmOkRC;
  3126. }
  3127. cmRC_t _cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
  3128. {
  3129. assert( mRef != NULL );
  3130. assert( cnRef != NULL );
  3131. assert( rnRef != NULL );
  3132. *mRef = NULL;
  3133. *cnRef = 0;
  3134. *rnRef = 0;
  3135. cmRC_t rc = cmOkRC;
  3136. cmVectArray_t* va;
  3137. if((va = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  3138. rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the vectarray from the file '%s'.", cmStringNullGuard(fn));
  3139. else
  3140. {
  3141. unsigned rn = cmVectArrayCount(va); // count of rows
  3142. unsigned cn = cmVectArrayMaxRowCount(va); // max count of ele's among all rows
  3143. char* m = cmMemAllocZ(char,va->typeByteCnt*rn*cn); // allocate the matrix
  3144. unsigned ci = 0;
  3145. cmVectArrayRewind(va);
  3146. // read each vector into a column of m[]
  3147. for(; !cmVectArrayIsEOL(va); ++ci)
  3148. {
  3149. unsigned n = cmVectArrayEleCount(va);
  3150. assert( m+(ci*rn+n)*va->typeByteCnt <= m + rn*cn*va->typeByteCnt );
  3151. if( _cmVectArrayGetV(va, m + ci*rn*va->typeByteCnt, &n, va->typeByteCnt) != cmOkRC )
  3152. goto errLabel;
  3153. cmVectArrayAdvance(va,1);
  3154. }
  3155. *mRef = m;
  3156. *cnRef = cn;
  3157. *rnRef = rn;
  3158. }
  3159. errLabel:
  3160. if( va != NULL )
  3161. cmVectArrayFree(&va);
  3162. return rc;
  3163. }
  3164. cmRC_t cmVectArrayReadMatrixV( cmCtx* ctx, const char* fn, void** mRef, unsigned* rnRef, unsigned* cnRef )
  3165. { return _cmVectArrayReadMatrixV(ctx, fn, mRef, rnRef, cnRef ); }
  3166. cmRC_t cmVectArrayReadMatrixS( cmCtx* ctx, const char* fn, cmSample_t** mRef, unsigned* rnRef, unsigned* cnRef )
  3167. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3168. cmRC_t cmVectArrayReadMatrixR( cmCtx* ctx, const char* fn, cmReal_t** mRef, unsigned* rnRef, unsigned* cnRef )
  3169. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3170. cmRC_t cmVectArrayReadMatrixD( cmCtx* ctx, const char* fn, double** mRef, unsigned* rnRef, unsigned* cnRef )
  3171. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3172. cmRC_t cmVectArrayReadMatrixF( cmCtx* ctx, const char* fn, float** mRef, unsigned* rnRef, unsigned* cnRef )
  3173. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3174. cmRC_t cmVectArrayReadMatrixI( cmCtx* ctx, const char* fn, int** mRef, unsigned* rnRef, unsigned* cnRef )
  3175. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3176. cmRC_t cmVectArrayReadMatrixU( cmCtx* ctx, const char* fn, unsigned** mRef, unsigned* rnRef, unsigned* cnRef )
  3177. { return _cmVectArrayReadMatrixV(ctx, fn, (void**)mRef, rnRef, cnRef ); }
  3178. cmRC_t cmVectArrayForEachTextFuncS( void* arg, unsigned idx, const cmSample_t* xV, unsigned xN )
  3179. {
  3180. assert(0);
  3181. return cmOkRC;
  3182. }
  3183. cmRC_t cmVectArrayRewind( cmVectArray_t* p )
  3184. {
  3185. p->cur = p->bp;
  3186. return cmOkRC;
  3187. }
  3188. cmRC_t cmVectArrayAdvance( cmVectArray_t* p, unsigned n )
  3189. {
  3190. unsigned i;
  3191. for(i=0; i<n; ++i)
  3192. {
  3193. if( p->cur == NULL )
  3194. break;
  3195. p->cur = p->cur->link;
  3196. }
  3197. return cmOkRC;
  3198. }
  3199. bool cmVectArrayIsEOL( const cmVectArray_t* p )
  3200. { return p->cur == NULL; }
  3201. unsigned cmVectArrayEleCount( const cmVectArray_t* p )
  3202. {
  3203. if( p->cur == NULL )
  3204. return 0;
  3205. return p->cur->n;
  3206. }
  3207. cmRC_t cmVectArrayGetV( cmVectArray_t* p, void* v, unsigned* vnRef )
  3208. { return _cmVectArrayGetV(p,v,vnRef,_cmVectArrayTypeByteCnt(p,p->flags)); }
  3209. cmRC_t cmVectArrayGetS( cmVectArray_t* p, cmSample_t* v, unsigned* vnRef )
  3210. {
  3211. assert( cmIsFlag(p->flags,kSampleVaFl) );
  3212. return _cmVectArrayGetV(p,v,vnRef,sizeof(cmSample_t));
  3213. }
  3214. cmRC_t cmVectArrayGetR( cmVectArray_t* p, cmReal_t* v, unsigned* vnRef )
  3215. {
  3216. assert( cmIsFlag(p->flags,kRealVaFl) );
  3217. return _cmVectArrayGetV(p,v,vnRef,sizeof(cmReal_t));
  3218. }
  3219. cmRC_t cmVectArrayGetD( cmVectArray_t* p, double* v, unsigned* vnRef )
  3220. {
  3221. assert( cmIsFlag(p->flags,kDoubleVaFl) );
  3222. return _cmVectArrayGetV(p,v,vnRef,sizeof(double));
  3223. }
  3224. cmRC_t cmVectArrayGetF( cmVectArray_t* p, float* v, unsigned* vnRef )
  3225. {
  3226. assert( cmIsFlag(p->flags,kFloatVaFl) );
  3227. return _cmVectArrayGetV(p,v,vnRef,sizeof(float));
  3228. }
  3229. cmRC_t cmVectArrayGetI( cmVectArray_t* p, int* v, unsigned* vnRef )
  3230. {
  3231. assert( cmIsFlag(p->flags,kIntVaFl) );
  3232. return _cmVectArrayGetV(p,v,vnRef,sizeof(int));
  3233. }
  3234. cmRC_t cmVectArrayGetU( cmVectArray_t* p, unsigned* v, unsigned* vnRef )
  3235. {
  3236. assert( cmIsFlag(p->flags,kUIntVaFl) );
  3237. return _cmVectArrayGetV(p,v,vnRef,sizeof(unsigned));
  3238. }
  3239. cmRC_t _cmVectArrayMatrixIsEqual( cmCtx* ctx, const char* fn, const void* mm, unsigned rn, unsigned cn, unsigned flags, bool* resultFlRef )
  3240. {
  3241. assert( resultFlRef != NULL );
  3242. cmRC_t rc = cmOkRC;
  3243. cmVectArray_t* p = NULL;
  3244. const char* m = (const char*)mm;
  3245. unsigned tbc = _cmVectArrayTypeByteCnt(NULL,flags);
  3246. unsigned ri = 0;
  3247. char* vv = cmMemAlloc(char,cn*tbc);
  3248. *resultFlRef = false;
  3249. // read the vector array
  3250. if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL)
  3251. {
  3252. rc = cmCtxRtCondition(&ctx->obj,cmSubSysFailRC,"Unable to read the VectArray from the file '%s'.", cmStringNullGuard(fn));
  3253. goto errLabel;
  3254. }
  3255. // verify that the matrix type matches the vector array type
  3256. if( (p->flags & kVaMask) != (flags & kVaMask) )
  3257. {
  3258. rc = cmCtxRtCondition(&ctx->obj,cmInvalidArgRC,"Invalid type conversion in '%s'.",__FUNCTION__);
  3259. goto errLabel;
  3260. }
  3261. // the row count of the VectArray and m[] must be the same
  3262. if( cmVectArrayCount(p) != rn )
  3263. {
  3264. *resultFlRef = false;
  3265. goto errLabel;
  3266. }
  3267. // for each row in VectArray
  3268. for(; !cmVectArrayIsEOL(p); ++ri )
  3269. {
  3270. unsigned vn = cmVectArrayEleCount(p);
  3271. char v[ vn*p->typeByteCnt ];
  3272. unsigned ci;
  3273. // get the current row from the VectArray into v[vn]
  3274. if( _cmVectArrayGetV(p,v,&vn,p->typeByteCnt) != cmOkRC )
  3275. goto errLabel;
  3276. // if the size of the current row does not match the row element count of the matrix
  3277. if( vn != cn )
  3278. goto errLabel;
  3279. for(ci=0; ci<cn; ++ci)
  3280. memcpy(vv + ci*tbc, m + (ri*tbc) + (ci*rn*tbc), tbc );
  3281. // the current row does not match the matrix column vector
  3282. if( memcmp(v, vv, vn*p->typeByteCnt ) != 0 )
  3283. goto errLabel;
  3284. cmVectArrayAdvance(p,1);
  3285. }
  3286. *resultFlRef = true;
  3287. errLabel:
  3288. if( p != NULL )
  3289. cmVectArrayFree(&p);
  3290. cmMemFree(vv);
  3291. return rc;
  3292. }
  3293. cmRC_t cmVectArrayMatrixIsEqualV( cmCtx* ctx, const char* fn, const void* m, unsigned rn, unsigned cn, bool* resultFlRef, unsigned flags )
  3294. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, flags, resultFlRef); }
  3295. cmRC_t cmVectArrayMatrixIsEqualS( cmCtx* ctx, const char* fn, const cmSample_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3296. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kSampleVaFl, resultFlRef ); }
  3297. cmRC_t cmVectArrayMatrixIsEqualR( cmCtx* ctx, const char* fn, const cmReal_t* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3298. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kRealVaFl, resultFlRef ); }
  3299. cmRC_t cmVectArrayMatrixIsEqualD( cmCtx* ctx, const char* fn, const double* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3300. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kDoubleVaFl, resultFlRef ); }
  3301. cmRC_t cmVectArrayMatrixIsEqualF( cmCtx* ctx, const char* fn, const float* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3302. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kFloatVaFl, resultFlRef ); }
  3303. cmRC_t cmVectArrayMatrixIsEqualI( cmCtx* ctx, const char* fn, const int* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3304. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kIntVaFl, resultFlRef ); }
  3305. cmRC_t cmVectArrayMatrixIsEqualU( cmCtx* ctx, const char* fn, const unsigned* m, unsigned rn, unsigned cn, bool* resultFlRef )
  3306. { return _cmVectArrayMatrixIsEqual(ctx, fn, m, rn, cn, kUIntVaFl, resultFlRef ); }
  3307. unsigned cmVectArrayVectEleCount( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt )
  3308. {
  3309. unsigned n = 0;
  3310. cmVectArrayVect_t* pos = p->cur;
  3311. if( cmVectArrayRewind(p) != cmOkRC )
  3312. goto errLabel;
  3313. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3314. goto errLabel;
  3315. while( !cmVectArrayIsEOL(p) )
  3316. {
  3317. n += cmVectArrayEleCount(p);
  3318. if(cmVectArrayAdvance(p,groupCnt) != cmOkRC )
  3319. goto errLabel;
  3320. }
  3321. errLabel:
  3322. p->cur = pos;
  3323. return n;
  3324. }
  3325. cmRC_t cmVectArrayFormVectF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, float** vRef, unsigned* vnRef )
  3326. {
  3327. cmRC_t rc = cmOkRC;
  3328. *vRef = NULL;
  3329. *vnRef = 0;
