libcm/cmUdpPort.c
2012-10-29 20:52:39 -07:00

548 righe
14 KiB
C

#include "cmPrefix.h"
#include "cmGlobal.h"
#include "cmRpt.h"
#include "cmErr.h"
#include "cmCtx.h"
#include "cmMem.h"
#include "cmMallocDebug.h"
#include "cmThread.h"
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h> // close
#include "cmUdpPort.h"
#define cmUdp_SYS_ERR (-1)
#define cmUdp_NULL_SOCK (-1)
enum
{
kIsConnectedUdpFl = 0x01,
kIsBlockingUdpFl = 0x02,
kQueueingUdpFl = 0x04
};
typedef struct
{
cmErr_t err;
int sockH;
cmUdpCallback_t cbFunc;
void* cbArg;
unsigned timeOutMs;
unsigned flags;
cmThreadH_t thH;
cmTs1p1cH_t qH;
unsigned recvBufByteCnt;
char* tempBuf;
unsigned timeOutCnt;
unsigned recvCnt;
unsigned queCbCnt;
unsigned errCnt;
} cmUdp_t;
cmUdpH_t cmUdpNullHandle = cmSTATIC_NULL_HANDLE;
#define _cmUdpClear_errno() errno = 0
cmUdp_t* _cmUdpHandleToPtr( cmUdpH_t h )
{
cmUdp_t* p = (cmUdp_t*)h.h;
assert(p != NULL);
return p;
}
cmUdpRC_t _cmUdpFinal( cmUdp_t* p )
{
cmUdpRC_t rc = kOkUdpRC;
if( cmThreadIsValid(p->thH) )
if( cmThreadDestroy(&p->thH) != kOkThRC )
return cmErrMsg(&p->err,kThreadFailUdpRC,"Listener thread destroy failed.");
if( cmTs1p1cIsValid(p->qH) )
if( cmTs1p1cDestroy(&p->qH) != kOkThRC )
cmErrMsg(&p->err,kQueueFailUdpRC,"Receive data queue destroy failed.");
cmMemPtrFree(&p->tempBuf);
// close the socket
if( p->sockH != cmUdp_NULL_SOCK )
{
_cmUdpClear_errno();
if( close(p->sockH) != 0 )
cmErrSysMsg(&p->err,kSockCloseFailUdpRC,errno,"The socket close failed." );
p->sockH = cmUdp_NULL_SOCK;
}
return rc;
}
cmUdpRC_t _cmUdpFree( cmUdp_t* p )
{
cmUdpRC_t rc;
if((rc = _cmUdpFinal(p)) != kOkUdpRC )
return rc;
cmMemFree(p);
return rc;
}
cmUdpRC_t _cmUdpInitAddr( cmUdp_t* p, const char* addrStr, cmUdpPort_t portNumber, struct sockaddr_in* retAddrPtr )
{
memset(retAddrPtr,0,sizeof(struct sockaddr_in));
if( addrStr == NULL )
retAddrPtr->sin_addr.s_addr = htonl(INADDR_ANY);
else
{
_cmUdpClear_errno();
if(inet_pton(AF_INET,addrStr,&retAddrPtr->sin_addr) == 0 )
//if(( retAddrPtr->sin_addr.s_addr = inet_addr(addrStr)) == INADDR_NONE )
return cmErrSysMsg(&p->err,kPtoNFailUdpRC,errno, "The network address string '%s' could not be converted to a netword address structure.",cmStringNullGuard(addrStr) );
}
//retAddrPtr->sin_len = sizeof(struct sockaddr_in);
retAddrPtr->sin_family = AF_INET;
retAddrPtr->sin_port = htons(portNumber);
return kOkUdpRC;
}
cmUdpRC_t _cmUdpConnect( cmUdp_t* p, const char* remoteAddr, cmUdpPort_t remotePort )
{
struct sockaddr_in addr;
cmUdpRC_t rc;
// create the remote address
if((rc = _cmUdpInitAddr(p, remoteAddr, remotePort, &addr )) != kOkUdpRC )
return rc;
_cmUdpClear_errno();
// ... and connect this socket to the remote address/port
if( connect(p->sockH, (struct sockaddr*)&addr, sizeof(addr)) == cmUdp_SYS_ERR )
return cmErrSysMsg(&p->err,kSockConnectFailUdpRC, errno, "Socket connect failed." );
p->flags = cmSetFlag(p->flags,kIsConnectedUdpFl);
return rc;
}
cmUdpRC_t cmUdpAlloc( cmCtx_t* ctx, cmUdpH_t* hp )
{
cmUdpRC_t rc;
if((rc = cmUdpFree(hp)) != kOkUdpRC )
return rc;
cmUdp_t* p = cmMemAllocZ(cmUdp_t,1);
cmErrSetup(&p->err,&ctx->rpt,"UDP Port");
p->sockH = cmUdp_NULL_SOCK;
hp->h = p;
return rc;
}
cmUdpRC_t cmUdpFree( cmUdpH_t* hp )
{
cmUdpRC_t rc = kOkUdpRC;
if( hp == NULL || cmUdpIsValid(*hp)==false)
return rc;
cmUdp_t* p = _cmUdpHandleToPtr(*hp);
if((rc = _cmUdpFree(p)) != kOkUdpRC )
return rc;
