libcm/cmRtSys.c
Kevin Larke 37b47e21fd cmRtNet.h/c : Corrected mispelling in #ifdef header guards.
On failure of cmThreadMutexWaitOnCondVar() in _cmRtThreadCallback() the
correct result code is now reported.
2014-10-15 11:08:26 -07:00

1686 lines
49 KiB
C

#include "cmPrefix.h"
#include "cmGlobal.h"
#include "cmFloatTypes.h"
#include "cmRpt.h"
#include "cmErr.h"
#include "cmCtx.h"
#include "cmMem.h"
#include "cmMallocDebug.h"
#include "cmTime.h"
#include "cmAudioPort.h"
#include "cmAudioNrtDev.h"
#include "cmAudioPortFile.h"
#include "cmApBuf.h"
#include "cmJson.h"
#include "cmThread.h"
#include "cmUdpPort.h"
#include "cmUdpNet.h"
#include "cmRtSysMsg.h"
#include "cmRtNet.h"
#include "cmRtSys.h"
#include "cmMidi.h"
#include "cmMidiPort.h"
#include "cmMath.h"
typedef enum
{
kNoCmdId,
kEnableCbCmdId,
kDisableCbCmdId
} kRtCmdId_t;
cmRtSysH_t cmRtSysNullHandle = cmSTATIC_NULL_HANDLE;
struct cmRt_str;
typedef struct
{
struct cmRt_str* p; // pointer to the real-time system instance which owns this sub-system
cmRtSysSubSys_t ss; // sub-system configuration record
cmRtSysCtx_t ctx; // DSP context
cmRtSysStatus_t status; // current runtime status of this sub-system
cmThreadH_t threadH; // real-time system thread
cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue
cmThreadMutexH_t engMutexH; // thread mutex and condition variable
cmRtNetH_t netH;
bool runFl; // false during finalization otherwise true
bool statusFl; // true if regular status notifications should be sent
bool syncInputFl;
kRtCmdId_t cmdId; // written by app thread, read by rt thread
unsigned cbEnableFl; // written by rt thread, read by app thread
bool noBlockEnaFl; //
unsigned noBlockSleepMs;
double* iMeterArray; //
double* oMeterArray; //
unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples
unsigned statusUpdateSmpIdx; // state update phase
} _cmRtCfg_t;
typedef struct cmRt_str
{
cmErr_t err;
cmCtx_t* ctx;
_cmRtCfg_t* ssArray;
unsigned ssCnt;
unsigned waitRtSubIdx; // index of the next sub-system to try with cmRtSysIsMsgWaiting().
cmTsMp1cH_t dthQueH;
bool initFl; // true if the real-time system is initialized
cmTsQueueCb_t clientCbFunc; // These fields are only used during configuration.
void* clientCbArg; // See cmRtBeginCfg() and cmRtCfg().
} cmRt_t;
cmRt_t* _cmRtHandleToPtr( cmRtSysH_t h )
{
cmRt_t* p = (cmRt_t*)h.h;
assert(p != NULL);
return p;
}
cmRtRC_t _cmRtError( cmRt_t* p, cmRtRC_t rc, const char* fmt, ... )
{
va_list vl;
va_start(vl,fmt);
cmErrVMsg(&p->err,rc,fmt,vl);
va_end(vl);
return rc;
}
// Wrapper function to put msgs into thread safe queues and handle related errors.
cmRtRC_t _cmRtEnqueueMsg( cmRt_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel )
{
cmRtRC_t rc = kOkRtRC;
switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) )
{
case kOkThRC:
break;
case kBufFullThRC:
{
unsigned i;
unsigned byteCnt = 0;
for(i=0; i<segCnt; ++i)
byteCnt += msgCntArray[i];
rc = _cmRtError(p,kMsgEnqueueFailRtRC,"The %s queue was unable to load a msg containing %i bytes. The queue is currently allocated %i bytes and has %i bytes available.",queueLabel,byteCnt,cmTsMp1cAllocByteCount(qH),cmTsMp1cAvailByteCount(qH));
}
break;
default:
rc = _cmRtError(p,kMsgEnqueueFailRtRC,"A %s msg. enqueue failed.",queueLabel);
}
return rc;
}
// This is the function pointed to by ctx->dspToHostFunc.
// It is called by the DSP proces to pass msgs to the host.
// therefore it is always called from inside of _cmRtDspExecCallback().
cmRtRC_t _cmRtDspToHostMsgCallback(struct cmRtSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
{
cmRt_t* p = (cmRt_t*)ctx->reserved;
assert( ctx->rtSubIdx < p->ssCnt );
return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
}
cmRtRC_t _cmRtSysDspToHostSegMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
{
return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host");
}
cmRtRC_t cmRtSysDspToHostSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt)
{
cmRt_t* p = _cmRtHandleToPtr(h);
return _cmRtSysDspToHostSegMsg(p,msgDataPtrArray,msgByteCntArray,msgSegCnt);
}
cmRtRC_t cmRtSysDspToHost( cmRtSysH_t h, const void* msgDataPtr, unsigned msgByteCnt)
{
const void* msgDataArray[] = { msgDataPtr };
unsigned msgByteCntArray[] = { msgByteCnt };
return cmRtSysDspToHostSegMsg(h,msgDataArray,msgByteCntArray,1);
}
cmRtRC_t _cmRtParseNonSubSysMsg( cmRt_t* p, const void* msg, unsigned msgByteCnt )
{
cmRtRC_t rc = kOkRtRC;
cmRtSysMstr_t* m = (cmRtSysMstr_t*)msg;
/*
unsigned devIdx = cmRtSysUiInstIdToDevIndex(h->instId);
unsigned chIdx = cmRtSysUiInstIdToChIndex(h->instId);
unsigned inFl = cmRtSysUiInstIdToInFlag(h->instId);
unsigned ctlId = cmRtSysUiInstIdToCtlId(h->instId);
*/
// if the valuu associated with this msg is a mtx then set
// its mtx data area pointer to just after the msg header.