  3330. unsigned N = cmVectArrayVectEleCount(p,groupIdx,groupCnt);
  3331. if( N == 0 )
  3332. return rc;
  3333. float* v = cmMemAllocZ(float,N);
  3334. unsigned i = 0;
  3335. cmVectArrayVect_t* pos = p->cur;
  3336. if( cmVectArrayRewind(p) != cmOkRC )
  3337. goto errLabel;
  3338. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3339. goto errLabel;
  3340. while( !cmVectArrayIsEOL(p) )
  3341. {
  3342. unsigned n = cmVectArrayEleCount(p);
  3343. assert(i+n <= N);
  3344. cmVectArrayGetF(p,v+i,&n);
  3345. i += n;
  3346. cmVectArrayAdvance(p,groupCnt);
  3347. }
  3348. *vRef = v;
  3349. *vnRef = i;
  3350. errLabel:
  3351. p->cur = pos;
  3352. return rc;
  3353. }
  3354. cmRC_t cmVectArrayFormVectColF( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, float** vRef, unsigned* vnRef )
  3355. {
  3356. cmRC_t rc = cmOkRC;
  3357. *vRef = NULL;
  3358. *vnRef = 0;
  3359. // assume there will be one output element for each group
  3360. unsigned N = cmVectArrayCount(p)/groupCnt + 1;
  3361. if( N == 0 )
  3362. return rc;
  3363. float* v = cmMemAllocZ(float,N);
  3364. unsigned i = 0;
  3365. cmVectArrayVect_t* pos = p->cur;
  3366. if( cmVectArrayRewind(p) != cmOkRC )
  3367. goto errLabel;
  3368. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3369. goto errLabel;
  3370. while( i<N && !cmVectArrayIsEOL(p) )
  3371. {
  3372. unsigned tn = cmVectArrayEleCount(p);
  3373. float tv[tn];
  3374. // read the sub-vector
  3375. cmVectArrayGetF(p,tv,&tn);
  3376. // store the output value
  3377. if( colIdx < tn )
  3378. {
  3379. v[i] = tv[colIdx];
  3380. i += 1;
  3381. }
  3382. cmVectArrayAdvance(p,groupCnt);
  3383. }
  3384. *vRef = v;
  3385. *vnRef = i;
  3386. errLabel:
  3387. p->cur = pos;
  3388. return rc;
  3389. }
  3390. cmRC_t cmVectArrayFormVectColU( cmVectArray_t* p, unsigned groupIdx, unsigned groupCnt, unsigned colIdx, unsigned** vRef, unsigned* vnRef )
  3391. {
  3392. cmRC_t rc = cmOkRC;
  3393. *vRef = NULL;
  3394. *vnRef = 0;
  3395. // assume there will be one output element for each group
  3396. unsigned N = cmVectArrayCount(p)/groupCnt + 1;
  3397. if( N == 0 )
  3398. return rc;
  3399. unsigned* v = cmMemAllocZ(unsigned,N);
  3400. unsigned i = 0;
  3401. cmVectArrayVect_t* pos = p->cur;
  3402. if( cmVectArrayRewind(p) != cmOkRC )
  3403. goto errLabel;
  3404. if( cmVectArrayAdvance(p,groupIdx) != cmOkRC )
  3405. goto errLabel;
  3406. while( i<N && !cmVectArrayIsEOL(p) )
  3407. {
  3408. unsigned tn = cmVectArrayEleCount(p);
  3409. unsigned tv[tn];
  3410. // read the sub-vector
  3411. cmVectArrayGetU(p,tv,&tn);
  3412. assert( colIdx < tn );
  3413. // store the output value
  3414. if( colIdx < tn )
  3415. v[i++] = tv[colIdx];
  3416. cmVectArrayAdvance(p,groupCnt);
  3417. }
  3418. *vRef = v;
  3419. *vnRef = i;
  3420. errLabel:
  3421. p->cur = pos;
  3422. return rc;
  3423. }
  3424. cmRC_t cmVectArrayTest( cmCtx* ctx, const char* fn, bool genFl )
  3425. {
  3426. cmRC_t rc = cmOkRC;
  3427. cmVectArray_t* p = NULL;
  3428. if( fn == NULL || strlen(fn)==0 )
  3429. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Invalid test output file name.");
  3430. if( genFl )
  3431. {
  3432. unsigned flags = kSampleVaFl;
  3433. cmSample_t v[] = { 0, 1, 2, 3, 4, 5 };
  3434. if( (p = cmVectArrayAlloc(ctx,flags)) == NULL )
  3435. return cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array object allocation failed.");
  3436. if( cmVectArrayAppendS(p,v,1) != cmOkRC )
  3437. {
  3438. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 1 failed.");
  3439. goto errLabel;
  3440. }
  3441. if( cmVectArrayAppendS(p,v+1,2) != cmOkRC )
  3442. {
  3443. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 2 failed.");
  3444. goto errLabel;
  3445. }
  3446. if( cmVectArrayAppendS(p,v+3,3) != cmOkRC )
  3447. {
  3448. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector append 3 failed.");
  3449. goto errLabel;
  3450. }
  3451. if( cmVectArrayWrite(p,fn) != cmOkRC )
  3452. {
  3453. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Vector array write failed.");
  3454. goto errLabel;
  3455. }
  3456. //cmVectArrayForEachS(p,0,cmVectArrayEleCount(p),cmVectArrayForEachTextFuncS,&ctx->printRpt);
  3457. //if( cmVectArrayFree(&p) != cmOkRC )
  3458. //{
  3459. // rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vectory array release failed.");
  3460. // goto errLabel;
  3461. //}
  3462. }
  3463. else
  3464. {
  3465. if((p = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
  3466. {
  3467. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArray alloc from file failed.");
  3468. goto errLabel;
  3469. }
  3470. while(!cmVectArrayIsEOL(p))
  3471. {
  3472. unsigned n = cmVectArrayEleCount(p);
  3473. cmSample_t v[n];
  3474. if( cmVectArrayGetS(p,v,&n) != cmOkRC )
  3475. {
  3476. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"VectArrayGetS() failed.");
  3477. goto errLabel;
  3478. }
  3479. //cmVOS_PrintL("v:",NULL,1,n,v);
  3480. cmVectArrayAdvance(p,1);
  3481. }
  3482. // Test matrix reading
  3483. cmSample_t* m;
  3484. unsigned rn,cn;
  3485. if( cmVectArrayReadMatrixS(ctx, fn, &m, &rn, &cn ) != cmOkRC )
  3486. goto errLabel;
  3487. else
  3488. {
  3489. //cmVOS_PrintL("v:",NULL,rn,cn,m);
  3490. cmMemFree(m);
  3491. }
  3492. }
  3493. errLabel:
  3494. if( cmVectArrayFree(&p) != cmOkRC )
  3495. rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"The vector array release failed.");
  3496. return rc;
  3497. }
  3498. //-----------------------------------------------------------------------------------------------------------------------
  3499. cmWhFilt* cmWhFiltAlloc( cmCtx* c, cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
  3500. {
  3501. cmWhFilt* op = cmObjAlloc(cmWhFilt,c,p);
  3502. if( binCnt > 0 )
  3503. if( cmWhFiltInit(op,binCnt,binHz,coeff,maxHz) != cmOkRC )
  3504. cmWhFiltFree(&op);
  3505. return op;
  3506. }
  3507. cmRC_t cmWhFiltFree( cmWhFilt** pp )
  3508. {
  3509. cmRC_t rc = cmOkRC;
  3510. if( pp==NULL || *pp==NULL )
  3511. return rc;
  3512. cmWhFilt* p = *pp;
  3513. if((rc = cmWhFiltFinal(p)) != cmOkRC )
  3514. return rc;
  3515. cmMemFree(p->whM);
  3516. cmMemFree(p->whiV);
  3517. cmMemFree(p->iV);
  3518. cmObjFree(pp);
  3519. return rc;
  3520. }
  3521. cmRC_t cmWhFiltInit( cmWhFilt* p, unsigned binCnt, cmReal_t binHz, cmReal_t coeff, cmReal_t maxHz )
  3522. {
  3523. cmRC_t rc;
  3524. if((rc = cmWhFiltFinal(p)) != cmOkRC )
  3525. return rc;
  3526. p->binCnt = binCnt;
  3527. p->binHz = binHz;
  3528. p->bandCnt = maxHz == 0 ? 34 : ceil(log10(maxHz/229.0 + 1) * 21.4 - 1)-1;
  3529. if( p->bandCnt <= 0 )
  3530. return cmCtxRtCondition(&p->obj, cmInvalidArgRC, "Max. Hz too low to form any frequency bands.");
  3531. cmReal_t flV[ p->bandCnt ];
  3532. cmReal_t fcV[ p->bandCnt ];
  3533. cmReal_t fhV[ p->bandCnt ];
  3534. int i;
  3535. for(i=0; i<p->bandCnt; ++i)
  3536. {
  3537. fcV[i] = 229.0 * (pow(10.0,(i+2)/21.4) - 1.0);
  3538. flV[i] = i==0 ? 0 : fcV[i-1];
  3539. }
  3540. for(i=0; i<p->bandCnt-1; ++i)
  3541. fhV[i] = fcV[i+1];
  3542. fhV[p->bandCnt-1] = fcV[p->bandCnt-1] + (fcV[p->bandCnt-1] - fcV[p->bandCnt-2]);
  3543. //cmVOR_PrintL("flV",NULL,1,p->bandCnt,flV);
  3544. //cmVOR_PrintL("fcV",NULL,1,p->bandCnt,fcV);
  3545. //cmVOR_PrintL("fhV",NULL,1,p->bandCnt,fhV);
  3546. cmReal_t* tM = cmMemAlloc(cmReal_t,p->bandCnt * p->binCnt);
  3547. p->whM = cmMemResizeZ(cmReal_t,p->whM,p->binCnt * p->bandCnt);
  3548. p->iV = cmMemResizeZ(cmReal_t,p->iV,p->binCnt);
  3549. // generate the bin index values
  3550. for(i=0; i<p->binCnt; ++i)
  3551. p->iV[i] = i;
  3552. cmReal_t stSpread = 0; // set stSpread to 0 to use flV/fhV[]
  3553. cmVOR_TriangleMask(tM, p->bandCnt, p->binCnt, fcV, p->binHz, stSpread, flV, fhV );
  3554. cmVOR_Transpose(p->whM, tM, p->bandCnt, p->binCnt );
  3555. cmMemFree(tM);
  3556. //cmVOR_PrintL("whM",NULL,p->bandCnt,p->binCnt,p->whM);
  3557. //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whM.va", p->whM, p->binCnt, p->bandCnt );
  3558. unsigned whiN = p->bandCnt+2;
  3559. p->whiV = cmMemResizeZ(cmReal_t,p->whiV,whiN);
  3560. for(i=0; i<whiN; ++i)
  3561. {
  3562. if( i == 0 )
  3563. p->whiV[i] = 0;
  3564. else
  3565. if( i == whiN-1 )
  3566. p->whiV[i] = fhV[p->bandCnt-1]/binHz;
  3567. else
  3568. p->whiV[i] = fcV[i-1]/binHz;
  3569. }
  3570. //cmVOR_PrintL("whiV",NULL,1,whiN,p->whiV);
  3571. //cmVectArrayWriteMatrixR(p->obj.ctx, "/home/kevin/temp/frqtrk/whiV.va", p->whiV, whiN, 1 );
  3572. return rc;
  3573. }
  3574. cmRC_t cmWhFiltFinal( cmWhFilt* p )
  3575. { return cmOkRC; }
  3576. cmRC_t cmWhFiltExec( cmWhFilt* p, const cmReal_t* xV, cmReal_t* yV, unsigned xyN )
  3577. {
  3578. assert( xyN == p->binCnt);
  3579. cmRC_t rc = cmOkRC;
  3580. unsigned whiN = p->bandCnt + 2;
  3581. unsigned mbi = cmMin(xyN, floor(p->whiV[whiN-1]));
  3582. // calculate the level in each band to form a composite filter
  3583. cmReal_t y0V[ whiN ];
  3584. cmReal_t* b0V = y0V + 1;
  3585. cmVOR_MultVVM(b0V, p->bandCnt, xV, p->binCnt, p->whM );
  3586. //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
  3587. // BEWARE: zeros in b0V will generate Inf's when sent
  3588. // through the cmVOR_PowVS() function.