hp->h = NULL;
return rc;
}
cmUdpRC_t cmUdpInit(
cmUdpH_t h,
cmUdpPort_t port,
unsigned flags,
cmUdpCallback_t cbFunc,
void* cbArg,
const char* remoteAddr,
cmUdpPort_t remotePort,
unsigned recvBufByteCnt,
unsigned timeOutMs )
{
cmUdpRC_t rc;
struct sockaddr_in addr;
cmUdp_t* p = _cmUdpHandleToPtr(h);
if((rc = _cmUdpFinal(p)) != kOkUdpRC )
return rc;
_cmUdpClear_errno();
// get a handle to the socket
if(( p->sockH = socket( AF_INET, SOCK_DGRAM, IPPROTO_UDP ) ) == cmUdp_SYS_ERR )
return cmErrSysMsg(&p->err, kSockCreateFailUdpRC, errno, "Socket create failed." );
// create the local address
if((rc = _cmUdpInitAddr(p, NULL, port, &addr )) != kOkUdpRC )
goto errLabel;
// bind the socket to a local address/port
if( (bind( p->sockH, (struct sockaddr*)&addr, sizeof(addr))) == cmUdp_SYS_ERR )
{
rc = cmErrSysMsg(&p->err,kSockBindFailUdpRC,errno,"Socket bind failed." );
goto errLabel;
}
// if a remote addr was given connect this socket to it
if( remoteAddr != NULL )
if((rc = _cmUdpConnect(p,remoteAddr,remotePort)) != kOkUdpRC )
goto errLabel;
// if this socket should block
if( cmIsFlag(flags,kBlockingUdpFl) )
{
struct timeval timeOut;
// set the socket time out
timeOut.tv_sec = timeOutMs/1000;
timeOut.tv_usec = (timeOutMs - (timeOut.tv_sec * 1000)) * 1000;
if( setsockopt( p->sockH, SOL_SOCKET, SO_RCVTIMEO, &timeOut, sizeof(timeOut) ) == cmUdp_SYS_ERR )
{
rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to set the socket timeout failed." );
goto errLabel;
}
p->flags = cmSetFlag(p->flags,kIsBlockingUdpFl);
}
else
{
int opts;
// get the socket options flags
if( (opts = fcntl(p->sockH,F_GETFL)) < 0 )
{
rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to get the socket options flags failed." );
goto errLabel;
}
opts = (opts | O_NONBLOCK);
// set the socket options flags
if(fcntl(p->sockH,F_SETFL,opts) < 0)
{
rc = cmErrSysMsg(&p->err,kSockOptSetFailUdpRC,errno, "Attempt to set the socket to non-blocking failed." );
goto errLabel;
}
}
if( recvBufByteCnt != 0 )
p->tempBuf = cmMemAlloc(char,recvBufByteCnt );
p->timeOutMs = timeOutMs;
p->cbFunc = cbFunc;
p->cbArg = cbArg;
p->recvBufByteCnt = recvBufByteCnt;
p->timeOutCnt = 0;
p->recvCnt = 0;
p->queCbCnt = 0;
p->errCnt = 0;
if( cmIsFlag(flags,kNoQueueUdpFl) == false )
p->flags = cmSetFlag(p->flags,kQueueingUdpFl);
errLabel:
if( rc != kOkUdpRC )
_cmUdpFree(p);
return rc;
}
cmUdpRC_t cmUdpFinal( cmUdpH_t h )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
return _cmUdpFinal(p);
}
bool cmUdpIsValid( cmUdpH_t h )
{ return h.h != NULL; }
cmUdpRC_t cmUdpConnect( cmUdpH_t h, const char* remoteAddr, cmUdpPort_t remotePort )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
return _cmUdpConnect(p,remoteAddr,remotePort);
}
cmUdpRC_t cmUdpSend( cmUdpH_t h, const char* data, unsigned dataByteCnt )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
_cmUdpClear_errno();
if( cmIsFlag(p->flags,kIsConnectedUdpFl) == false )
return cmErrMsg(&p->err,kNotConnectedUdpRC,"cmUdpSend() only works with connected sockets.");
if( send( p->sockH, data, dataByteCnt, 0 ) == cmUdp_SYS_ERR )
return cmErrSysMsg(&p->err,kSockSendFailUdpRC,errno,"Send failed.");
return kOkUdpRC;
}
cmUdpRC_t cmUdpSendTo( cmUdpH_t h, const char* data, unsigned dataByteCnt, const struct sockaddr_in* remoteAddr )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
_cmUdpClear_errno();