//if( cmDsvIsMtx(&h->value) )
// h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t);
unsigned flags = m->inFl ? kInApFl : kOutApFl;
switch( m->ctlId )
{
case kSliderUiRtId: // slider
cmApBufSetGain(m->devIdx,m->chIdx, flags, m->value);
break;
case kMeterUiRtId: // meter
break;
case kMuteUiRtId: // mute
flags += m->value == 0 ? kEnableApFl : 0;
cmApBufEnableChannel(m->devIdx,m->chIdx,flags);
break;
case kToneUiRtId: // tone
flags += m->value > 0 ? kEnableApFl : 0;
cmApBufEnableTone(m->devIdx,m->chIdx,flags);
break;
case kPassUiRtId: // pass
flags += m->value > 0 ? kEnableApFl : 0;
cmApBufEnablePass(m->devIdx,m->chIdx,flags);
break;
default:
{ assert(0); }
}
return rc;
}
// Process a UI msg sent from the host to the real-time system
cmRtRC_t _cmRtHandleNonSubSysMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt )
{
cmRtRC_t rc = kOkRtRC;
// if the message is contained in a single segment it can be dispatched immediately ...
if( msgSegCnt == 1 )
rc = _cmRtParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]);
else
{
// ... otherwise deserialize the message into contiguous memory ....
unsigned byteCnt = 0;
unsigned i;
for(i=0; i<msgSegCnt; ++i)
byteCnt += msgByteCntArray[i];
char buf[ byteCnt ];
char* b = buf;
for(i=0; i<msgSegCnt; ++i)
{
memcpy(b, msgDataPtrArray[i], msgByteCntArray[i] );
b += msgByteCntArray[i];
}
// ... and then dispatch it
rc = _cmRtParseNonSubSysMsg(p,buf,byteCnt);
}
return rc;
}
cmRtRC_t _cmRtSendStateStatusToHost( _cmRtCfg_t* cp )
{
cmRtRC_t rc = kOkRtRC;
cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
cp->status.hdr.selId = kStatusSelRtId;
cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt );
cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt );
unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt;
unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt;
const void* msgDataPtrArray[] = { &cp->status, cp->iMeterArray, cp->oMeterArray };
unsigned msgByteCntArray[] = { sizeof(cp->status), iMeterByteCnt, oMeterByteCnt };
unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
_cmRtSysDspToHostSegMsg(cp->p,msgDataPtrArray,msgByteCntArray, segCnt );
return rc;
}
// This function is called, within the real-time thread,
// with _cmRtRecd.engMutexH locked, to deliver
// messages to the real-time DSP processes via cp->ss.cbFunc()
cmRtRC_t _cmRtDeliverMsgsWithLock( _cmRtCfg_t* cp )
{
int i;
cmRtRC_t rc = kOkThRC;
// as long msg's are in the queue incoming msg queue
for(i=0; rc == kOkThRC; ++i)
{
// if a msg is waiting transmit it via cp->ss.cbFunc()
if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC)
++cp->status.msgCbCnt;
}
return rc;
}
// This funciton is _cmRtDspExecCallback()->cmRtNetReceive() in the
// real-time thread to deliver msg's to the DSP process.
void _cmRtSysNetRecv( void* cbArg, const char* data, unsigned dataByteCnt, const struct sockaddr_in* fromAddr )
{
_cmRtCfg_t* cp = (_cmRtCfg_t*)cbArg;
if( cp->cbEnableFl )
{
cmRtSysH_t h;
h.h = cp->p;
cmRtSysDeliverMsg(h,data,dataByteCnt,cmInvalidId);
}
}
// The DSP execution callback happens through this function.
// This function is only called from inside _cmRtThreadCallback()
// with the engine mutex locked.
void _cmRtDspExecCallback( _cmRtCfg_t* cp )
{
// Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers.
// Notes:
// 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[].
// 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[].
// 3) All samples returned in oChArray[] buffers will be set to zero.
if( cp->noBlockEnaFl == false )
cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, &cp->ctx.iTimeStamp,
cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt, &cp->ctx.oTimeStamp );
// calling this function results in callbacks to _cmRtSysNetRecv()
// which in turn calls cmRtSysDeliverMsg() which queues any incoming messages
// which are then transferred to the DSP processes by the the call to
// _cmRtDeliverMsgWithLock() below.
if( cmRtNetIsValid(cp->netH) )
if( cmRtNetReceive(cp->netH) != kOkNetRC )
_cmRtError(cp->p,kNetErrRtRC,"Network receive failed.");
// NOTE: BY DEQUEUEING MSGS FIRST AND THEN SERVICING THE NETWORK
// WE COULD ELIMINATE QUEUEING NETWORK MESSAGES - THEY COULD BE
// SEND DIRECTLY THROUGH TO THE DSP PROCESSES
// if there are msgs waiting to be sent to the DSP process send them.
if( cp->cbEnableFl )
if( cmTsMp1cMsgWaiting(cp->htdQueueH) )
_cmRtDeliverMsgsWithLock(cp);
// call the application provided DSP process
if( cp->cbEnableFl )
{
cp->ctx.audioRateFl = true;
cp->ss.cbFunc( &cp->ctx, 0, NULL );
cp->ctx.audioRateFl = false;
}
// Notice client callback enable/disable
// requests from the client thread
switch( cp->cmdId )
{
case kNoCmdId:
break;
case kDisableCbCmdId:
if( cp->cbEnableFl )
cmThUIntDecr(&cp->cbEnableFl,1);
break;
case kEnableCbCmdId:
if( cp->cbEnableFl==0)
cmThUIntIncr(&cp->cbEnableFl,1);
break;
}
// advance the audio buffer
if( cp->noBlockEnaFl == false )
{
cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
}
// handle periodic status messages to the host
if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt )
{
cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt;
if( cp->statusFl )
_cmRtSendStateStatusToHost(cp);
}
}
// Returns true if audio buffer is has waiting incoming samples and
// available outgoing space.
bool _cmRtBufIsReady( const _cmRtCfg_t* cp )
{
// if there neither the input or output device is valid
if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx )
return false;
bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl);
bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl);
bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl;
bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl;
//printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl);
return iFl && oFl;
}
// This is the main real-time system loop (and thread callback function).