  3589. int i;
  3590. for(i=0; i<p->bandCnt; ++i)
  3591. if( b0V[i] < 0.000001 )
  3592. b0V[i] = 0.000001;
  3593. // apply a non-linear expansion function to each band
  3594. cmVOR_PowVS(b0V,p->bandCnt,p->coeff-1);
  3595. //cmVOR_PrintL("b0V",NULL,1,p->bandCnt,b0V);
  3596. // add edge values to the filter
  3597. y0V[0] = b0V[0];
  3598. y0V[whiN-1] = b0V[p->bandCnt-1];
  3599. //cmVOR_PrintL("y0V",NULL,1,whiN,y0V);
  3600. cmVOR_Interp1(yV,p->iV,p->binCnt,p->whiV,y0V,whiN);
  3601. cmVOR_Fill(yV+mbi,xyN-mbi,1.0);
  3602. //cmVOR_PrintL("yV",NULL,1,p->binCnt,yV);
  3603. cmVOR_MultVV(yV,xyN,xV);
  3604. return rc;
  3605. }
  3606. //-----------------------------------------------------------------------------------------------------------------------
  3607. cmFrqTrk* cmFrqTrkAlloc( cmCtx* c, cmFrqTrk* p, const cmFrqTrkArgs_t* a )
  3608. {
  3609. cmFrqTrk* op = cmObjAlloc(cmFrqTrk,c,p);
  3610. op->logVa = cmVectArrayAlloc(c,kRealVaFl);
  3611. op->levelVa = cmVectArrayAlloc(c,kRealVaFl);
  3612. op->specVa = cmVectArrayAlloc(c,kRealVaFl);
  3613. op->attenVa = cmVectArrayAlloc(c,kRealVaFl);
  3614. op->wf = cmWhFiltAlloc(c,NULL,0,0,0,0);
  3615. if( a != NULL )
  3616. if( cmFrqTrkInit(op,a) != cmOkRC )
  3617. cmFrqTrkFree(&op);
  3618. return op;
  3619. }
  3620. cmRC_t cmFrqTrkFree( cmFrqTrk** pp )
  3621. {
  3622. cmRC_t rc = cmOkRC;
  3623. if( pp==NULL || *pp==NULL )
  3624. return rc;
  3625. cmFrqTrk* p = *pp;
  3626. if((rc = cmFrqTrkFinal(p)) != cmOkRC )
  3627. return rc;
  3628. unsigned i;
  3629. for(i=0; i<p->a.chCnt; ++i)
  3630. {
  3631. cmMemFree(p->ch[i].dbV);
  3632. cmMemFree(p->ch[i].hzV);
  3633. }
  3634. cmMemFree(p->ch);
  3635. cmMemFree(p->dbM);
  3636. cmMemFree(p->pkiV);
  3637. cmMemFree(p->dbV);
  3638. cmMemFree(p->aV);
  3639. cmVectArrayFree(&p->logVa);
  3640. cmVectArrayFree(&p->levelVa);
  3641. cmVectArrayFree(&p->specVa);
  3642. cmVectArrayFree(&p->attenVa);
  3643. cmWhFiltFree(&p->wf);
  3644. cmMemFree(p->logFn);
  3645. cmMemFree(p->levelFn);
  3646. cmMemFree(p->specFn);
  3647. cmMemFree(p->attenFn);
  3648. cmObjFree(pp);
  3649. return rc;
  3650. }
  3651. cmRC_t cmFrqTrkInit( cmFrqTrk* p, const cmFrqTrkArgs_t* a )
  3652. {
  3653. cmRC_t rc;
  3654. if((rc = cmFrqTrkFinal(p)) != cmOkRC )
  3655. return rc;
  3656. p->a = *a;
  3657. p->ch = cmMemResizeZ(cmFrqTrkCh_t,p->ch,a->chCnt );
  3658. p->hN = cmMax(1,a->wndSecs * a->srate / a->hopSmpCnt );
  3659. p->sN = 4*p->hN;
  3660. p->binHz = a->srate / ((p->a.binCnt-1)*2);
  3661. p->bN = cmMin( p->a.binCnt, ceil(p->a.pkMaxHz / p->binHz ));
  3662. p->dbM = cmMemResizeZ(cmReal_t,p->dbM,p->hN*p->bN);
  3663. p->hi = 0;
  3664. p->fN = 0;
  3665. p->dbV = cmMemResizeZ(cmReal_t,p->dbV,p->bN);
  3666. p->pkiV = cmMemResizeZ(unsigned,p->pkiV,p->bN);
  3667. p->deadN_max = a->maxTrkDeadSec * a->srate / a->hopSmpCnt;
  3668. p->minTrkN = a->minTrkSec * a->srate / a->hopSmpCnt;
  3669. p->nextTrkId = 1;
  3670. p->aV = cmMemResizeZ(cmReal_t,p->aV,p->a.binCnt);
  3671. p->attenDlyPhsMax = cmMax(3,a->attenDlySec * a->srate / a->hopSmpCnt );
  3672. p->attenPhsMax = cmMax(3,a->attenAtkSec * a->srate / a->hopSmpCnt );
  3673. if( a->logFn != NULL )
  3674. p->logFn = cmMemResizeStr(p->logFn,a->logFn);
  3675. if( a->levelFn != NULL )
  3676. p->levelFn = cmMemResizeStr(p->levelFn,a->levelFn);
  3677. if( a->specFn != NULL )
  3678. p->specFn = cmMemResizeStr(p->specFn,a->specFn);
  3679. if( a->attenFn != NULL )
  3680. p->attenFn = cmMemResizeStr(p->attenFn,a->attenFn);
  3681. if(cmWhFiltInit(p->wf,p->bN,p->binHz,p->a.whFiltCoeff,p->a.pkMaxHz) != cmOkRC )
  3682. cmCtxRtCondition(&p->obj, cmSubSysFailRC, "Whitening filter intitialization failed.");
  3683. unsigned i;
  3684. for(i=0; i<p->a.chCnt; ++i)
  3685. {
  3686. p->ch[i].dbV = cmMemResizeZ(cmReal_t,p->ch[i].dbV,p->sN);
  3687. p->ch[i].hzV = cmMemResizeZ(cmReal_t,p->ch[i].hzV,p->sN);
  3688. }
  3689. return rc;
  3690. }
  3691. cmRC_t cmFrqTrkFinal( cmFrqTrk* p )
  3692. {
  3693. cmRC_t rc = cmOkRC;
  3694. if( p->logFn != NULL )
  3695. cmVectArrayWrite(p->logVa,p->logFn);
  3696. if( p->levelFn != NULL )
  3697. cmVectArrayWrite(p->levelVa,p->levelFn);
  3698. if( p->specFn != NULL )
  3699. cmVectArrayWrite(p->specVa,p->specFn);
  3700. if( p->attenFn != NULL )
  3701. cmVectArrayWrite(p->attenVa,p->attenFn);
  3702. cmWhFiltFinal(p->wf);
  3703. return rc;
  3704. }
  3705. // Return an available channel record or NULL if all channel records are in use.
  3706. cmFrqTrkCh_t* _cmFrqTrkFindAvailCh( cmFrqTrk* p )
  3707. {
  3708. unsigned i;
  3709. for(i=0; i<p->a.chCnt; ++i)
  3710. if( p->ch[i].activeFl == false )
  3711. return p->ch + i;
  3712. return NULL;
  3713. }
  3714. // Estimate the peak frequency by parabolic interpolotion into hzV[p->bN]
  3715. void _cmFrqTrkMagnToHz( cmFrqTrk* p, const cmReal_t* dbV, unsigned* pkiV, unsigned pkN, cmReal_t* hzV )
  3716. {
  3717. unsigned i;
  3718. for(i=0; i<pkN; ++i)
  3719. if( pkiV[i] != cmInvalidIdx )
  3720. {
  3721. unsigned pki = pkiV[i];
  3722. cmReal_t y0 = pki>0 ? dbV[ pki-1 ] : dbV[pki];
  3723. cmReal_t y1 = dbV[ pki ];
  3724. cmReal_t y2 = pki<p->bN-1 ? dbV[ pki+1 ] : dbV[pki];
  3725. cmReal_t den = y0 - (2.*y1) + y2;
  3726. cmReal_t offs = den==0 ? 0 : 0.5 * ((y0 - y2) / den);
  3727. hzV[pki] = p->binHz * (pki+offs);
  3728. //if( hzV[pki] < 0 )
  3729. //{
  3730. // printf("%f : %f %f %f : %f %f\n",hzV[pki],y0,y1,y2,den,offs);
  3731. //}
  3732. }
  3733. }
  3734. unsigned _cmFrqTrkActiveChCount( cmFrqTrk* p )
  3735. {
  3736. unsigned n = 0;
  3737. unsigned i;
  3738. for(i=0; i<p->a.chCnt; ++i)
  3739. if( p->ch[i].activeFl )
  3740. ++n;
  3741. return n;
  3742. }
  3743. void _cmFrqTrkWriteLevel( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned bN )
  3744. {
  3745. if( p->levelFn != NULL )
  3746. {
  3747. double maxHz = 5000.0;
  3748. unsigned maxBinIdx = cmMin(bN,maxHz / p->binHz);
  3749. unsigned vn = 3;
  3750. cmReal_t v[vn];
  3751. unsigned idx = cmVOR_MaxIndex(dbV,maxBinIdx,1);
  3752. v[0] = cmVOR_Mean(dbV,maxBinIdx);
  3753. v[1] = dbV[idx];
  3754. v[2] = hzV[idx];
  3755. cmVectArrayAppendR(p->levelVa,v,vn);
  3756. }
  3757. }
  3758. void _cmFrqTrkWriteLog( cmFrqTrk* p )
  3759. {
  3760. unsigned n;
  3761. cmReal_t* vb = NULL;
  3762. if( p->logFn == NULL )
  3763. return;
  3764. if((n = _cmFrqTrkActiveChCount(p)) > 0 )
  3765. {
  3766. unsigned i,j;
  3767. // sn = count of elements in the summary sub-vector
  3768. unsigned sn = 3;
  3769. // each active channel will emit 7 values
  3770. unsigned nn = 1 + n*7 + sn;
  3771. // allocate the row vector
  3772. vb = cmMemResize(cmReal_t,vb,nn);
  3773. // row format
  3774. // [ nn idV[n] hzV[n] ... hsV[n] smV[sn] ]
  3775. // n = (nn - (1 + sn)) / 7
  3776. *vb = nn; // the first element in the vector contains the length of the row
  3777. cmReal_t* v = vb + 1;
  3778. // setup the base pointer to each sub-vector
  3779. cmReal_t* idV = v + n * 0;
  3780. cmReal_t* hzV = v + n * 1;
  3781. cmReal_t* dbV = v + n * 2;
  3782. cmReal_t* stV = v + n * 3;
  3783. cmReal_t* dsV = v + n * 4;
  3784. cmReal_t* hsV = v + n * 5;
  3785. cmReal_t* agV = v + n * 6;
  3786. cmReal_t* smV = v + n * 7; // summary information
  3787. smV[0] = p->newTrkCnt;
  3788. smV[1] = p->curTrkCnt;
  3789. smV[2] = p->deadTrkCnt;
  3790. // for each active channel
  3791. for(i=0,j=0; i<p->a.chCnt; ++i)
  3792. if( p->ch[i].activeFl )
  3793. {
  3794. assert(j < n);
  3795. // elements of each sub-vector associated with a given
  3796. // index refer to the same track record - element i therefore
  3797. // refers to active track index i.
  3798. idV[j] = p->ch[i].id;
  3799. hzV[j] = p->ch[i].hz;
  3800. dbV[j] = p->ch[i].db;
  3801. stV[j] = p->ch[i].dN;
  3802. dsV[j] = p->ch[i].db_std;
  3803. hsV[j] = p->ch[i].hz_std;
  3804. agV[j] = p->ch[i].attenGain;
  3805. ++j;
  3806. }
  3807. cmVectArrayAppendR(p->logVa, vb, nn );
  3808. }
  3809. cmMemFree(vb);
  3810. }
  3811. void _cmFrqTrkPrintChs( const cmFrqTrk* p )
  3812. {
  3813. unsigned i;
  3814. for(i=0; i<p->a.chCnt; ++i)
  3815. {
  3816. cmFrqTrkCh_t* c = p->ch + i;
  3817. printf("%i : %i tN:%i hz:%f db:%f\n",i,c->activeFl,c->tN,c->hz,c->db);
  3818. }
  3819. }
  3820. // Used to sort the channels into descending dB order.
  3821. int _cmFrqTrkChCompare( const void* p0, const void* p1 )
  3822. { return ((cmFrqTrkCh_t*)p0)->db - ((cmFrqTrkCh_t*)p1)->db; }
  3823. // Return the index of the peak associated with pkiV[i] which best matches the tracker 'c'
  3824. // or cmInvalidIdx if no valid peaks were found.
  3825. // pkiV[ pkN ] holds the indexes into dbV[] and hzV[] which are peaks.
  3826. // Some elements of pkiV[] may be set to cmInvalidIdx if the associated peak has already
  3827. // been selected by another tracker.
  3828. unsigned _cmFrqTrkFindPeak( cmFrqTrk* p, const cmFrqTrkCh_t* c, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3829. {
  3830. unsigned i,pki;
  3831. cmReal_t d_max = p->a.pkThreshDb;
  3832. unsigned d_idx = cmInvalidIdx;
  3833. cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
  3834. cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
  3835. // find the peak with the most energy inside the frequency range hz_min to hz_max.
