123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- #ifndef cmMath_h
- #define cmMath_h
-
- #ifdef __cplusplus
- extern "C" {
- #endif
-
- //( { file_desc:"Math utility functions" kw:[math] }
-
- double cmX80ToDouble( unsigned char s[10] );
- void cmDoubleToX80( double v, unsigned char s[10] );
-
- bool cmIsPowerOfTwo( unsigned i );
- unsigned cmNextPowerOfTwo( unsigned i );
- unsigned cmNearPowerOfTwo( unsigned i );
-
- bool cmIsOddU( unsigned v );
- bool cmIsEvenU( unsigned v );
- unsigned cmNextOddU( unsigned v );
- unsigned cmPrevOddU( unsigned v );
- unsigned cmNextEvenU( unsigned v );
- unsigned cmPrevEvenU( unsigned v );
-
- /// Increment or decrement 'idx' by 'delta' always wrapping the result into the range
- /// 0 to (maxN-1).
- /// 'idx': initial value
- /// 'delta': incremental amount
- /// 'maxN' - 1 : maximum return value.
- unsigned cmModIncr(int idx, int delta, int maxN );
-
- // modified bessel function of first kind, order 0
- // ref: orfandis appendix B io.m
- double cmBessel0( double x );
-
-
- //=================================================================
- // The following elliptic-related function approximations come from
- // Parks & Burrus, Digital Filter Design, Appendix program 9, pp. 317-326
- // which in turn draws directly on other sources
-
- // calculate complete elliptic integral (quarter period) K
- // given *complimentary* modulus kc
- cmReal_t cmEllipK( cmReal_t kc );
-
- // calculate elliptic modulus k
- // given ratio of complete elliptic integrals r = K/K'
- // (solves the "degree equation" for fixed N = K*K1'/K'K1)
- cmReal_t cmEllipDeg( cmReal_t r );
-
- // calculate arc elliptic tangent u (elliptic integral of the 1st kind)
- // given argument x = sc(u,k) and *complimentary* modulus kc
- cmReal_t cmEllipArcSc( cmReal_t x, cmReal_t kc );
-
- // calculate Jacobi elliptic functions sn, cn, and dn
- // given argument u and *complimentary* modulus kc
- cmRC_t cmEllipJ( cmReal_t u, cmReal_t kc, cmReal_t* sn, cmReal_t* cn, cmReal_t* dn );
-
-
- //=================================================================
- // bilinear transform
- // z = (2*sr + s)/(2*sr - s)
- cmRC_t cmBlt( unsigned n, cmReal_t sr, cmReal_t* rp, cmReal_t* ip );
-
-
- //=================================================================
- // Pitch conversion
- unsigned cmHzToMidi( double hz );
- float cmMidiToHz( unsigned midi );
-
- //=================================================================
- // Floating point byte swapping
- unsigned cmFfSwapFloatToUInt( float v );
- float cmFfSwapUIntToFloat( unsigned v );
- unsigned long long cmFfSwapDoubleToULLong( double v );
- double cmFfSwapULLongToDouble( unsigned long long v );
-
- //=================================================================
- int cmRandInt( int min, int max );
- unsigned cmRandUInt( unsigned min, unsigned max );
- float cmRandFloat( float min, float max );
- double cmRandDouble( double min, double max );
-
- //=================================================================
- bool cmIsCloseD( double x0, double x1, double eps );
- bool cmIsCloseF( float x0, float x1, double eps );
- bool cmIsCloseI( int x0, int x1, double eps );
- bool cmIsCloseU( unsigned x0, unsigned x1, double eps );
-
- //=================================================================
- // Run a length 'lfsrN' linear feedback shift register (LFSR) for 'yN' iterations to
- // produce a length 'yN' bit string in yV[yN].
- // 'lfsrN' count of bits in the shift register range: 2<= lfsrN <= 32.
- // 'tapMask' is a bit mask which gives the tap indexes positions for the LFSR.
- // The least significant bit corresponds to the maximum delay tap position.
- // The min tap position is therefore denoted by the tap mask bit location 1 << (lfsrN-1).
- // A minimum of two taps must exist.
- // 'seed' sets the initial delay state.
- // 'yV[yN]' is the the output vector
- // 'yN' is count of elements in yV.
- // The function resturn kOkAtRC on success or kInvalidArgsRCRC if any arguments are invalid.
- // /sa cmLFSR_Test.
- void cmLFSR( unsigned lfsrN, unsigned tapMask, unsigned seed, unsigned* yV, unsigned yN );
-
- // Example and test code for cmLFSR()
- bool cmLFSR_Test();
-
-
- // Generate a set of 'goldN' Gold codes using the Maximum Length Sequences (MLS) generated
- // by a length 'lfsrN' linear feedback shift register.
- // 'err' is an error object to be set if the the function fails.
- // 'lfsrN' is the length of the Linear Feedback Shift Registers (LFSR) used to generate the MLS.
- // 'poly_coeff0' tap mask for the first LFSR.
- // 'coeff1' tap mask the the second LFSR.
- // 'goldN' is the count of Gold codes to generate.
- // 'yM[mlsN', goldN] is a column major output matrix where each column contains a Gold code.
- // 'mlsN' is the length of the maximum length sequence for each Gold code which can be
- // calculated as mlsN = (1 << a->lfsrN) - 1.
- // Note that values of 'lfsrN' and the 'poly_coeffx' must be carefully selected such that
- // they will produce a MLS. For example to generate a MLS with length 31 set 'lfsrN' to 5 and
- // then select poly_coeff from two different elements of the set {0x12 0x14 0x17 0x1B 0x1D 0x1E}.
- // See http://www.ece.cmu.edu/~koopman/lfsr/index.html for a complete set of MSL polynomial
- // coefficients for given LFSR lengths.
- // Returns false if insufficient balanced pairs exist.
- bool cmGenGoldCodes( unsigned lfsrN, unsigned poly_coeff0, unsigned poly_coeff1, unsigned goldN, int* yM, unsigned mlsN );
-
- //)
-
- #ifdef __cplusplus
- }
- #endif
-
- #endif
|