// It blocks by waiting on a cond. var (which simultaneously unlocks a mutex).
// With the mutex unlocked messages can pass directly to the DSP process
// via calls to cmRtDeliverMsg().
// When the audio buffers need to be serviced the audio device callback
// signals the cond. var. which results in this thread waking up (and
// simultaneously locking the mutex) as soon as the mutex is available.
bool _cmRtThreadCallback(void* arg)
{
cmRtRC_t rc;
_cmRtCfg_t* cp = (_cmRtCfg_t*)arg;
bool noBlockFl = false;
// lock the cmRtSys mutex
if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkRtRC )
{
_cmRtError(cp->p,rc,"The cmRtSys thread mutex lock failed.");
return false;
}
// runFl is always set except during finalization
while( cp->runFl )
{
// if the buffer is NOT ready or the cmRtSys is disabled
if(_cmRtBufIsReady(cp) == false || cp->cbEnableFl==false )
{
// block on the cond var and unlock the mutex
if( noBlockFl )
cmSleepMs(cp->noBlockSleepMs);
else
{
if( (rc = cmThreadMutexWaitOnCondVar(cp->engMutexH,false)) != kOkRtRC )
{
cmThreadMutexUnlock(cp->engMutexH);
_cmRtError(cp->p,rc,"The cmRtSys cond. var. wait failed.");
return false;
}
}
//
// the cond var was signaled and the mutex is now locked
//
++cp->status.wakeupCnt;
}
noBlockFl = cp->noBlockEnaFl;
// be sure we are still enabled and the buffer is still ready
while( cp->runFl && _cmRtBufIsReady(cp) )
{
++cp->status.audioCbCnt;
// make the cmRtSys callback
_cmRtDspExecCallback( cp );
// update the signal time
cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle;
}
}
// unlock the mutex
cmThreadMutexUnlock(cp->engMutexH);
return true;
}
void _cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl )
{
static unsigned rtPhase = 0;
//fill output with noise
unsigned i = 0,j =0, k = 0, phs = 0;
for(; i<outPktCnt; ++i)
{
cmApAudioPacket_t* a = outPktArray + i;
cmApSample_t* dp = (cmApSample_t*)a->audioBytesPtr;
phs = a->audioFramesCnt;
if( sineFl )
{
for(j=0; j<a->audioFramesCnt; ++j)
{
cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * rtPhase + j ));
for(k=0; k<a->chCnt; ++k,++dp)
*dp = v;
}
}
else
{
for(j=0; j<a->audioFramesCnt*a->chCnt; ++j,++dp)
*dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2);
}
}
rtPhase += phs;
}
// This is the audio port callback function.
//
// _cmRtSysAudioUpdate() assumes that at most two audio device threads
// (input and output) may call it. cmApBufUpdate() is safe under these conditions
// since the input and output buffers are updated separately.
// p->syncInputFl is used to allow either the input or output thread to signal
// the condition variable. This flag is necessary to prevent both threads from simultaneously
// attempting to signal the condition variable (which will lock the system).
//
// If more than two audio device threads call the function then this function is not safe.
void _cmRtSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt )
{
_cmRtCfg_t* cp = (_cmRtCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr);
++cp->status.updateCnt;
if( cp->runFl )
{
// transfer incoming/outgoing samples from/to the audio device
cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt);
// generate a test signal
//_cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl );
//return;
bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0);
//printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt);
// if the input/output buffer contain samples to be processed then signal the condition variable
// - this will cause the real-time system thread to unblock and the used defined DSP process will be called.
if( testBufFl && _cmRtBufIsReady(cp) )
{
if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC )
_cmRtError(cp->p,kMutexErrRtRC,"CmRtSys signal cond. var. failed.");
}
if( cp->noBlockEnaFl )
{
cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, &cp->ctx.iTimeStamp,
cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt, &cp->ctx.oTimeStamp );
cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl );
cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl );
}
}
}
// Called when MIDI messages arrive from external MIDI ports.
void _cmRtSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt )
{
unsigned i;
for(i=0; i<pktCnt; ++i)
{
const cmMidiPacket_t* pkt = pktArray + i;
_cmRtCfg_t* cp = (_cmRtCfg_t*)(pkt->cbDataPtr);
if( !cp->runFl )
continue;
cmRtSysH_t asH;
asH.h = cp->p;
cmRtSysMidi_t m;
m.hdr.rtSubIdx = cp->ctx.rtSubIdx;
m.hdr.selId = kMidiMsgArraySelRtId;
m.devIdx = pkt->devIdx;
m.portIdx = pkt->portIdx;
m.msgCnt = pkt->msgCnt;
/*
unsigned selId = kMidiMsgArraySelRtId;
const void* msgPtrArray[] = { &cp->ctx.rtSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray };
unsigned msgByteCntArray[] = { sizeof(cp->ctx.rtSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) };
unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
*/
const void* msgPtrArray[] = { &m, pkt->msgArray };
unsigned msgByteCntArray[] = { sizeof(m), pkt->msgCnt*sizeof(cmMidiMsg) };
unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned);
cmRtSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId);
}
}
cmRtRC_t cmRtSysAllocate( cmRtSysH_t* hp, cmCtx_t* ctx )
{
cmRtRC_t rc;
if((rc = cmRtSysFree(hp)) != kOkRtRC )
return rc;
cmRt_t* p = cmMemAllocZ( cmRt_t, 1 );
cmErrSetup(&p->err,&ctx->rpt,"Real-Time System");
p->ctx = ctx;
hp->h = p;