  3836. for(i=0; i<pkN; ++i)
  3837. if( ((pki = pkiV[i]) != cmInvalidIdx) && hz_min <= hzV[pki] && hzV[pki] <= hz_max && dbV[pki]>d_max )
  3838. {
  3839. d_max= dbV[pki];
  3840. d_idx = i;
  3841. }
  3842. return d_idx;
  3843. }
  3844. void _cmFrqTrkScoreChs( cmFrqTrk* p )
  3845. {
  3846. unsigned i;
  3847. for(i=0; i<p->a.chCnt; ++i)
  3848. if( p->ch[i].activeFl )
  3849. {
  3850. cmFrqTrkCh_t* c = p->ch + i;
  3851. c->dbV[ c->si ] = c->db;
  3852. c->hzV[ c->si ] = c->hz;
  3853. c->si = (c->si + 1) % p->sN;
  3854. c->sn += 1;
  3855. unsigned n = cmMin(c->sn,p->sN);
  3856. c->db_mean = cmVOR_Mean(c->dbV,n);
  3857. c->db_std = sqrt(cmVOR_Variance( c->dbV,n,&c->db_mean));
  3858. c->hz_mean = cmVOR_Mean(c->hzV,n);
  3859. c->hz_std = sqrt(cmVOR_Variance( c->hzV,n,&c->hz_mean));
  3860. //c->score = c->db / ((cmMax(0.1,c->db_std) + cmMax(0.1,c->hz_std))/2);
  3861. c->score = c->db - (c->db_std * 5) - (c->hz_std/50);
  3862. //printf("%f %f %f %f %f\n",c->db,cmMin(0.1,c->db_std),c->hz,cmMin(0.1,c->hz_std),c->score);
  3863. }
  3864. }
  3865. // Generate a filter that is wider for higher frequencies than lower frequencies.
  3866. unsigned _cmFrqTrkFillMap( cmFrqTrk* p, cmReal_t* map, unsigned maxN, cmReal_t hz )
  3867. {
  3868. assert( maxN % 2 == 1 );
  3869. unsigned i;
  3870. cmReal_t maxHz = p->a.srate/2;
  3871. unsigned mapN = cmMin(maxN,ceil(hz/maxHz * maxN));
  3872. if( mapN % 2 == 0 )
  3873. mapN += 1;
  3874. mapN = cmMin(maxN,mapN);
  3875. unsigned N = floor(mapN/2);
  3876. double COEFF = 0.3;
  3877. for(i=0; i<N; ++i)
  3878. {
  3879. map[i] = pow(((double)i+1)/(N+1),COEFF);
  3880. map[mapN-(i+1)] = map[i];
  3881. }
  3882. map[N] = 1.0;
  3883. return mapN;
  3884. }
  3885. void _cmFrqTrkApplyAtten( cmFrqTrk* p, cmReal_t* aV, cmReal_t gain, cmReal_t hz )
  3886. {
  3887. int cbi = cmMin(p->a.binCnt,cmMax(0,round(hz/p->binHz)));
  3888. //cmReal_t map[] = { .25, .5, 1, .5, .25 };
  3889. //int mapN = sizeof(map)/sizeof(map[0]);
  3890. unsigned maxN = 30; // must be odd
  3891. cmReal_t map[ maxN ];
  3892. int mapN = _cmFrqTrkFillMap(p, map, maxN, hz );
  3893. int j;
  3894. int ai = cbi - mapN/2;
  3895. for(j=0; j<mapN; ++j,++ai)
  3896. if( 0 <= ai && ai < p->a.binCnt )
  3897. aV[ai] *= 1.0 - (map[j] * gain);
  3898. }
  3899. void _cmFrqTrkUpdateFilter( cmFrqTrk* p )
  3900. {
  3901. unsigned i;
  3902. cmVOR_Fill(p->aV,p->a.binCnt,1.0);
  3903. for(i=0; i<p->a.chCnt; ++i)
  3904. if( p->ch[i].activeFl )
  3905. {
  3906. cmFrqTrkCh_t* c = p->ch + i;
  3907. //
  3908. if( c->score >= p->a.attenThresh && c->state == kNoStateFrqTrkId )
  3909. {
  3910. //printf("%f\n",c->score);
  3911. c->attenPhsIdx = 0;
  3912. c->state = kDlyFrqTrkId;
  3913. }
  3914. switch( c->state )
  3915. {
  3916. case kNoStateFrqTrkId:
  3917. break;
  3918. case kDlyFrqTrkId:
  3919. c->attenPhsIdx += 1;
  3920. if( c->attenPhsIdx >= p->attenDlyPhsMax && c->dN == 0 )
  3921. c->state = kAtkFrqTrkId;
  3922. break;
  3923. case kAtkFrqTrkId:
  3924. if( c->attenPhsIdx < p->attenDlyPhsMax + p->attenPhsMax )
  3925. {
  3926. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3927. _cmFrqTrkApplyAtten(p, p->aV, c->attenGain, c->hz);
  3928. }
  3929. c->attenPhsIdx += 1;
  3930. if( c->attenPhsIdx >= p->attenDlyPhsMax + p->attenPhsMax )
  3931. c->state = kSusFrqTrkId;
  3932. break;
  3933. case kSusFrqTrkId:
  3934. if( c->dN > 0 )
  3935. {
  3936. if( c->attenPhsIdx > 0 )
  3937. {
  3938. c->attenPhsIdx -= 1;
  3939. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3940. }
  3941. }
  3942. _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
  3943. if( c->dN >= p->deadN_max )
  3944. c->state = kDcyFrqTrkId;
  3945. break;
  3946. case kDcyFrqTrkId:
  3947. if( c->attenPhsIdx > 0 )
  3948. {
  3949. c->attenPhsIdx -= 1;
  3950. c->attenGain = cmMin(1.0,p->a.attenGain * c->attenPhsIdx / p->attenPhsMax);
  3951. _cmFrqTrkApplyAtten(p,p->aV, c->attenGain, c->hz);
  3952. }
  3953. if( c->attenPhsIdx == 0 )
  3954. c->activeFl = false;
  3955. break;
  3956. }
  3957. }
  3958. }
  3959. // Extend the existing trackers
  3960. void _cmFrqTrkExtendChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  3961. {
  3962. unsigned i;
  3963. p->curTrkCnt = 0;
  3964. p->deadTrkCnt = 0;
  3965. // sort the channels in descending order
  3966. qsort(p->ch,p->a.chCnt,sizeof(cmFrqTrkCh_t),_cmFrqTrkChCompare);
  3967. // for each active channel
  3968. for(i=0; i<p->a.chCnt; ++i)
  3969. {
  3970. cmFrqTrkCh_t* c = p->ch + i;
  3971. if( c->activeFl )
  3972. {
  3973. unsigned pki;
  3974. // find the best peak to extend tracker 'c'.
  3975. if((pki = _cmFrqTrkFindPeak(p,c,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
  3976. {
  3977. // no valid track was found to extend tracker 'c'
  3978. c->dN += 1;
  3979. c->tN += 1;
  3980. if( c->dN >= p->deadN_max )
  3981. {
  3982. if( c->attenPhsIdx == 0 )
  3983. c->activeFl = false;
  3984. p->deadTrkCnt += 1;
  3985. }
  3986. }
  3987. else // ... update the tracker using the matching peak
  3988. {
  3989. unsigned j = pkiV[pki];
  3990. c->dN = 0;
  3991. c->db = dbV[ j ];
  3992. c->hz = hzV[ j ];
  3993. c->tN += 1;
  3994. pkiV[pki] = cmInvalidIdx; // mark the peak as unavailable.
  3995. p->curTrkCnt += 1;
  3996. }
  3997. }
  3998. }
  3999. }
  4000. // disable peaks which are within 'stRange' semitones of the frequency of active trackers.
  4001. void _cmFrqTrkDisableClosePeaks( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  4002. {
  4003. unsigned i;
  4004. for(i=0; i<p->a.chCnt; ++i)
  4005. {
  4006. const cmFrqTrkCh_t* c = p->ch + i;
  4007. if( !c->activeFl )
  4008. continue;
  4009. cmReal_t hz_min = c->hz * pow(2,-p->a.stRange/12.0);
  4010. cmReal_t hz_max = c->hz * pow(2, p->a.stRange/12.0);
  4011. unsigned j;
  4012. // find all peaks within the frequency range hz_min to hz_max.
  4013. for(j=0; j<pkN; ++j)
  4014. if( pkiV[j] != cmInvalidIdx && hz_min <= c->hz && c->hz <= hz_max )
  4015. pkiV[j] = cmInvalidIdx;
  4016. }
  4017. }
  4018. // Return the index into pkiV[] of the maximum energy peak in dbV[]
  4019. // that is also above kAtkThreshDb.
  4020. unsigned _cmFrqTrkMaxEnergyPeakIndex( const cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, const unsigned* pkiV, unsigned pkN )
  4021. {
  4022. cmReal_t mv = p->a.pkAtkThreshDb;
  4023. unsigned mi = cmInvalidIdx;
  4024. unsigned i;
  4025. for(i=0; i<pkN; ++i)
  4026. if( pkiV[i] != cmInvalidIdx && dbV[pkiV[i]] >= mv && hzV[pkiV[i]] < p->a.pkMaxHz )
  4027. {
  4028. mi = i;
  4029. mv = dbV[pkiV[i]];
  4030. }
  4031. return mi;
  4032. }
  4033. // start new trackers
  4034. void _cmFrqTrkNewChs( cmFrqTrk* p, const cmReal_t* dbV, const cmReal_t* hzV, unsigned* pkiV, unsigned pkN )
  4035. {
  4036. p->newTrkCnt = 0;
  4037. while(1)
  4038. {
  4039. unsigned db_max_idx;
  4040. cmFrqTrkCh_t* c;
  4041. // find an inactive channel
  4042. if((c = _cmFrqTrkFindAvailCh(p)) == NULL )
  4043. break;
  4044. // find the largest peak that is above pkAtkThreshDb && less than pkAtkHz.
  4045. if((db_max_idx = _cmFrqTrkMaxEnergyPeakIndex(p,dbV,hzV,pkiV,pkN)) == cmInvalidIdx )
  4046. break;
  4047. // activate a new channel
  4048. c->activeFl = true;
  4049. c->tN = 1;
  4050. c->dN = 0;
  4051. c->hz = hzV[ pkiV[ db_max_idx ] ];
  4052. c->db = dbV[ pkiV[ db_max_idx ] ];
  4053. c->id = p->nextTrkId++;
  4054. c->si = 0;
  4055. c->sn = 0;
  4056. c->score = 0;
  4057. c->state = kNoStateFrqTrkId;
  4058. c->attenPhsIdx = cmInvalidIdx;
  4059. c->attenGain = 1.0;
  4060. // mark the peak as unavailable
  4061. pkiV[ db_max_idx ] = cmInvalidIdx;
  4062. p->newTrkCnt += 1;
  4063. }
  4064. }
  4065. void _cmFrqTrkApplyFrqBias( cmFrqTrk* p, cmReal_t* xV )
  4066. {
  4067. // convert to decibel scale (0.0 - 100.0) and then scale to (0.0 to 1.0)
  4068. unsigned i;
  4069. for(i=0; i<p->bN; ++i)
  4070. xV[i] = cmMax(0.0, (20*log10( cmMax(xV[i]/1.5,0.00001)) + 100.0)/100.0);
  4071. }
  4072. cmRC_t cmFrqTrkExec( cmFrqTrk* p, const cmReal_t* magV, const cmReal_t* phsV, const cmReal_t* hertzV )
  4073. {
  4074. cmRC_t rc = cmOkRC;
  4075. cmReal_t hzV[ p->bN ];
  4076. //cmReal_t powV[ p->bN ];
  4077. //cmReal_t yV[ p->bN];
  4078. //cmVOR_MultVVV(powV,p->bN,magV,magV);
  4079. //cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
  4080. // convert magV to Decibels
  4081. //cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
  4082. // copy p->dbV to dbM[hi,:]
  4083. //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
  4084. //cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, whV, 1 );
  4085. if( 1 )
  4086. {
  4087. cmReal_t powV[ p->bN ];
  4088. cmVOR_MultVVV(powV,p->bN,magV,magV);
  4089. cmWhFiltExec(p->wf,powV,p->dbV,p->bN);
  4090. _cmFrqTrkApplyFrqBias(p,p->dbV);
  4091. }
  4092. else
  4093. {
  4094. // convert magV to Decibels
  4095. cmVOR_AmplToDbVV(p->dbV,p->bN, magV, -200.0);
  4096. }
  4097. // copy p->dbV to dbM[hi,:]
  4098. cmVOR_CopyN(p->dbM + p->hi, p->bN, p->hN, p->dbV, 1 );
  4099. // increment hi to next column to fill in dbM[]
  4100. p->hi = (p->hi + 1) % p->hN;
  4101. // Set dbV[] to spectral magnitude profile by taking the mean over time
  4102. // of the last hN magnitude vectors
  4103. cmVOR_MeanM2(p->dbV, p->dbM, p->hN, p->bN, 0, cmMin(p->fN+1,p->hN));
  4104. //cmVOR_MeanM(p->dbV, p->dbM, p->hN, p->bN, 0);
  4105. if( p->fN >= p->hN )
  4106. {
  4107. // set pkiV[] to the indexes of the peaks above pkThreshDb in i0[]
  4108. unsigned pkN = cmVOR_PeakIndexes(p->pkiV, p->bN, p->dbV, p->bN, p->a.pkThreshDb );
  4109. // set hzV[] to the peak frequencies assoc'd with peaks at dbV[ pkiV[] ].