if( sendto(p->sockH, data, dataByteCnt, 0, (struct sockaddr*)remoteAddr, sizeof(*remoteAddr)) == cmUdp_SYS_ERR )
return cmErrSysMsg(&p->err,kSockSendFailUdpRC,errno,"SendTo failed.");
return kOkUdpRC;
}
cmUdpRC_t cmUdpSend2( cmUdpH_t h, const char* data, unsigned dataByteCnt, const char* remoteAddr, cmUdpPort_t remotePort )
{
cmUdpRC_t rc;
cmUdp_t* p = _cmUdpHandleToPtr(h);
struct sockaddr_in addr;
if((rc = _cmUdpInitAddr(p,remoteAddr,remotePort,&addr)) != kOkUdpRC )
return rc;
return cmUdpSendTo( h, data, dataByteCnt, &addr );
}
cmUdpRC_t cmUdpRecv( cmUdpH_t h, char* data, unsigned dataByteCnt, struct sockaddr_in* fromAddr, unsigned* recvByteCntPtr )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
cmUdpRC_t rc = kOkUdpRC;
ssize_t retVal = 0;
socklen_t sizeOfRemoteAddr = fromAddr==NULL ? 0 : sizeof(struct sockaddr_in);
_cmUdpClear_errno();
if( recvByteCntPtr != NULL )
*recvByteCntPtr = 0;
if((retVal = recvfrom(p->sockH, data, dataByteCnt, 0, (struct sockaddr*)fromAddr, &sizeOfRemoteAddr )) == cmUdp_SYS_ERR )
return cmErrSysMsg(&p->err,kSockRecvFailUdpRC,errno,"recvFrom() failed.");
if( recvByteCntPtr != NULL )
*recvByteCntPtr = retVal;
return rc;
}
bool _cmUdpThreadCb(void* param)
{
cmUdp_t* p = (cmUdp_t*)param;
fd_set rdSet;
struct timeval timeOut;
// setup the select() call
FD_ZERO(&rdSet);
FD_SET(p->sockH, &rdSet );
timeOut.tv_sec = p->timeOutMs/1000;
timeOut.tv_usec = (p->timeOutMs - (timeOut.tv_sec * 1000)) * 1000;
// NOTE; select() takes the highest socket value plus one of all the sockets in all the sets.
switch( select(p->sockH+1,&rdSet,NULL,NULL,&timeOut) )
{
case -1: // error
if( errno != EINTR )
cmErrSysMsg(&p->err,kSockSelectFailUdpRC,errno,"Select failed.");
++p->errCnt;
break;
case 0: // select() timed out
++p->timeOutCnt;
break;
case 1: // (> 0) count of ready descripters
if( FD_ISSET(p->sockH,&rdSet) )
{
struct sockaddr_in remoteAddr;
socklen_t addrByteCnt = sizeof(remoteAddr);
ssize_t retByteCnt;
_cmUdpClear_errno();
++p->recvCnt;
// recv the incoming msg into p->tempBuf[]
if(( retByteCnt = recvfrom( p->sockH, p->tempBuf, p->recvBufByteCnt, 0, (struct sockaddr*)&remoteAddr, &addrByteCnt )) == cmUdp_SYS_ERR )
cmErrSysMsg(&p->err,kSockRecvFailUdpRC,errno,"recvfrom() failed.");
else
{
// check for overflow
if( retByteCnt == p->recvBufByteCnt )
cmErrMsg(&p->err,kRecvBufOverflowUdpRC,"The receive buffer requires more than %i bytes.",p->recvBufByteCnt);
else
{
// if queueing is enabled
if( cmIsFlag(p->flags,kQueueingUdpFl ) )
{
// enqueue the msg - with the source address appended after the data
const void* msgPtrArray[] = { p->tempBuf, &remoteAddr, p->tempBuf };
unsigned msgByteCntArray[] = { retByteCnt, sizeof(remoteAddr) };
if( cmTs1p1cEnqueueSegMsg( p->qH, msgPtrArray, msgByteCntArray, 2 ) != kOkThRC )
cmErrMsg(&p->err,kQueueFailUdpRC,"A received msg containing %i bytes was not queued.",retByteCnt);
}
else // if queueing is not enabled - transmit the data directly via the callback
if( p->cbFunc != NULL )
{
p->cbFunc(p->cbArg,p->tempBuf,retByteCnt,&remoteAddr);
}
}
}
}
break;
default:
{ assert(0); }
} // switch
return true;
}
cmRC_t _cmUdpQueueCb(void* userCbPtr, unsigned msgByteCnt, const void* msgDataPtr )
{
cmUdp_t* p = (cmUdp_t*)userCbPtr;
if( p->cbFunc != NULL )
{
struct sockaddr_in addr;
assert( msgByteCnt >= sizeof(addr));
const char* dataPtr = (const char*)msgDataPtr;
// the address of the data source is apppended to the data bytes.