return rc;
}
cmRtRC_t cmRtSysFree( cmRtSysH_t* hp )
{
cmRtRC_t rc;
if( hp == NULL || hp->h == NULL )
return kOkRtRC;
if((rc = cmRtSysFinalize(*hp)) != kOkRtRC )
return rc;
cmRt_t* p = _cmRtHandleToPtr(*hp);
cmMemFree(p);
hp->h = NULL;
return rc;
}
cmRtRC_t _cmRtSysEnable( cmRt_t* p, bool enableFl )
{
cmRtRC_t rc = kOkRtRC;
unsigned i;
unsigned n;
unsigned tickMs = 20;
unsigned timeOutMs = 10000;
for(i=0; i<p->ssCnt; ++i)
{
_cmRtCfg_t* cp = p->ssArray + i;
cmApBufOnPortEnable(cp->ss.args.inDevIdx,enableFl);
cmApBufOnPortEnable(cp->ss.args.outDevIdx,enableFl);
if( enableFl )
{
cp->cmdId = kNoCmdId;
cmThUIntIncr(&cp->cmdId,kEnableCbCmdId);
for(n=0; n<timeOutMs && cp->cbEnableFl==false; n+=tickMs )
cmSleepMs(tickMs);
cmThUIntDecr(&cp->cmdId,kEnableCbCmdId);
}
else
{
cp->cmdId = kNoCmdId;
cmThUIntIncr(&cp->cmdId,kDisableCbCmdId);
// wait for the rt thread to return from a client callbacks
for(n=0; n<timeOutMs && cp->cbEnableFl; n+=tickMs )
cmSleepMs(tickMs);
cmThUIntDecr(&cp->cmdId,kDisableCbCmdId);
}
if( n >= timeOutMs )
rc = cmErrMsg(&p->err,kTimeOutErrRtRC,"RT System %s timed out after %i milliseconds.",enableFl?"enable":"disable",timeOutMs);
}
// enable network sync mode
if( enableFl)
for(i=0; i<p->ssCnt; ++i)
{
_cmRtCfg_t* cp = p->ssArray + i;
if( cmRtNetIsValid(cp->netH) )
if( cmRtNetDoSync(cp->netH) != kOkNetRC )
rc = cmErrMsg(&p->err,kNetErrRtRC,"Network Mgr. failed on entering sync mode.");
}
return rc;
}
cmRtRC_t _cmRtSysFinalize( cmRt_t* p )
{
cmRtRC_t rc = kOkRtRC;
unsigned i;
// mark the real-time system as NOT initialized
p->initFl = false;
// be sure all audio callbacks are disabled before continuing.
if((rc = _cmRtSysEnable(p,false)) != kOkRtRC )
return _cmRtError(p,rc,"real-time system finalize failed because device halting failed.");
// stop the audio devices
for(i=0; i<p->ssCnt; ++i)
{
_cmRtCfg_t* cp = p->ssArray + i;
// stop the input device
if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkRtRC )
return _cmRtError(p,kAudioDevStopFailRtRC,"The audio input device stop failed.");
// stop the output device
if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkRtRC )
return _cmRtError(p,kAudioDevStopFailRtRC,"The audio output device stop failed.");
}
for(i=0; i<p->ssCnt; ++i)
{
_cmRtCfg_t* cp = p->ssArray + i;
if( cmThreadIsValid( cp->threadH ))
{
// inform the thread that it should exit
cp->runFl = false;
cp->statusFl = false;
// signal the cond var to cause the thread to run
if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC )
_cmRtError(p,kMutexErrRtRC,"Finalize signal cond. var. failed.");
// wait to take control of the mutex - this will occur when the thread function exits
if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC )
_cmRtError(p,kMutexErrRtRC,"Finalize lock failed.");
// unlock the mutex because it is no longer needed and must be unlocked to be destroyed
if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC )
_cmRtError(p,kMutexErrRtRC,"Finalize unlock failed.");
// destroy the thread
if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC )
_cmRtError(p,kThreadErrRtRC,"Thread destroy failed.");
}
// destroy the mutex
if( cmThreadMutexIsValid(cp->engMutexH) )
if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC )
_cmRtError(p,kMutexErrRtRC,"Mutex destroy failed.");
// release the network mgr
if( cmRtNetFree(&cp->netH) != kOkNetRC )
_cmRtError(p,kNetErrRtRC,"Network Mrr. release failed.");
// remove the MIDI callback
if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmRtSysMidiCallback, cp) )
if( cmMpRemoveCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
_cmRtError(p,kMidiSysFailRtRC,"MIDI callback removal failed.");
// destroy the host-to-dsp msg queue
if( cmTsMp1cIsValid(cp->htdQueueH ) )
if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC )
_cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue destroy failed.");
// destroy the dsp-to-host msg queue
if( cmTsMp1cIsValid(p->dthQueH) )
if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC )
_cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue destroy failed.");
cmMemPtrFree(&cp->ctx.iChArray);
cmMemPtrFree(&cp->ctx.oChArray);
cp->ctx.iChCnt = 0;
cp->ctx.oChCnt = 0;
cmMemPtrFree(&cp->iMeterArray);
cmMemPtrFree(&cp->oMeterArray);
cp->status.iMeterCnt = 0;
cp->status.oMeterCnt = 0;
}
cmMemPtrFree(&p->ssArray);
p->ssCnt = 0;
return rc;
}
// A given device may be used as an input device exactly once and an
// output device exactly once. When the input to a given device is used
// by one sub-system and the output is used by another then both sub-systems
// must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle.
cmRtRC_t _cmRtSysValidate( cmRt_t* p )
{
unsigned i,j,k;
for(i=0; i<2; ++i)
{
// examine input devices - then output devices
bool inputFl = i==0;
bool outputFl = !inputFl;
for(j=0; j<p->ssCnt; ++j)
{
cmRtSysArgs_t* s0 = &p->ssArray[j].ss.args;
unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx;
for(k=0; k<p->ssCnt && devIdx != cmInvalidIdx; ++k)
if( k != j )
{
cmRtSysArgs_t* s1 = &p->ssArray[k].ss.args;
// if the device was used as input or output multple times then signal an error
if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) )
return cmErrMsg(&p->err,kInvalidArgRtRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output");
// if this device is being used by another subsystem ...