  4110. _cmFrqTrkMagnToHz(p, p->dbV, p->pkiV, pkN, hzV );
  4111. // extend the existing trackers
  4112. _cmFrqTrkExtendChs(p, p->dbV, hzV, p->pkiV, pkN );
  4113. //_cmFrqTrkDisableClosePeaks(p, p->dbV, hzV, p->pkiV, pkN );
  4114. // create new trackers
  4115. _cmFrqTrkNewChs(p,p->dbV,hzV,p->pkiV,pkN);
  4116. //
  4117. _cmFrqTrkScoreChs(p);
  4118. //
  4119. _cmFrqTrkUpdateFilter(p);
  4120. /*
  4121. // write the log file
  4122. _cmFrqTrkWriteLog(p);
  4123. // write the spectrum output file
  4124. if( p->specFn != NULL )
  4125. cmVectArrayAppendR(p->specVa,p->dbV,p->bN);
  4126. // write the atten output file
  4127. if( p->attenFn != NULL )
  4128. cmVectArrayAppendR(p->attenVa,p->aV,p->bN);
  4129. // write the the level file
  4130. _cmFrqTrkWriteLevel(p,p->dbV,hzV,p->bN);
  4131. */
  4132. }
  4133. p->fN += 1;
  4134. return rc;
  4135. }
  4136. void cmFrqTrkPrint( cmFrqTrk* p )
  4137. {
  4138. printf("srate: %f\n",p->a.srate);
  4139. printf("chCnt: %i\n",p->a.chCnt);
  4140. printf("binCnt: %i (bN=%i)\n",p->a.binCnt,p->bN);
  4141. printf("hopSmpCnt: %i\n",p->a.hopSmpCnt);
  4142. printf("stRange: %f\n",p->a.stRange);
  4143. printf("wndSecs: %f (%i)\n",p->a.wndSecs,p->hN);
  4144. printf("minTrkSec: %f (%i)\n",p->a.minTrkSec,p->minTrkN);
  4145. printf("maxTrkDeadSec: %f (%i)\n",p->a.maxTrkDeadSec,p->deadN_max);
  4146. printf("pkThreshDb: %f\n",p->a.pkThreshDb);
  4147. printf("pkAtkThreshDb: %f\n",p->a.pkAtkThreshDb);
  4148. }
  4149. //------------------------------------------------------------------------------------------------------------
  4150. cmFbCtl_t* cmFbCtlAlloc( cmCtx* c, cmFbCtl_t* ap, const cmFbCtlArgs_t* a )
  4151. {
  4152. cmFbCtl_t* p = cmObjAlloc( cmFbCtl_t, c, ap );
  4153. p->sva = cmVectArrayAlloc(c,kRealVaFl);
  4154. p->uva = cmVectArrayAlloc(c,kRealVaFl);
  4155. if( a != NULL )
  4156. {
  4157. if( cmFbCtlInit( p, a ) != cmOkRC )
  4158. cmFbCtlFree(&p);
  4159. }
  4160. return p;
  4161. }
  4162. cmRC_t cmFbCtlFree( cmFbCtl_t** pp )
  4163. {
  4164. if( pp == NULL || *pp == NULL )
  4165. return cmOkRC;
  4166. cmFbCtl_t* p = *pp;
  4167. cmVectArrayWrite(p->sva, "/home/kevin/temp/frqtrk/fb_ctl_s.va");
  4168. cmVectArrayWrite(p->uva, "/home/kevin/temp/frqtrk/fb_ctl_u.va");
  4169. cmMemFree(p->bM);
  4170. cmMemFree(p->rmsV);
  4171. cmVectArrayFree(&p->sva);
  4172. cmVectArrayFree(&p->uva);
  4173. cmObjFree(pp);
  4174. return cmOkRC;
  4175. }
  4176. cmRC_t cmFbCtlInit( cmFbCtl_t* p, const cmFbCtlArgs_t* a )
  4177. {
  4178. cmRC_t rc;
  4179. if((rc = cmFbCtlFinal(p)) != cmOkRC )
  4180. return rc;
  4181. double binHz = a->srate / ((a->binCnt-1)*2);
  4182. p->a = *a;
  4183. p->frmCnt = (a->bufMs * a->srate / 1000.0) /a->hopSmpCnt;
  4184. p->binCnt = cmMin(p->a.binCnt, a->maxHz/binHz);
  4185. p->bM = cmMemResizeZ(cmReal_t, p->bM, p->binCnt*p->frmCnt);
  4186. p->rmsV = cmMemResizeZ(cmReal_t, p->rmsV, p->frmCnt);
  4187. p->sV = cmMemResizeZ(cmReal_t, p->sV, p->binCnt);
  4188. p->uV = cmMemResizeZ(cmReal_t, p->uV, p->binCnt);
  4189. printf("cmFbCtl: frmCnt:%i binCnt:%i \n",p->frmCnt,p->binCnt);
  4190. return rc;
  4191. }
  4192. cmRC_t cmFbCtlFinal(cmFbCtl_t* p )
  4193. { return cmOkRC; }
  4194. cmRC_t cmFbCtlExec( cmFbCtl_t* p, const cmReal_t* x0V )
  4195. {
  4196. unsigned i;
  4197. cmRC_t rc = cmOkRC;
  4198. cmReal_t xV[ p->binCnt ];
  4199. cmVOR_AmplToDbVV(xV, p->binCnt, x0V, -1000.0 );
  4200. cmVOR_Shift( p->rmsV, p->frmCnt, -1, 0 );
  4201. p->rmsV[0] = cmVOR_Mean(xV,p->binCnt);
  4202. cmVOR_CopyN(p->bM + p->bfi, p->binCnt, p->frmCnt, xV, 1 );
  4203. p->bfi = (p->bfi + 1) % p->frmCnt;
  4204. p->bfN = cmMin(p->bfN+1,p->frmCnt);
  4205. for(i=0; i<p->binCnt; ++i)
  4206. {
  4207. const cmReal_t* v = p->bM + i * p->frmCnt;
  4208. cmReal_t u = cmVOR_Mean(v, p->bfN );
  4209. cmReal_t s = sqrt(cmVOR_Variance(v, p->bfN,&u));
  4210. p->sV[i] = (0.0002 - s);
  4211. p->uV[i] = u;
  4212. }
  4213. cmVectArrayAppendR(p->sva,p->sV,p->binCnt);
  4214. cmVectArrayAppendR(p->uva,p->uV,p->binCnt);
  4215. return rc;
  4216. }
  4217. //=======================================================================================================================
  4218. cmExpander* cmExpanderAlloc( cmCtx* c, cmExpander* p,
  4219. double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
  4220. double threshMs, double rmsMs, double atkMs, double rlsMs )
  4221. {
  4222. cmExpander* op = cmObjAlloc(cmExpander,c,p);
  4223. if( srate > 0 )
  4224. if( cmExpanderInit(op,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
  4225. cmExpanderFree(&op);
  4226. return op;
  4227. }
  4228. cmRC_t cmExpanderFree( cmExpander** pp )
  4229. {
  4230. cmRC_t rc = cmOkRC;
  4231. if( pp==NULL || *pp==NULL )
  4232. return rc;
  4233. cmExpander* p = *pp;
  4234. if((rc = cmExpanderFinal(p)) != cmOkRC )
  4235. return rc;
  4236. cmMemFree(p->rmsV);
  4237. cmMemFree(p->envV);
  4238. cmObjFree(pp);
  4239. return rc;
  4240. }
  4241. cmRC_t cmExpanderInit( cmExpander* p,
  4242. double srate, unsigned procSmpCnt, double threshDb, double rlsDb,
  4243. double threshMs, double rmsMs, double atkMs, double rlsMs )
  4244. {
  4245. cmRC_t rc;
  4246. unsigned i;
  4247. if((rc = cmExpanderFinal(p)) != cmOkRC )
  4248. return rc;
  4249. unsigned atkN = cmMax(1,ceil( atkMs / (srate * 1000.0)));
  4250. unsigned rlsN = cmMax(1,ceil( rlsMs / (srate * 1000.0)));
  4251. p->rmsN = cmMax(1,ceil(rmsMs / (srate * 1000.0)));
  4252. p->rmsV = cmMemResizeZ(cmReal_t,p->rmsV,p->rmsN);
  4253. p->rmsIdx = 0;
  4254. p->envN = atkN + rlsN;
  4255. p->envV = cmMemResizeZ(cmSample_t,p->envV,p->envN);
  4256. p->envIdx = p->envN;
  4257. p->threshN = cmMax(1,ceil(threshMs / (srate * 1000.0)));
  4258. p->threshIdx = 0;
  4259. p->threshLvl = pow(10.0,(threshDb/20.0));
  4260. p->rlsLvl = pow(10.0,(rlsDb/20.0));
  4261. p->gain = 1.0;
  4262. p->atkCnt = 0;
  4263. cmSample_t G = (1.0 - p->rlsLvl);
  4264. for(i=0; i<atkN; ++i)
  4265. {
  4266. p->envV[i] = 1.0 - G*i/atkN;
  4267. }
  4268. for(i=0; i<rlsN; ++i)
  4269. {
  4270. p->envV[atkN+i] = p->rlsLvl + (G*i/rlsN);
  4271. }
  4272. //printf("rmsN:%i atkN:%i rlsN:%i thr:%f %f rls:%f %f\n",p->rmsN,atkN,rlsN,threshDb,p->threshLvl,rlsDb,p->rlsLvl);
  4273. //for(i=0; i<p->envN; ++i)
  4274. // printf("%i %f\n",i,p->envV[i]);
  4275. //printf("\n");
  4276. return cmOkRC;
  4277. }
  4278. cmRC_t cmExpanderFinal( cmExpander* p )
  4279. { return cmOkRC; }
  4280. cmRC_t cmExpanderExec( cmExpander* p, cmSample_t* x, cmSample_t* y, unsigned xyN )
  4281. {
  4282. unsigned i;
  4283. // update the RMS buffer
  4284. for(i=0; i<xyN; ++i)
  4285. {
  4286. // NOTE: using abs() instead of pow(x,2)
  4287. p->rmsV[p->rmsIdx] = fabsf(x[i]);
  4288. if( ++p->rmsIdx >= p->rmsN )
  4289. p->rmsIdx = 0;
  4290. }
  4291. // calculate the RMS
  4292. double rms = cmVOR_Mean(p->rmsV,p->rmsN);
  4293. // update the duration that the signal has been above the threshold
  4294. if( rms > p->threshLvl )
  4295. p->threshIdx += 1;
  4296. else
  4297. p->threshIdx = 0;
  4298. // begin the atk phase?
  4299. if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
  4300. {
  4301. p->envIdx = 0;
  4302. }
  4303. // update the output
  4304. if( p->envIdx >= p->envN )
  4305. {
  4306. if( y != NULL )
  4307. cmVOS_Copy(y,xyN,x);
  4308. }
  4309. else
  4310. {
  4311. if( y == NULL )
  4312. y = x;
  4313. for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
  4314. y[i] = p->envV[p->envIdx] * x[i];
  4315. }
  4316. return cmOkRC;
  4317. }
  4318. cmRC_t cmExpanderExecD( cmExpander* p, double* x, double* y, unsigned xyN )
  4319. {
  4320. unsigned i;
  4321. // update the RMS buffer
  4322. for(i=0; i<xyN; ++i)
  4323. {
  4324. // NOTE: using abs() instead of pow(x,2)
  4325. p->rmsV[p->rmsIdx] = x[i];
  4326. p->rmsIdx += 1;
  4327. if( p->rmsIdx >= p->rmsN )
  4328. p->rmsIdx = 0;
  4329. }
  4330. // calculate the RMS
  4331. p->rmsValue = cmVOR_Mean(p->rmsV,p->rmsN);
  4332. // update the duration that the signal has been above the threshold
  4333. if( p->rmsValue > p->threshLvl )
  4334. p->threshIdx += 1;
  4335. else
  4336. p->threshIdx = 0;
  4337. // begin the atk phase?