const char* addrPtr = dataPtr + msgByteCnt - sizeof(addr);
memcpy(&addr,addrPtr,sizeof(addr));
// make the receive callback
p->cbFunc(p->cbArg,dataPtr,msgByteCnt-sizeof(addr),&addr);
++p->queCbCnt;
}
return cmOkRC;
}
cmUdpRC_t cmUdpEnableListen( cmUdpH_t h, bool enableFl )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
if( cmThreadIsValid(p->thH) == false && enableFl == true)
{
if(cmThreadCreate(&p->thH,_cmUdpThreadCb,p,p->err.rpt) != kOkThRC )
return cmErrMsg(&p->err,kThreadFailUdpRC,"Listener thread create failed.");
if(cmTs1p1cCreate(&p->qH,p->recvBufByteCnt,_cmUdpQueueCb,p,p->err.rpt) != kOkThRC )
return cmErrMsg(&p->err,kQueueFailUdpRC,"Listener data queue create failed.");
}
if( cmThreadIsValid(p->thH) )
if( cmThreadPause( p->thH, enableFl ? 0 : kPauseThFl ) != kOkThRC )
return cmErrMsg(&p->err,kThreadFailUdpRC,"The listener thread failed to %s.", enableFl ? "pause" : "un-pause" );
return kOkUdpRC;
}
bool cmUdpIsQueueEnabled( cmUdpH_t h )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
return cmIsFlag(p->flags,kQueueingUdpFl);
}
void cmUdpQueueEnable( cmUdpH_t h, bool enableFl )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
p->flags = cmSetFlag(p->flags,kQueueingUdpFl);
}
unsigned cmUdpAvailDataByteCount( cmUdpH_t h )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
return cmTs1p1cIsValid(p->qH) ? cmTs1p1cDequeueMsgByteCount( p->qH ) : 0;
}
cmUdpRC_t cmUdpGetAvailData( cmUdpH_t h, char* data, unsigned* dataByteCntPtr, struct sockaddr_in* fromAddr )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
unsigned availByteCnt;
// if a received msg is queued
if( (availByteCnt = cmTs1p1cAvailByteCount(p->qH)) > 0 )
{
// all msg's must have at least a source address
assert( availByteCnt >= sizeof(*fromAddr) );
// get the size of the return buffer (or 0 if there is no return buffer)
unsigned dataByteCnt = (data != NULL && dataByteCntPtr != NULL) ? *dataByteCntPtr : 0;
if( dataByteCnt == 0 )
data = NULL;
// dequeue the msg - if data==NULL then the data will be returned by
// a call to the callback function provided in cmUdpAlloc().
if( cmTs1p1cDequeueMsg(p->qH, data, dataByteCnt ) != kOkThRC )
return cmErrMsg(&p->err,kQueueFailUdpRC,"Data dequeue failed.");
// if a return buffer was given
if( data != NULL )
{
assert( dataByteCntPtr != NULL );
// the source address is appended to the end of the data
const char* addrPtr = data + availByteCnt - sizeof(*fromAddr);
// copy out the source address
if( fromAddr != NULL )
memcpy(fromAddr,addrPtr,sizeof(*fromAddr));
// subtract the address size from the total msg size
*dataByteCntPtr = availByteCnt - sizeof(*fromAddr);
}
}
return kOkUdpRC;
}
void cmUdpReport( cmUdpH_t h, cmRpt_t* rpt )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
cmRptPrintf(rpt,"time-out:%i recv:%i queue cb:%i\n",p->timeOutCnt,p->recvCnt,p->queCbCnt);
}
cmUdpRC_t cmUdpInitAddr( cmUdpH_t h, const char* addrStr, cmUdpPort_t portNumber, struct sockaddr_in* retAddrPtr )
{
cmUdp_t* p = _cmUdpHandleToPtr(h);
return _cmUdpInitAddr(p,addrStr,portNumber,retAddrPtr);
}