if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) )
{
// ... then some of its buffer spec's must match
if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle )
return cmErrMsg(&p->err,kInvalidArgRtRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx);
}
}
}
}
return kOkRtRC;
}
cmRtRC_t cmRtSysBeginCfg( cmRtSysH_t h, cmTsQueueCb_t clientCbFunc, void* clientCbArg, unsigned meterMs, unsigned ssCnt )
{
cmRt_t* p = _cmRtHandleToPtr(h);
cmRtRC_t rc;
// always finalize before iniitalize
if((rc = cmRtSysFinalize(h)) != kOkRtRC )
return rc;
p->ssArray = cmMemAllocZ( _cmRtCfg_t, ssCnt );
p->ssCnt = ssCnt;
p->clientCbFunc = clientCbFunc;
p->clientCbArg = clientCbArg;
return rc;
}
cmRtRC_t cmRtSysCfg( cmRtSysH_t h, const cmRtSysSubSys_t* ss, unsigned rtSubIdx )
{
cmRtRC_t rc;
unsigned j;
cmRt_t* p = _cmRtHandleToPtr(h);
assert( rtSubIdx < p->ssCnt);
_cmRtCfg_t* cp = p->ssArray + rtSubIdx;;
cp->p = p;
cp->ss = *ss; // copy the cfg into the internal real-time system state
cp->runFl = false;
cp->statusFl = false;
cp->ctx.reserved = p;
cp->ctx.rtSubIdx = rtSubIdx;
cp->ctx.ss = &cp->ss;
cp->ctx.begSmpIdx = 0;
cp->ctx.dspToHostFunc = _cmRtDspToHostMsgCallback;
// validate the input device index
if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() )
{
rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio input device index %i is invalid.",ss->args.inDevIdx);
goto errLabel;
}
// validate the output device index
if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() )
{
rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio output device index %i is invalid.",ss->args.outDevIdx);
goto errLabel;
}
// setup the input device
if( ss->args.inDevIdx != cmInvalidIdx )
if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
{
rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio input device setup failed.");
goto errLabel;
}
// setup the output device
if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx )
if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC )
{
rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio output device setup failed.");
goto errLabel;
}
// setup the input device buffer
if( ss->args.inDevIdx != cmInvalidIdx )
if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC )
{
rc = _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer input setup failed.");
goto errLabel;
}
cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl );
cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl );
// setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmRtDspExecCallback()
if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 )
cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt );
// setup the output device buffer
if( ss->args.outDevIdx != ss->args.inDevIdx )
if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC )
return _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer ouput device setup failed.");
// setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmRtDspExecCallback()
if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 )
cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt );
// determine the sync source
cp->syncInputFl = ss->args.syncInputFl;
// if sync'ing to an unavailable device then sync to the available device
if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 )
cp->syncInputFl = false;
if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 )
cp->syncInputFl = true;
// setup the status record
cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx;
cp->status.iDevIdx = ss->args.inDevIdx;
cp->status.oDevIdx = ss->args.outDevIdx;
cp->status.iMeterCnt = cp->ctx.iChCnt;
cp->status.oMeterCnt = cp->ctx.oChCnt;
cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt );
cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt );
cp->noBlockEnaFl = false;
// create the real-time system thread
if((rc = cmThreadCreate( &cp->threadH, _cmRtThreadCallback, cp, ss->args.rpt )) != kOkThRC )
{
rc = _cmRtError(p,kThreadErrRtRC,"Thread create failed.");
goto errLabel;
}
// create the real-time system mutex
if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC )
{
rc = _cmRtError(p,kMutexErrRtRC,"Thread mutex create failed.");
goto errLabel;
}
// create the host-to-dsp thread safe msg queue
if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC )
{
rc = _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue create failed.");
goto errLabel;
}
// create the dsp-to-host thread safe msg queue
if( cmTsMp1cIsValid( p->dthQueH ) == false )
{
if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, p->clientCbFunc, p->clientCbArg, ss->args.rpt )) != kOkThRC )
{
rc = _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue create failed.");
goto errLabel;
}
}
// install an external MIDI port callback handler for incoming MIDI messages
if( cmMpIsInitialized() )
if( cmMpInstallCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC )
{
rc = _cmRtError(p,kMidiSysFailRtRC,"MIDI system callback installation failed.");
goto errLabel;
}
// setup the sub-system status notification
cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 );
cp->statusUpdateSmpIdx = 0;
// allocate the network mgr
if( cmRtNetAlloc(p->ctx,&cp->netH, cp->ctx.rtSubIdx, _cmRtSysNetRecv, cp ) != kOkNetRC )
{
rc = _cmRtError(p,kNetErrRtRC,"Network allocation failed.");
goto errLabel;
}
if( cmRtNetInitialize( cp->netH, ss->bcastAddr, ss->localNodeLabel, ss->localIpAddr, ss->localIpPort) != kOkNetRC )
{
rc = _cmRtError(p,kNetErrRtRC,"Network node initialization failed on label:%s addr:%s port:%i.",cmStringNullGuard(ss->localNodeLabel),cmStringNullGuard(ss->localIpAddr),ss->localIpPort);
goto errLabel;
}