  4338. if( p->threshIdx > p->threshN && p->envIdx >= p->envN )
  4339. {
  4340. p->envIdx = 0;
  4341. p->atkCnt += 1;
  4342. }
  4343. /*
  4344. if( p->envIdx >= p->envN )
  4345. p->gain = 1.0;
  4346. else
  4347. {
  4348. p->gain = p->envV[p->envIdx];
  4349. p->envIdx += 1;
  4350. }
  4351. */
  4352. // update the output
  4353. if( p->envIdx >= p->envN )
  4354. {
  4355. if( y != NULL )
  4356. cmVOD_Copy(y,xyN,x);
  4357. }
  4358. else
  4359. {
  4360. if( y == NULL )
  4361. y = x;
  4362. for(i=0; i<xyN && p->envIdx<p->envN; ++i,++p->envIdx)
  4363. y[i] = p->envV[p->envIdx] * x[i];
  4364. }
  4365. return cmOkRC;
  4366. }
  4367. //=======================================================================================================================
  4368. cmExpanderBank* cmExpanderBankAlloc( cmCtx* c, cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
  4369. {
  4370. cmExpanderBank* op = cmObjAlloc(cmExpanderBank,c,p);
  4371. if( bandN > 0 )
  4372. if( cmExpanderBankInit(op,bandN,srate, procSmpCnt, threshDb, rlsDb, threshMs, rmsMs, atkMs, rlsMs) != cmOkRC )
  4373. cmExpanderBankFree(&op);
  4374. return op;
  4375. }
  4376. cmRC_t cmExpanderBankFree( cmExpanderBank** pp )
  4377. {
  4378. cmRC_t rc = cmOkRC;
  4379. if( pp==NULL || *pp==NULL )
  4380. return rc;
  4381. cmExpanderBank* p = *pp;
  4382. if((rc = cmExpanderBankFinal(p)) != cmOkRC )
  4383. return rc;
  4384. cmMemFree(p->b);
  4385. cmObjFree(pp);
  4386. return rc;
  4387. }
  4388. cmRC_t cmExpanderBankInit( cmExpanderBank* p, unsigned bandN, double srate, unsigned procSmpCnt, double threshDb, double rlsDb, double threshMs, double rmsMs, double atkMs, double rlsMs )
  4389. {
  4390. cmRC_t rc;
  4391. unsigned i;
  4392. if((rc = cmExpanderBankFinal(p)) != cmOkRC )
  4393. return rc;
  4394. p->bandN = bandN;
  4395. p->b = cmMemResizeZ(cmExpander*,p->b,p->bandN);
  4396. for(i=0; i<bandN; ++i)
  4397. p->b[i] = cmExpanderAlloc(p->obj.ctx,NULL,srate, procSmpCnt,threshDb,rlsDb,threshMs,rmsMs,atkMs,rlsMs);
  4398. return cmOkRC;
  4399. }
  4400. cmRC_t cmExpanderBankFinal( cmExpanderBank* p )
  4401. {
  4402. unsigned i;
  4403. for(i=0; i<p->bandN; ++i)
  4404. cmExpanderFree(&p->b[i]);
  4405. return cmOkRC;
  4406. }
  4407. cmRC_t cmExpanderBankExec( cmExpanderBank* p, cmSample_t* x, unsigned bandN )
  4408. {
  4409. assert( bandN <= p->bandN);
  4410. unsigned i;
  4411. for(i=0; i<bandN; ++i)
  4412. {
  4413. cmExpanderExec(p->b[i],&x[i],NULL,1);
  4414. }
  4415. return cmOkRC;
  4416. }
  4417. /*
  4418. cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned binN )
  4419. {
  4420. unsigned i;
  4421. p->rmsValue = 0;
  4422. for(i=0; i<p->bandN; ++i)
  4423. {
  4424. double sum = cmVOD_Sum(x,binN);
  4425. cmExpanderExecD(p->b[i],&sum,NULL,1);
  4426. //printf("%f %f\n",sum, p->b[i]->rmsValue);
  4427. p->rmsValue += p->b[i]->rmsValue;
  4428. cmVOR_MultVS(x,binN,p->b[i]->gain);
  4429. }
  4430. p->rmsValue /= p->bandN;
  4431. return cmOkRC;
  4432. }
  4433. */
  4434. cmRC_t cmExpanderBankExecD( cmExpanderBank* p, double* x, unsigned bandN )
  4435. {
  4436. unsigned i;
  4437. //unsigned n = 3;
  4438. //unsigned no2 = n/2;
  4439. double xx;
  4440. p->rmsValue = 0;
  4441. p->atkCnt = 0;
  4442. for(i=0; i<p->bandN; ++i)
  4443. {
  4444. unsigned atkCnt = p->b[i]->atkCnt;
  4445. //if( i >= no2 && i < bandN-no2 )
  4446. // xx = cmVOR_Mean(x-no2,n);
  4447. //else
  4448. xx = x[i];
  4449. cmExpanderExecD(p->b[i],&xx,NULL,1);
  4450. p->rmsValue += p->b[i]->rmsValue;
  4451. p->atkCnt += p->b[i]->atkCnt != atkCnt;
  4452. }
  4453. p->rmsValue /= p->bandN;
  4454. return cmOkRC;
  4455. }
  4456. //------------------------------------------------------------------------------------------------------------
  4457. cmSpecDist_t* cmSpecDistAlloc( cmCtx* ctx,cmSpecDist_t* ap, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
  4458. {
  4459. cmSpecDist_t* p = cmObjAlloc( cmSpecDist_t, ctx, ap );
  4460. //p->iSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
  4461. //p->oSpecVa = cmVectArrayAlloc(ctx,kRealVaFl);
  4462. p->statVa = cmVectArrayAlloc(ctx,kDoubleVaFl);
  4463. if( procSmpCnt != 0 )
  4464. {
  4465. if( cmSpecDistInit( p, procSmpCnt, srate, wndSmpCnt, hopFcmt, olaWndTypeId ) != cmOkRC )
  4466. cmSpecDistFree(&p);
  4467. }
  4468. return p;
  4469. }
  4470. cmRC_t cmSpecDistFree( cmSpecDist_t** pp )
  4471. {
  4472. if( pp == NULL || *pp == NULL )
  4473. return cmOkRC;
  4474. cmSpecDist_t* p = *pp;
  4475. cmSpecDistFinal(p);
  4476. //cmVectArrayFree(&p->iSpecVa);
  4477. //cmVectArrayFree(&p->oSpecVa);
  4478. cmVectArrayFree(&p->statVa);
  4479. cmMemPtrFree(&p->hzV);
  4480. cmMemPtrFree(&p->iSpecM);
  4481. cmMemPtrFree(&p->oSpecM);
  4482. cmMemPtrFree(&p->iSpecV);
  4483. cmMemPtrFree(&p->oSpecV);
  4484. cmObjFree(pp);
  4485. return cmOkRC;
  4486. }
  4487. cmRC_t cmSpecDistInit( cmSpecDist_t* p, unsigned procSmpCnt, double srate, unsigned wndSmpCnt, unsigned hopFcmt, unsigned olaWndTypeId )
  4488. {
  4489. //cmFrqTrkArgs_t fta;
  4490. cmRC_t rc;
  4491. if((rc = cmSpecDistFinal(p)) != cmOkRC )
  4492. return rc;
  4493. unsigned flags = 0;
  4494. p->srate = srate;
  4495. p->wndSmpCnt = wndSmpCnt;
  4496. p->hopSmpCnt = (unsigned)floor(wndSmpCnt/hopFcmt);
  4497. p->procSmpCnt = procSmpCnt;
  4498. p->mode = kBasicModeSdId;
  4499. p->thresh = 60;
  4500. p->offset = 0;
  4501. p->invertFl = false;
  4502. p->uprSlope = 0.0;
  4503. p->lwrSlope = 2.0;
  4504. p->pva = cmPvAnlAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, flags );
  4505. p->pvs = cmPvSynAlloc( p->obj.ctx, NULL, procSmpCnt, srate, wndSmpCnt, p->hopSmpCnt, olaWndTypeId );
  4506. /*
  4507. fta.srate = srate;
  4508. fta.chCnt = 50;
  4509. fta.binCnt = p->pva->binCnt;
  4510. fta.hopSmpCnt = p->pva->hopSmpCnt;
  4511. fta.stRange = 0.25;
  4512. fta.wndSecs = 0.25;
  4513. fta.minTrkSec = 0.25;
  4514. fta.maxTrkDeadSec = 0.25;
  4515. fta.pkThreshDb = 0.1; //-110.0;
  4516. fta.pkAtkThreshDb = 0.4; //-60.0;
  4517. fta.pkMaxHz = 20000;
  4518. fta.whFiltCoeff = 0.33;
  4519. fta.attenThresh = 0.4;
  4520. fta.attenGain = 0.5;
  4521. fta.attenDlySec = 1.0;
  4522. fta.attenAtkSec = 1.0;
  4523. fta.logFn = "/home/kevin/temp/frqtrk/trk_log.va";
  4524. fta.levelFn = "/home/kevin/temp/frqtrk/level.va";
  4525. fta.specFn = "/home/kevin/temp/frqtrk/spec.va";
  4526. fta.attenFn = "/home/kevin/temp/frqtrk/atten.va";
  4527. */
  4528. //p->ft = cmFrqTrkAlloc( p->obj.ctx, NULL, &fta );
  4529. /*
  4530. cmFbCtlArgs_t fba;
  4531. fba.srate = srate;
  4532. fba.binCnt = p->pva->binCnt;
  4533. fba.hopSmpCnt = p->hopSmpCnt;
  4534. fba.bufMs = 500;
  4535. fba.maxHz = 5000;
  4536. */
  4537. //p->fbc = cmFbCtlAlloc( p->obj.ctx, NULL, &fba );
  4538. //unsigned expBandN = 1; //
  4539. unsigned expBandN = 20000.0 / (p->srate / p->pva->binCnt);
  4540. double expSrate = p->pva->hopSmpCnt / srate;
  4541. unsigned expProcSmpCnt = 1;
  4542. double expThreshDb = -80.0;
  4543. double expRlsDb = -18.0;
  4544. double expThreshMs = 250.0;
  4545. double expRmsMs = 100.0;
  4546. double expAtkMs = 25.0;
  4547. double expRlsMs = 1000.0;
  4548. p->exb = cmExpanderBankAlloc( p->obj.ctx, NULL, expBandN, expSrate, expProcSmpCnt, expThreshDb, expRlsDb, expThreshMs, expRmsMs, expAtkMs, expRlsMs );
  4549. p->spcBwHz = cmMin(srate/2,10000);
  4550. p->spcSmArg = 0.05;
  4551. p->spcMin = p->spcBwHz;
  4552. p->spcMax = 0.0;
  4553. p->spcSum = 0.0;
  4554. p->spcCnt = 0;
  4555. double binHz = srate / p->pva->wndSmpCnt;
  4556. p->spcBinCnt = (unsigned)floor(p->spcBwHz / binHz);
  4557. p->hzV = cmMemResizeZ(cmReal_t,p->hzV,p->spcBinCnt);
  4558. cmVOR_Seq( p->hzV, p->spcBinCnt, 0, 1 );
  4559. cmVOR_MultVS( p->hzV, p->spcBinCnt, binHz );
  4560. p->aeUnit = 0;
  4561. p->aeMin = 1000;
  4562. p->aeMax = -1000;
  4563. double histSecs = 0.05;
  4564. p->hN = cmMax(1,histSecs * p->srate / p->hopSmpCnt );
  4565. p->iSpecM = cmMemResizeZ(cmReal_t,p->iSpecM,p->hN*p->pva->binCnt);
  4566. p->oSpecM = cmMemResizeZ(cmReal_t,p->oSpecM,p->hN*p->pva->binCnt);
  4567. p->iSpecV = cmMemResizeZ(cmReal_t,p->iSpecV, p->pva->binCnt);
  4568. p->oSpecV = cmMemResizeZ(cmReal_t,p->oSpecV, p->pva->binCnt);
  4569. p->hi = 0;
  4570. //p->bypOut = cmMemResizeZ(cmSample_t, p->bypOut, procSmpCnt );
  4571. return rc;
  4572. }
  4573. cmRC_t cmSpecDistFinal(cmSpecDist_t* p )
  4574. {
  4575. cmRC_t rc = cmOkRC;
  4576. //cmVectArrayWrite(p->iSpecVa, "/home/kevin/temp/frqtrk/iSpec.va");
  4577. //cmVectArrayWrite(p->oSpecVa, "/home/kevin/temp/expand/oSpec.va");
  4578. //cmVectArrayWrite(p->statVa, "/Users/kevin/temp/kc/state.va");
  4579. cmPvAnlFree(&p->pva);
  4580. cmPvSynFree(&p->pvs);
  4581. //cmFrqTrkFree(&p->ft);
  4582. //cmFbCtlFree(&p->fbc);
  4583. cmExpanderBankFree(&p->exb);
  4584. return rc;
  4585. }
  4586. void _cmSpecDistBasicMode0(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
  4587. {
  4588. // octavez> thresh = 60;
  4589. // octave> X1m = [-62 -61 -60 -59];
  4590. // octave> -abs(abs(X1m+thresh)-(X1m+thresh)) - thresh