// register the local endpoints
for(j=0; j<ss->endptCnt; ++j)
{
cmRtSysNetEndpt_t* ep = ss->endptArray + j;
if( cmRtNetRegisterEndPoint( cp->netH, ep->label, ep->id ) != kOkNetRC )
{
rc = _cmRtError(p,kNetErrRtRC,"Network end point allocation failed on label:%s id:%i.",cmStringNullGuard(ep->label),ep->id);
goto errLabel;
}
}
errLabel:
if( rc != kOkRtRC )
_cmRtSysFinalize(p);
return rc;
}
cmRtRC_t cmRtSysEndCfg( cmRtSysH_t h )
{
cmRtRC_t rc;
cmRt_t* p = _cmRtHandleToPtr(h);
unsigned i;
if((rc = _cmRtSysValidate(p)) != kOkRtRC )
goto errLabel;
for(i=0; i<p->ssCnt; ++i)
{
_cmRtCfg_t* cp = p->ssArray + i;
cp->runFl = true;
// start the real-time system thread
if( cmThreadPause( cp->threadH, 0 ) != kOkThRC )
{
rc = _cmRtError(p,kThreadErrRtRC,"Thread start failed.");
goto errLabel;
}
// start the input device
if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkRtRC )
return _cmRtError(p,kAudioDevStartFailRtRC,"The audio input device start failed.");
// start the output device
if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkRtRC )
return _cmRtError(p,kAudioDevStartFailRtRC,"The audio ouput device start failed.");
}
p->initFl = true;
errLabel:
if( rc != kOkRtRC )
_cmRtSysFinalize(p);
return rc;
}
cmRtRC_t cmRtSysFinalize(cmRtSysH_t h )
{
cmRtRC_t rc = kOkRtRC;
if( cmRtSysHandleIsValid(h) == false )
return rc;
cmRt_t* p = _cmRtHandleToPtr(h);
rc = _cmRtSysFinalize(p);
h.h = NULL;
return rc;
}
bool cmRtSysIsInitialized( cmRtSysH_t h )
{
cmRt_t* p = _cmRtHandleToPtr(h);
return p->initFl;
}
cmRtRC_t _cmRtSysVerifyInit( cmRt_t* p, bool errFl )
{
if( p->initFl == false )
{
// if the last msg generated was also a not init msg then don't
// generate another message - just return the error
if( errFl )
if( cmErrLastRC(&p->err) != kNotInitRtRC )
cmErrMsg(&p->err,kNotInitRtRC,"The real-time system is not initialized.");
return kNotInitRtRC;
}
return kOkRtRC;
}
bool cmRtSysIsEnabled( cmRtSysH_t h )
{
if( cmRtSysIsInitialized(h) == false )
return false;
cmRt_t* p = _cmRtHandleToPtr(h);
unsigned i;
for(i=0; i<p->ssCnt; ++i)
if( p->ssArray[i].cbEnableFl )
return true;
return false;
}
cmRtRC_t cmRtSysEnable( cmRtSysH_t h, bool enableFl )
{
cmRt_t* p = _cmRtHandleToPtr(h);
return _cmRtSysEnable(p,enableFl);
}
cmRtRC_t cmRtSysDeliverSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId )
{
cmRt_t* p = _cmRtHandleToPtr(h);
cmRtRC_t rc;
// the system must be initialized to use this function
if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
return rc;
if( msgSegCnt == 0 )
return kOkRtRC;
// BUG BUG BUG - there is no reason that both the rtSubIdx and the selId must
// be in the first segment but it would be nice.
assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) );
// The audio sub-system index is always the first field of the msg
// and the msg selector id is always the second field
unsigned* array = (unsigned*)msgDataPtrArray[0];
unsigned rtSubIdx = array[0];
unsigned selId = array[1];
if( selId == kUiMstrSelRtId )
return _cmRtHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt );
// if rtSubIdx == kInvalidIdx then send the msg to all sub-systems
// otherwise send it to the specified sub-system.
unsigned i = 0;
unsigned n = 1;
if( rtSubIdx == cmInvalidIdx )
n = p->ssCnt;
for(; i<n; ++i)
{
unsigned j = rtSubIdx==cmInvalidIdx ? i : rtSubIdx;
if((rc = _cmRtEnqueueMsg(p,p->ssArray[j].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP")) != kOkRtRC )
break;
}
return rc;
}
cmRtRC_t cmRtSysDeliverMsg( cmRtSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
{
const void* msgDataPtrArray[] = { msgPtr };
unsigned msgByteCntArray[] = { msgByteCnt };
return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId);
}
cmRtRC_t cmRtSysDeliverIdMsg( cmRtSysH_t h, unsigned rtSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId )
{
cmRtRC_t rc;
cmRt_t* p = _cmRtHandleToPtr(h);
// the system must be initialized to use this function
if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
return rc;
const void* msgDataPtrArray[] = { &rtSubIdx, &id, msgPtr };
unsigned msgByteCntArray[] = { sizeof(rtSubIdx), sizeof(id), msgByteCnt };
return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId);
}
unsigned cmRtSysIsMsgWaiting( cmRtSysH_t h )
{
cmRtRC_t rc;
cmRt_t* p = _cmRtHandleToPtr(h);
// the system must be initialized to use this function
if((rc = _cmRtSysVerifyInit(p,false)) != kOkRtRC )
return 0;
unsigned n = 0;
unsigned retByteCnt;
for(n=0; n < p->ssCnt; ++n )
{
if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 )
return retByteCnt;
p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
}
return 0;
}
cmRtRC_t cmRtSysReceiveMsg( cmRtSysH_t h, void* msgDataPtr, unsigned msgByteCnt )
{
cmRtRC_t rc;
cmRt_t* p = _cmRtHandleToPtr(h);
// the system must be initialized to use this function
if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
return rc;
//switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitRtSubIdx].dthQueueH,msgDataPtr,msgByteCnt) )
switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) )
{
case kOkThRC:
p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt;
return kOkRtRC;
case kBufTooSmallThRC:
return kBufTooSmallRtRC;
case kBufEmptyThRC:
return kNoMsgWaitingRtRC;
}
return _cmRtError(p,kTsQueueErrRtRC,"A deque operation failed on the DSP-to-Host message queue.");
}
void cmRtSysStatus( cmRtSysH_t h, unsigned rtSubIdx, cmRtSysStatus_t* statusPtr )
{
cmRt_t* p = _cmRtHandleToPtr(h);
// the system must be initialized to use this function
if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
return;
if( rtSubIdx < p->ssCnt )
*statusPtr = p->ssArray[rtSubIdx].status;
}
void cmRtSysStatusNotifyEnable( cmRtSysH_t h, unsigned rtSubIdx, bool enableFl )