  4591. // octave> ans = -64 -62 -60 -60
  4592. /*
  4593. unsigned i=0;
  4594. for(i=0; i<binCnt; ++i)
  4595. {
  4596. cmReal_t a = fabs(X1m[i]);
  4597. cmReal_t d = a - thresh;
  4598. X1m[i] = -thresh;
  4599. if( d > 0 )
  4600. X1m[i] -= 2*d;
  4601. }
  4602. */
  4603. unsigned i=0;
  4604. for(i=0; i>binCnt; ++i)
  4605. {
  4606. X1m[i] = -fabs(fabs(X1m[i]-thresh) - (X1m[i]-thresh)) - thresh;
  4607. }
  4608. }
  4609. void _cmSpecDistBasicMode(cmSpecDist_t* p, cmReal_t* X1m, unsigned binCnt, cmReal_t thresh )
  4610. {
  4611. unsigned i=0;
  4612. if( p->lwrSlope < 0.3 )
  4613. p->lwrSlope = 0.3;
  4614. for(i=0; i<binCnt; ++i)
  4615. {
  4616. cmReal_t a = fabs(X1m[i]);
  4617. cmReal_t d = a - thresh;
  4618. X1m[i] = -thresh;
  4619. if( d > 0 )
  4620. X1m[i] -= (p->lwrSlope*d);
  4621. else
  4622. X1m[i] -= (p->uprSlope*d);
  4623. }
  4624. }
  4625. cmReal_t _cmSpecDistCentMode( cmSpecDist_t* p, cmReal_t* X1m )
  4626. {
  4627. // calc the spectral centroid
  4628. double num = cmVOR_MultSumVV( p->pva->magV, p->hzV, p->spcBinCnt );
  4629. double den = cmVOR_Sum( p->pva->magV, p->spcBinCnt );
  4630. double result = 0;
  4631. if( den != 0 )
  4632. result = num/den;
  4633. // apply smoothing filter to spectral centroid
  4634. p->spc = (result * p->spcSmArg) + (p->spc * (1.0-p->spcSmArg));
  4635. // track spec. cetr. min and max
  4636. p->spcMin = cmMin(p->spcMin,p->spc);
  4637. p->spcMax = cmMax(p->spcMax,p->spc);
  4638. //-----------------------------------------------------
  4639. ++p->spcCnt;
  4640. p->spcSum += p->spc;
  4641. p->spcSqSum += p->spc * p->spc;
  4642. // use the one-pass std-dev calc. trick
  4643. //double mean = p->spcSum / p->spcCnt;
  4644. //double variance = p->spcSqSum / p->spcCnt - mean * mean;
  4645. //double std_dev = sqrt(variance);
  4646. double smin = p->spcMin;
  4647. double smax = p->spcMax;
  4648. //smin = mean - std_dev;
  4649. //smax = mean + std_dev;
  4650. //-----------------------------------------------------
  4651. // convert spec. cent. to unit range
  4652. double spcUnit = (p->spc - smin) / (smax - smin);
  4653. spcUnit = cmMin(1.0,cmMax(0.0,spcUnit));
  4654. if( p->invertFl )
  4655. spcUnit = 1.0 - spcUnit;
  4656. //if( p->spcMin==p->spc || p->spcMax==p->spc )
  4657. // printf("min:%f avg:%f sd:%f max:%f\n",p->spcMin,p->spcSum/p->spcCnt,std_dev,p->spcMax);
  4658. return spcUnit;
  4659. }
  4660. void _cmSpecDistBump( cmSpecDist_t* p, cmReal_t* x, unsigned binCnt, double thresh)
  4661. {
  4662. /*
  4663. thresh *= -1;
  4664. minDb = -100;
  4665. if db < minDb
  4666. db = minDb;
  4667. endif
  4668. if db > thresh
  4669. y = 1;
  4670. else
  4671. x = (minDb - db)/(minDb - thresh);
  4672. y = x + (x - (x.^coeff));
  4673. endif
  4674. y = minDb + abs(minDb) * y;
  4675. */
  4676. unsigned i=0;
  4677. //printf("%f %f %f\n",thresh,p->lwrSlope,x[0]);
  4678. double minDb = -100.0;
  4679. thresh = -thresh;
  4680. for(i=0; i<binCnt; ++i)
  4681. {
  4682. double y;
  4683. if( x[i] < minDb )
  4684. x[i] = minDb;
  4685. if( x[i] > thresh )
  4686. y = 1;
  4687. else
  4688. {
  4689. y = (minDb - x[i])/(minDb - thresh);
  4690. y += y - pow(y,p->lwrSlope);
  4691. }
  4692. x[i] = minDb + (-minDb) * y;
  4693. }
  4694. }
  4695. void _cmSpecDistAmpEnvMode( cmSpecDist_t* p, cmReal_t* X1m )
  4696. {
  4697. cmReal_t smCoeff = 0.1;
  4698. //
  4699. cmReal_t mx = cmVOR_Max(X1m,p->pva->binCnt,1);
  4700. p->aeSmMax = (mx * smCoeff) + (p->aeSmMax * (1.0-smCoeff));
  4701. cmReal_t a = cmVOR_Mean(X1m,p->pva->binCnt);
  4702. p->ae = (a * smCoeff) + (p->ae * (1.0-smCoeff));
  4703. p->aeMin = cmMin(p->ae,p->aeMin);
  4704. p->aeMax = cmMax(p->ae,p->aeMax);
  4705. p->aeUnit = (p->ae - p->aeMin) / (p->aeMax-p->aeMin);
  4706. p->aeUnit = cmMin(1.0,cmMax(0.0,p->aeUnit));
  4707. if( p->invertFl )
  4708. p->aeUnit = 1.0 - p->aeUnit;
  4709. //printf("%f\n",p->aeSmMax);
  4710. }
  4711. void _cmSpecDistPhaseMod( cmSpecDist_t* p, cmReal_t* phsV, unsigned binCnt )
  4712. {
  4713. unsigned i;
  4714. cmReal_t offs = sin( 0.1 * 2.0 * M_PI * (p->phaseModIndex++) / (p->srate/p->hopSmpCnt) );
  4715. //printf("offs %f %i %i %f\n",offs,p->phaseModIndex,p->hopSmpCnt,p->srate);
  4716. cmReal_t new_phs = phsV[0] + offs;
  4717. for(i=0; i<binCnt-1; ++i)
  4718. {
  4719. while( new_phs > M_PI )
  4720. new_phs -= 2.0*M_PI;
  4721. while( new_phs < -M_PI )
  4722. new_phs += 2.0*M_PI;
  4723. cmReal_t d = phsV[i+1] - phsV[i];
  4724. phsV[i] = new_phs;
  4725. new_phs += d;
  4726. }
  4727. }
  4728. cmRC_t cmSpecDistExec( cmSpecDist_t* p, const cmSample_t* sp, unsigned sn )
  4729. {
  4730. assert( sn == p->procSmpCnt );
  4731. bool recordFl = false;
  4732. // cmPvAnlExec() returns true when it calc's a new spectral output frame
  4733. if( cmPvAnlExec( p->pva, sp, sn ) )
  4734. {
  4735. cmReal_t X1m[p->pva->binCnt];
  4736. // take the mean of the the input magntitude spectrum
  4737. cmReal_t u0 = cmVOR_Mean(p->pva->magV,p->pva->binCnt);
  4738. if(recordFl)
  4739. {
  4740. // store a time windowed average of the input spectrum to p->iSpecV
  4741. cmVOR_CopyN(p->iSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
  4742. cmVOR_MeanM2(p->iSpecV, p->iSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
  4743. }
  4744. cmVOR_PowVS(X1m,p->pva->binCnt,2.0);
  4745. cmVOR_AmplToDbVV(X1m, p->pva->binCnt, p->pva->magV, -1000.0 );
  4746. //cmVOR_AmplToDbVV(X1m, p->pva->binCnt, X1m, -1000.0 );
  4747. switch( p->mode )
  4748. {
  4749. case kBypassModeSdId:
  4750. break;
  4751. case kBasicModeSdId:
  4752. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
  4753. break;
  4754. case kSpecCentSdId:
  4755. {
  4756. _cmSpecDistAmpEnvMode(p,X1m);
  4757. double spcUnit = _cmSpecDistCentMode(p,X1m);
  4758. double thresh = fabs(p->aeSmMax) - (spcUnit*p->offset);
  4759. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
  4760. }
  4761. break;
  4762. case kAmpEnvSdId:
  4763. {
  4764. _cmSpecDistAmpEnvMode(p,X1m);
  4765. //double thresh = fabs(p->aeSmMax) - p->offset;
  4766. double thresh = fabs(p->aeSmMax) - (p->aeUnit*p->offset);
  4767. thresh = fabs(p->thresh) - (p->aeUnit*p->offset);
  4768. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt, thresh);
  4769. }
  4770. break;
  4771. case kBumpSdId:
  4772. _cmSpecDistBump(p,X1m, p->pva->binCnt, p->offset);
  4773. _cmSpecDistBasicMode(p,X1m,p->pva->binCnt,p->thresh);
  4774. break;
  4775. case 5:
  4776. break;
  4777. default:
  4778. break;
  4779. }
  4780. cmVOR_DbToAmplVV(X1m, p->pva->binCnt, X1m );
  4781. // run and apply the tracker/supressor
  4782. //cmFrqTrkExec(p->ft, X1m, p->pva->phsV, NULL );
  4783. //cmVOR_MultVV(X1m, p->pva->binCnt,p->ft->aV );
  4784. // convert the mean input magnitude to db
  4785. cmReal_t idb = 20*log10(u0);
  4786. // get the mean output magnitude spectra
  4787. cmReal_t u1 = cmVOR_Mean(X1m,p->pva->binCnt);
  4788. if( idb > -150.0 )
  4789. {
  4790. // set the output gain such that the mean output magnitude
  4791. // will match the mean input magnitude
  4792. p->ogain = u0/u1;
  4793. }
  4794. else
  4795. {
  4796. cmReal_t a0 = 0.9;
  4797. p->ogain *= a0;
  4798. }
  4799. double g = u0/u1;
  4800. p->ogain0 = g + (p->ogain0 * .98);
  4801. //double v[] = { u0, u1, p->ogain, p->ogain0 };
  4802. //cmVectArrayAppendD(p->statVa,v,sizeof(v)/sizeof(v[0]));
  4803. cmVOR_MultVS(X1m,p->pva->binCnt,cmMin(4.0,p->ogain));
  4804. //cmFbCtlExec(p->fbc,X1m);
  4805. //cmReal_t v[ p->pva->binCnt ];
  4806. //cmVOR_Copy(v,p->pva->binCnt,p->pva->phsV);
  4807. //_cmSpecDistPhaseMod(p, v, p->pva->binCnt );
  4808. if(recordFl)
  4809. {
  4810. // store a time windowed average of the output spectrum to p->iSpecV
  4811. cmVOR_CopyN(p->oSpecM + p->hi, p->pva->binCnt, p->hN, X1m, 1 );
  4812. cmVOR_MeanM2(p->oSpecV, p->oSpecM, p->hN, p->pva->binCnt, 0, cmMin(p->fi+1,p->hN));
  4813. // store iSpecV and oSpecV to iSpecVa and oSpecVa to create debugging files
  4814. //cmVectArrayAppendR(p->iSpecVa,p->iSpecV,p->pva->binCnt);
  4815. //cmVectArrayAppendR(p->oSpecVa,p->oSpecV,p->pva->binCnt);
  4816. p->hi = (p->hi + 1) % p->hN;
  4817. }
  4818. //unsigned binN = 12500.0 / (p->srate / p->pva->binCnt);
  4819. //cmExpanderBankExecD(p->exb, X1m, binN );
  4820. /*
  4821. cmExpanderBankExecD(p->exb, X1m, p->exb->bandN );
  4822. cmReal_t mean = cmVOR_Mean(X1m,p->exb->bandN);
  4823. cmReal_t arr[3] = { p->exb->rmsValue, mean, p->exb->atkCnt };
  4824. cmVectArrayAppendR(p->oSpecVa,arr,3);
  4825. */
  4826. cmPvSynExec(p->pvs, X1m, p->pva->phsV );
  4827. p->fi += 1;
  4828. }
  4829. return cmOkRC;
  4830. }
  4831. const cmSample_t* cmSpecDistOut( cmSpecDist_t* p )
  4832. {
  4833. return cmPvSynExecOut(p->pvs);
  4834. }
  4835. //------------------------------------------------------------------------------------------------------------
  4836. cmRC_t _cmBinMtxFileWriteHdr( cmBinMtxFile_t* p )
  4837. {
  4838. cmFileRC_t fileRC;
  4839. unsigned n = 3;
  4840. unsigned hdr[n];
  4841. hdr[0] = p->rowCnt;