{
cmRt_t* p = _cmRtHandleToPtr(h);
// the system must be initialized to use this function
if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
return;
unsigned i = rtSubIdx == cmInvalidIdx ? 0 : rtSubIdx;
unsigned n = rtSubIdx == cmInvalidIdx ? p->ssCnt : rtSubIdx+1;
for(; i<n; ++i)
p->ssArray[i].statusFl = enableFl;
}
bool cmRtSysHandleIsValid( cmRtSysH_t h )
{ return h.h != NULL; }
cmRtSysCtx_t* cmRtSysContext( cmRtSysH_t h, unsigned rtSubIdx )
{
cmRt_t* p = _cmRtHandleToPtr(h);
if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
return NULL;
if( rtSubIdx >= p->ssCnt )
return NULL;
return &p->ssArray[rtSubIdx].ctx;
}
cmRtRC_t cmRtSysEnableNoBlockMode( cmRtSysH_t h, unsigned rtSubIdx, bool enaFl, unsigned noBlockSleepMs )
{
cmRt_t* p = _cmRtHandleToPtr(h);
cmRtRC_t rc = kOkRtRC;
if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC )
return rc;
if( rtSubIdx >= p->ssCnt )
return cmErrMsg(&p->err,kInvalidArgRtRC,"Invalid 'rtSubIdx'. Enable non-block mode failed.");
p->ssArray[rtSubIdx].noBlockSleepMs = noBlockSleepMs;
p->ssArray[rtSubIdx].noBlockEnaFl = enaFl;
return kOkRtRC;
}
unsigned cmRtSysSubSystemCount( cmRtSysH_t h )
{
cmRt_t* p = _cmRtHandleToPtr(h);
if( _cmRtSysVerifyInit(p,true) != kOkRtRC )
return 0;
return p->ssCnt;
}
bool cmRtSysNetIsInitialized( cmRtSysH_t h )
{
cmRt_t* p = _cmRtHandleToPtr(h);
unsigned i = 0;
for(; i<p->ssCnt; ++i)
if( cmRtNetIsInitialized(p->ssArray[i].netH) )
return true;
return false;
}
cmRtRC_t cmRtSysNetDoSync( cmRtSysH_t h )
{
cmRtRC_t rc = kOkRtRC;
cmRt_t* p = _cmRtHandleToPtr(h);
unsigned i = 0;
for(; i<p->ssCnt; ++i)
if( cmRtNetIsInitialized(p->ssArray[i].netH) )
cmRtNetDoSync(p->ssArray[i].netH);
return rc;
}
cmRtRC_t cmRtSysNetReport( cmRtSysH_t h )
{
cmRtRC_t rc = kOkRtRC;
cmRt_t* p = _cmRtHandleToPtr(h);
unsigned i = 0;
for(; i<p->ssCnt; ++i)
{
cmRptPrintf(p->err.rpt,"Sub-system:%i\n",i);
if( cmRtNetIsValid(p->ssArray[i].netH))
cmRtNetReport(p->ssArray[i].netH);
}
return rc;
}
cmRtRC_t cmRtSysNetReportSyncEnable( cmRtSysH_t h, bool enableFl )
{
cmRtRC_t rc = kOkRtRC;
cmRt_t* p = _cmRtHandleToPtr(h);
unsigned i = 0;
for(; i<p->ssCnt; ++i)
if( cmRtNetIsValid(p->ssArray[i].netH))
cmRtNetReportSyncEnable(p->ssArray[i].netH,enableFl);
return rc;
}
cmRtRC_t cmRtSysNetGetHandle( cmRtSysH_t h, unsigned rtSubIdx, cmRtNetH_t* hp )
{
cmRtRC_t rc = kOkRtRC;
cmRt_t* p = _cmRtHandleToPtr(h);
assert( rtSubIdx < p->ssCnt );
if( rtSubIdx < p->ssCnt )
{
*hp = p->ssArray[rtSubIdx].netH;
return rc;
}
return cmErrMsg(&p->err,kInvalidArgRtRC,"The rtSubIdx %i is out of range %i.",rtSubIdx,p->ssCnt);
}
//===========================================================================================================================
//
// cmRtTest()
//
/// [cmRtSysTest]
typedef struct
{
double hz; // current synth frq
long phs; // current synth phase
double srate; // audio sample rate
unsigned cbCnt; // DSP cycle count
bool synthFl; // true=synth false=pass through
} _cmRtTestCbRecd;
typedef struct
{
unsigned rtSubIdx; // rtSubIdx must always be the first field in the msg
unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host
double hz;
unsigned uint;
} _cmRtTestMsg;
long _cmRtSynthSine( _cmRtTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt )
{
long ph = 0;
unsigned i;
for(i=0; i<chCnt; ++i)
{
unsigned j;
cmApSample_t* op = p + i;
ph = r->phs;
for(j=0; j<frmCnt; j++, op+=chCnt, ph++)
*op = (cmApSample_t)(0.9 * sin( 2.0 * M_PI * r->hz * ph / r->srate ));
}
return ph;
}
unsigned _cmRtTestChIdx = 0;
cmRC_t _cmRtTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr )
{
cmRC_t rc = cmOkRC;
cmRtSysCtx_t* ctx = (cmRtSysCtx_t*)cbPtr;
cmRtSysSubSys_t* ss = ctx->ss;
_cmRtTestCbRecd* r = (_cmRtTestCbRecd*)ss->cbDataPtr;
// update the calback counter
++r->cbCnt;
// if this is an audio update request
if( msgByteCnt == 0 )
{
unsigned i;
if( r->synthFl )
{
long phs = 0;
if(0)
{
for(i=0; i<ctx->oChCnt; ++i)
if( ctx->oChArray[i] != NULL )
phs = _cmRtSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle );
}
else
{
if( _cmRtTestChIdx < ctx->oChCnt )
phs = _cmRtSynthSine(r, ctx->oChArray[_cmRtTestChIdx], 1, ss->args.dspFramesPerCycle );
}
r->phs = phs;
}
else
{
// BUG BUG BUG - this assumes that the input and output channels are the same.
unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt);
for(i=0; i<chCnt; ++i)
memcpy(ctx->oChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle);
}
}
else // ... otherwise it is a msg for the DSP process from the host
{
_cmRtTestMsg* msg = (_cmRtTestMsg*)msgDataPtr;
msg->rtSubIdx = ctx->rtSubIdx;
switch(msg->id)
{
case 0:
r->hz = msg->hz;
break;
case 1:
msg->uint = r->cbCnt;
msgByteCnt = sizeof(_cmRtTestMsg);
rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1);
break;
}
}
return rc;
}
// print the usage message for cmAudioPortTest.c
void _cmRtPrintUsage( cmRpt_t* rpt )
{
char msg[] =
"cmRtSysTest() command switches:\n"
"-r <srate> -c <chcnt> -b <bufcnt> -f <frmcnt> -i <idevidx> -o <odevidx> -m <msgqsize> -d <dspsize> -t -p -h \n"
"\n"
"-r <srate> = sample rate (48000)\n"
"-c <chcnt> = audio channels (2)\n"
"-b <bufcnt> = count of buffers (3)\n"
"-f <frmcnt> = count of samples per buffer (512)\n"
"-i <idevidx> = input device index (0)\n"
"-o <odevidx> = output device index (2)\n"
"-m <msgqsize> = message queue byte count (1024)\n"
"-d <dspsize> = samples per DSP frame (64)\n"
"-s = true: sync to input port false: sync to output port\n"
"-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n"
"-p = report but don't start audio devices\n"
"-h = print this usage message\n";
cmRptPrintf(rpt,"%s",msg);
}
// Get a command line option.