  4842. hdr[1] = p->maxRowEleCnt;
  4843. hdr[2] = p->eleByteCnt;
  4844. if((fileRC = cmFileSeek(p->fh,kBeginFileFl,0)) != kOkFileRC )
  4845. return cmCtxRtCondition(&p->obj, fileRC, "File seek failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)));
  4846. if((fileRC = cmFileWriteUInt(p->fh,hdr,n)) != kOkFileRC )
  4847. return cmCtxRtCondition( &p->obj, fileRC, "Header write failed on matrix file:'%s'.", cmStringNullGuard(cmFileName(p->fh)) );
  4848. return cmOkRC;
  4849. }
  4850. cmBinMtxFile_t* cmBinMtxFileAlloc( cmCtx* ctx, cmBinMtxFile_t* ap, const cmChar_t* fn )
  4851. {
  4852. cmBinMtxFile_t* p = cmObjAlloc( cmBinMtxFile_t, ctx, ap );
  4853. if( fn != NULL )
  4854. if( cmBinMtxFileInit( p, fn ) != cmOkRC )
  4855. cmBinMtxFileFree(&p);
  4856. return p;
  4857. }
  4858. cmRC_t cmBinMtxFileFree( cmBinMtxFile_t** pp )
  4859. {
  4860. cmRC_t rc;
  4861. if( pp==NULL || *pp == NULL )
  4862. return cmOkRC;
  4863. cmBinMtxFile_t* p = *pp;
  4864. if((rc = cmBinMtxFileFinal(p)) == cmOkRC )
  4865. {
  4866. cmObjFree(pp);
  4867. }
  4868. return rc;
  4869. }
  4870. cmRC_t cmBinMtxFileInit( cmBinMtxFile_t* p, const cmChar_t* fn )
  4871. {
  4872. cmRC_t rc;
  4873. cmFileRC_t fileRC;
  4874. if((rc = cmBinMtxFileFinal(p)) != cmOkRC )
  4875. return rc;
  4876. // open the output file for writing
  4877. if((fileRC = cmFileOpen(&p->fh,fn,kWriteFileFl | kBinaryFileFl, p->obj.err.rpt)) != kOkFileRC )
  4878. return cmCtxRtCondition( &p->obj, fileRC, "Unable to open the matrix file:'%s'", cmStringNullGuard(fn) );
  4879. // iniitlaize the object
  4880. p->rowCnt = 0;
  4881. p->maxRowEleCnt = 0;
  4882. p->eleByteCnt = 0;
  4883. // write the blank header as place holder
  4884. if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
  4885. return rc;
  4886. return rc;
  4887. }
  4888. cmRC_t cmBinMtxFileFinal( cmBinMtxFile_t* p )
  4889. {
  4890. cmRC_t rc;
  4891. cmFileRC_t fileRC;
  4892. if( p != NULL && cmFileIsValid(p->fh))
  4893. {
  4894. // re-write the file header
  4895. if((rc = _cmBinMtxFileWriteHdr(p)) != cmOkRC )
  4896. return rc;
  4897. // close the file
  4898. if((fileRC = cmFileClose(&p->fh)) != kOkFileRC )
  4899. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file close failed on:'%s'",cmStringNullGuard(cmFileName(p->fh)));
  4900. }
  4901. return cmOkRC;
  4902. }
  4903. bool cmBinMtxFileIsValid( cmBinMtxFile_t* p )
  4904. { return p != NULL && cmFileIsValid(p->fh); }
  4905. cmRC_t _cmBinMtxFileWriteRow( cmBinMtxFile_t* p, const void* buf, unsigned eleCnt, unsigned eleByteCnt )
  4906. {
  4907. cmFileRC_t fileRC;
  4908. if((fileRC = cmFileWrite(p->fh,&eleCnt,sizeof(eleCnt))) != kOkFileRC )
  4909. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i element count write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
  4910. if((fileRC = cmFileWrite(p->fh,buf,eleCnt*eleByteCnt)) != kOkFileRC )
  4911. return cmCtxRtCondition(&p->obj, fileRC, "Matrix file row at index %i data write failed on '%s'.", p->rowCnt, cmStringNullGuard(cmFileName(p->fh)));
  4912. if( eleCnt > p->maxRowEleCnt )
  4913. p->maxRowEleCnt = eleCnt;
  4914. ++p->rowCnt;
  4915. return cmOkRC;
  4916. }
  4917. cmRC_t cmBinMtxFileExecS( cmBinMtxFile_t* p, const cmSample_t* x, unsigned xn )
  4918. {
  4919. // verify that all rows are written as cmSample_t
  4920. assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmSample_t));
  4921. p->eleByteCnt = sizeof(cmSample_t);
  4922. return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
  4923. }
  4924. cmRC_t cmBinMtxFileExecR( cmBinMtxFile_t* p, const cmReal_t* x, unsigned xn )
  4925. {
  4926. // verify that all rows are written as cmReal_t
  4927. assert( p->eleByteCnt == 0 || p->eleByteCnt == sizeof(cmReal_t));
  4928. p->eleByteCnt = sizeof(cmReal_t);
  4929. return _cmBinMtxFileWriteRow(p,x,xn,p->eleByteCnt);
  4930. }
  4931. cmRC_t cmBinMtxFileWrite( const cmChar_t* fn, unsigned rowCnt, unsigned colCnt, const cmSample_t* sp, const cmReal_t* rp, cmCtx* ctx, cmRpt_t* rpt )
  4932. {
  4933. assert( sp == NULL || rp == NULL );
  4934. cmCtx* ctxp = NULL;
  4935. cmBinMtxFile_t* bp = NULL;
  4936. if( ctx == NULL )
  4937. ctx = ctxp = cmCtxAlloc(NULL,rpt,cmLHeapNullHandle,cmSymTblNullHandle);
  4938. if((bp = cmBinMtxFileAlloc(ctx,NULL,fn)) != NULL )
  4939. {
  4940. unsigned i = 0;
  4941. cmSample_t* sbp = sp == NULL ? NULL : cmMemAlloc(cmSample_t,colCnt);
  4942. cmReal_t* rbp = rp == NULL ? NULL : cmMemAlloc(cmReal_t,colCnt);
  4943. for(i=0; i<rowCnt; ++i)
  4944. {
  4945. if( sp!=NULL )
  4946. {
  4947. cmVOS_CopyN(sbp,colCnt,1,sp+i,rowCnt);
  4948. cmBinMtxFileExecS(bp,sbp,colCnt);
  4949. }
  4950. if( rp!=NULL )
  4951. {
  4952. cmVOR_CopyN(rbp,colCnt,1,rp+i,rowCnt);
  4953. cmBinMtxFileExecR(bp,rbp,colCnt);
  4954. }
  4955. }
  4956. cmMemPtrFree(&sbp);
  4957. cmMemPtrFree(&rbp);
  4958. cmBinMtxFileFree(&bp);
  4959. }
  4960. if( ctxp != NULL )
  4961. cmCtxFree(&ctxp);
  4962. return cmOkRC;
  4963. }
  4964. cmRC_t _cmBinMtxFileReadHdr( cmCtx_t* ctx, cmFileH_t h, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr, const cmChar_t* fn )
  4965. {
  4966. cmRC_t rc = cmOkRC;
  4967. unsigned hdr[3];
  4968. if( cmFileRead(h,&hdr,sizeof(hdr)) != kOkFileRC )
  4969. {
  4970. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file header read failed on '%s'.",cmStringNullGuard(fn));
  4971. goto errLabel;
  4972. }
  4973. if( rowCntPtr != NULL )
  4974. *rowCntPtr = hdr[0];
  4975. if( colCntPtr != NULL )
  4976. *colCntPtr = hdr[1];
  4977. if( eleByteCntPtr != NULL )
  4978. *eleByteCntPtr = hdr[2];
  4979. errLabel:
  4980. return rc;
  4981. }
  4982. cmRC_t cmBinMtxFileSize( cmCtx_t* ctx, const cmChar_t* fn, unsigned* rowCntPtr, unsigned* colCntPtr, unsigned* eleByteCntPtr )
  4983. {
  4984. cmFileH_t h = cmFileNullHandle;
  4985. cmRC_t rc = cmOkRC;
  4986. if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, ctx->err.rpt) != kOkFileRC )
  4987. {
  4988. rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
  4989. goto errLabel;
  4990. }
  4991. rc = _cmBinMtxFileReadHdr(ctx,h,rowCntPtr,colCntPtr,eleByteCntPtr,fn);
  4992. errLabel:
  4993. cmFileClose(&h);
  4994. return rc;
  4995. }
  4996. cmRC_t cmBinMtxFileRead( cmCtx_t* ctx, const cmChar_t* fn, unsigned mRowCnt, unsigned mColCnt, unsigned mEleByteCnt, void* retBuf, unsigned* colCntV )
  4997. {
  4998. cmFileH_t h = cmFileNullHandle;
  4999. cmRC_t rc = cmOkRC;
  5000. char* rowBuf = NULL;
  5001. unsigned rowCnt,colCnt,eleByteCnt,i;
  5002. cmErr_t err;
  5003. cmErrSetup(&err,ctx->err.rpt,"Binary Matrix File Reader");
  5004. if(cmFileOpen(&h,fn,kReadFileFl | kBinaryFileFl, err.rpt) != kOkFileRC )
  5005. {
  5006. rc = cmErrMsg(&err,cmSubSysFailRC,"Binary matrix file:%s open failed.",cmStringNullGuard(fn));
  5007. goto errLabel;
  5008. }
  5009. if((rc = _cmBinMtxFileReadHdr(ctx,h,&rowCnt,&colCnt,&eleByteCnt,fn)) != cmOkRC )
  5010. goto errLabel;
  5011. if( mRowCnt != rowCnt )
  5012. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file row count and the return buffer row count are not the same.");
  5013. if( mColCnt != colCnt )
  5014. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file column count and the return buffer column count are not the same.");
  5015. if( mEleByteCnt != eleByteCnt )
  5016. rc = cmErrMsg(&err,cmArgAssertRC,"The binary matrix file element byte count and the return buffer element byte count are not the same.");
  5017. if( rc == cmOkRC )
  5018. {
  5019. rowBuf = cmMemAllocZ(char,colCnt*eleByteCnt);
  5020. for(i=0; i<rowCnt; ++i)
  5021. {
  5022. unsigned cn;
  5023. // read the row length
  5024. if( cmFileReadUInt(h,&cn,1) != kOkFileRC )
  5025. {
  5026. rc = cmErrMsg(&err,cmSubSysFailRC,"Error reading row length at row index:%i.",i);
  5027. goto errLabel;
  5028. }
  5029. if( colCntV != NULL )
  5030. colCntV[i] = cn;
  5031. // verify the actual col count does not exceed the max col count
  5032. if( cn > colCnt )
  5033. {
  5034. rc = cmErrMsg(&err,cmSubSysFailRC,"The actual column count:%i exceeds the max column count:%i.",cn,colCnt);
  5035. goto errLabel;
  5036. }
  5037. //read the row data
  5038. if( cmFileReadChar(h,rowBuf,cn*eleByteCnt) != kOkFileRC )
  5039. {
  5040. rc = cmErrMsg(&err,cmSubSysFailRC,"File read failed at row index:%i.",i);
  5041. goto errLabel;
  5042. }
  5043. char* dp = ((char*)retBuf) + i * eleByteCnt;
  5044. // the data is read in row-major order but the matrix must be
  5045. // returned on col major order - rearrange the columns here.
  5046. switch(eleByteCnt)
  5047. {
  5048. case sizeof(cmSample_t):
  5049. cmVOS_CopyN(((cmSample_t*)dp), cn, rowCnt, (cmSample_t*)rowBuf, 1 );
  5050. break;
  5051. case sizeof(cmReal_t):
  5052. cmVOR_CopyN(((cmReal_t*)dp), cn, rowCnt, (cmReal_t*)rowBuf, 1 );
  5053. break;
  5054. default:
  5055. rc = cmErrMsg(&err,cmSubSysFailRC,"Invalid element byte count:%i.",eleByteCnt);
  5056. goto errLabel;
  5057. }
  5058. }
  5059. }
  5060. errLabel:
  5061. cmMemPtrFree(&rowBuf);
  5062. cmFileClose(&h);
  5063. return rc;
  5064. }