int _cmRtGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl )
{
int i = 0;
for(; i<argc; ++i)
if( strcmp(label,argv[i]) == 0 )
{
if(boolFl)
return 1;
if( i == (argc-1) )
return defaultVal;
return atoi(argv[i+1]);
}
return defaultVal;
}
bool _cmRtGetBoolOpt( int argc, const char* argv[], const char* label, bool defaultVal )
{ return _cmRtGetOpt(argc,argv,label,defaultVal?1:0,true)!=0; }
int _cmRtGetIntOpt( int argc, const char* argv[], const char* label, int defaultVal )
{ return _cmRtGetOpt(argc,argv,label,defaultVal,false); }
void cmRtSysTest( cmCtx_t* ctx, int argc, const char* argv[] )
{
cmRtSysSubSys_t ss;
cmRtSysH_t h = cmRtSysNullHandle;
cmRtSysStatus_t status;
_cmRtTestCbRecd cbRecd = {1000.0,0,48000.0,0};
cmRpt_t* rpt = &ctx->rpt;
memset(&status,0,sizeof(status));
unsigned meterMs = 50;
unsigned ssCnt = 1;
unsigned rtSubIdx = 0;
if(_cmRtGetBoolOpt(argc,argv,"-h",false))
_cmRtPrintUsage(rpt);
cbRecd.srate = _cmRtGetIntOpt(argc,argv,"-r",48000);
cbRecd.synthFl = _cmRtGetBoolOpt(argc,argv,"-t",false)==false;
ss.args.rpt = rpt;
ss.args.inDevIdx = _cmRtGetIntOpt( argc,argv,"-i",0);
ss.args.outDevIdx = _cmRtGetIntOpt( argc,argv,"-o",2);
ss.args.syncInputFl = _cmRtGetBoolOpt(argc,argv,"-s",true);
ss.args.msgQueueByteCnt = _cmRtGetIntOpt( argc,argv,"-m",8192);
ss.args.devFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-f",512);
ss.args.dspFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-d",64);;
ss.args.audioBufCnt = _cmRtGetIntOpt( argc,argv,"-b",3);
ss.args.srate = cbRecd.srate;
ss.cbFunc = _cmRtTestCb; // set the DSP entry function
ss.cbDataPtr = &cbRecd; // set the DSP function argument record
cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl,
ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate);
if( cmApNrtAllocate(rpt) != kOkApRC )
goto errLabel;
if( cmApFileAllocate(rpt) != kOkApRC )
goto errLabel;
// initialize the audio device system
if( cmApInitialize(rpt) != kOkApRC )
goto errLabel;
cmApReport(rpt);
// initialize the audio buffer
if( cmApBufInitialize( cmApDeviceCount(), meterMs ) != kOkApRC )
goto errLabel;
// initialize the real-time system
if( cmRtSysAllocate(&h,ctx) != kOkRtRC )
goto errLabel;
if( cmRtSysBeginCfg(h,NULL,NULL,meterMs,ssCnt) != kOkRtRC )
goto errLabel;
if( cmRtSysCfg(h,&ss,rtSubIdx) != kOkRtRC )
goto errLabel;
if( cmRtSysEndCfg(h) != kOkRtRC )
goto errLabel;
// start the real-time system
cmRtSysEnable(h,true);
char c = 0;
printf("q=quit a-g=note n=ch r=rqst s=status\n");
// simulate a host event loop
while(c != 'q')
{
_cmRtTestMsg msg = {0,0,0,0};
bool fl = true;
// wait here for a key press
c =(char)fgetc(stdin);
fflush(stdin);
switch(c)
{
case 'c': msg.hz = cmMidiToHz(60); break;
case 'd': msg.hz = cmMidiToHz(62); break;
case 'e': msg.hz = cmMidiToHz(64); break;
case 'f': msg.hz = cmMidiToHz(65); break;
case 'g': msg.hz = cmMidiToHz(67); break;
case 'a': msg.hz = cmMidiToHz(69); break;
case 'b': msg.hz = cmMidiToHz(71); break;
case 'r': msg.id = 1; break; // request DSP process to send a callback count
case 'n': ++_cmRtTestChIdx; printf("ch:%i\n",_cmRtTestChIdx); break;
case 's':
// report the real-time system status
cmRtSysStatus(h,0,&status);
printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt);
//printf("%f \n",status.oMeterArray[0]);
fl = false;
break;
default:
fl=false;
}
if( fl )
{
// transmit a command to the DSP process
cmRtSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId);
}
// check if messages are waiting to be delivered from the DSP process
unsigned msgByteCnt;
if((msgByteCnt = cmRtSysIsMsgWaiting(h)) > 0 )
{
char buf[ msgByteCnt ];
// rcv a msg from the DSP process
if( cmRtSysReceiveMsg(h,buf,msgByteCnt) == kOkRtRC )
{
_cmRtTestMsg* msg = (_cmRtTestMsg*)buf;
switch(msg->id)
{
case 1:
printf("RCV: Callback count:%i\n",msg->uint);
break;
}
}
}
// report the audio buffer status
//cmApBufReport(ss.args.rpt);
}
// stop the real-time system
cmRtSysEnable(h,false);
goto exitLabel;
errLabel:
printf("REAL-TIME SYSTEM TEST ERROR\n");
exitLabel:
cmRtSysFree(&h);
cmApFinalize();
cmApFileFree();
cmApNrtFree();
cmApBufFinalize();
}
/// [cmRtSysTest]