libcm/cmProc.h
2013-03-01 17:30:50 -08:00

754 řádky
33 KiB
C

#ifndef cmProc_h
#define cmProc_h
#ifdef __cplusplus
extern "C" {
#endif
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmAudioFileH_t h; // audio file handle
cmAudioFileInfo_t info; // audio file info record
unsigned chIdx;
cmSample_t* outV; // buffer of audio from last read
unsigned outN; // length of outV in samples
cmChar_t* fn; // name of audio file
unsigned lastReadFrmCnt; // count of samples actually read on last read
bool eofFl;
unsigned begFrmIdx;
unsigned endFrmIdx;
unsigned curFrmIdx; // frame index of the next frame to read
cmMtxFile* mfp;
} cmAudioFileRd;
/// set p to NULL to dynamically allocate the object
/// fn and chIdx are optional - set fn to NULL to allocate the reader without opening a file.
/// If fn is valid then chIdx must also be valid.
/// Set 'endSmpIdx' to cmInvalidIdx to not limit the range of samples returned.
cmAudioFileRd* cmAudioFileRdAlloc( cmCtx* c, cmAudioFileRd* p, unsigned procSmpCnt, const char* fn, unsigned chIdx, unsigned begSmpIdx, unsigned endSmpIdx );
cmRC_t cmAudioFileRdFree( cmAudioFileRd** p );
cmRC_t cmAudioFileRdOpen( cmAudioFileRd* p, unsigned procSmpCnt, const cmChar_t* fn, unsigned chIdx, unsigned begSmpIdx, unsigned endSmpIdx );
cmRC_t cmAudioFileRdClose( cmAudioFileRd* p );
/// Returns cmEofRC if the end of file is encountered.
cmRC_t cmAudioFileRdRead( cmAudioFileRd* p );
cmRC_t cmAudioFileRdSeek( cmAudioFileRd* p, unsigned frmIdx );
/// Find the overall minimum, maximum, and mean sample values without changing the current file location.
cmRC_t cmAudioFileRdMinMaxMean( cmAudioFileRd* p, unsigned chIdx, cmSample_t* minPtr, cmSample_t* maxPtr, cmSample_t* meanPtr );
//------------------------------------------------------------------------------------------------------------
/// The buffer is intended to synchronize sample block rates between processes and to provide an overlapped
/// input buffer.
typedef struct
{
cmObj obj;
unsigned bufSmpCnt; // wndSmpCnt + hopSmpCnt
cmSample_t* bufV; // bufV[bufSmpCnt] all other pointers use this memory
cmSample_t* outV; // output window outV[ outN ]
unsigned outN; // outN == wndSmpCnt
unsigned procSmpCnt; // input sample count
unsigned wndSmpCnt; // output sample count
unsigned hopSmpCnt; // count of samples to shift the buffer by on each call to cmShiftExec()
cmSample_t* inPtr; // ptr to location in outV[] to recv next sample
bool fl; // reflects the last value returned by cmShiftBufExec().
} cmShiftBuf;
/// Set p to NULL to dynamically allocate the object. hopSmpCnt must be <= wndSmpCnt.
cmShiftBuf* cmShiftBufAlloc( cmCtx* c, cmShiftBuf* p, unsigned procSmpCnt, unsigned wndSmpCnt, unsigned hopSmpCnt );
cmRC_t cmShiftBufFree( cmShiftBuf** p );
cmRC_t cmShiftBufInit( cmShiftBuf* p, unsigned procSmpCnt, unsigned wndSmpCnt, unsigned hopSmpCnt );
cmRC_t cmShiftBufFinal( cmShiftBuf* p );
/// Returns true if a new hop is ready to be read otherwise returns false.
/// In general cmShiftBufExec() should be called in a loop until it returns false.
/// Note that 'sp' and 'sn' are ignored except for the first call after the function returns false.
/// This means that when called in a loop 'sp' and 'sn' are only used on the first time through the loop.
/// When procSmpCnt is less than hopSmpCnt the loop will only execute when at least wndSmpCnt
/// new samples have been buffered.
/// When procSmpCnt is greater than hopSmpCnt the loop will execute multiple times until less
// than wndSmpCnt new samples are available.
/// Note that 'sn' must always be less than or equal to procSmpCnt.
///
/// Example:
/// while( fill(sp,sn) ) // fill sp[] with sn samples
/// {
/// // shift by hopSmpCnt samples on all passes - insert new samples on first pass
/// while( cmShiftBufExec(p,sp,sn) )
/// proc(p->outV,p->outN); // process p->outV[wndSmpCnt]
/// }
bool cmShiftBufExec( cmShiftBuf* p, const cmSample_t* sp, unsigned sn );
void cmShiftBufTest( cmCtx* c );
//------------------------------------------------------------------------------------------------------------
/*
typedef struct
{
cmComplexS_t* complexV;
cmSample_t* outV;
cmFftPlanS_t plan;
} cmIFftObjS;
typedef struct
{
cmComplexR_t* complexV;
cmReal_t* outV;
cmFftPlanR_t plan;
} cmIFftObjR;
typedef struct
{
cmObj obj;
unsigned binCnt;
unsigned outN;
union
{
cmIFftObjS sr;
cmIFftObjR rr;
}u;
} cmIFft;
cmIFft* cmIFftAllocS( cmCtx* c, cmIFft* p, unsigned binCnt );
cmIFft* cmIFftAllocR( cmCtx* c, cmIFft* p, unsigned binCnt );
cmRC_t cmIFftFreeS( cmIFft** pp );
cmRC_t cmIFftFreeR( cmIFft** pp );
cmRC_t cmIFftInitS( cmIFft* p, unsigned binCnt );
cmRC_t cmIFftInitR( cmIFft* p, unsigned binCnt );
cmRC_t cmIFftFinalS( cmIFft* p );
cmRC_t cmIFftFinalR( cmIFft* p );
// x must contain 'binCnt' elements.
cmRC_t cmIFftExecS( cmIFft* p, cmComplexS_t* x );
cmRC_t cmIFftExecR( cmIFft* p, cmComplexR_t* x );
cmRC_t cmIFftExecPolarS( cmIFft* p, const cmReal_t* magV, const cmReal_t* phsV );
cmRC_t cmIFftExecPolarR( cmIFft* p, const cmReal_t* magV, const cmReal_t* phsV );
cmRC_t cmIFftExecRectS( cmIFft* p, const cmReal_t* rV, const cmReal_t* iV );
cmRC_t cmIFftExecPolarR( cmIFft* p, const cmReal_t* magV, const cmReal_t* phsV );
void cmIFftTest( cmRpt_t* rptFuncPtr );
*/
//------------------------------------------------------------------------------------------------------------
enum
{
kInvalidWndId = 0x000,
kHannWndId = 0x001,
kHammingWndId = 0x002,
kTriangleWndId = 0x004,
kKaiserWndId = 0x008,
kHannMatlabWndId= 0x010,
kUnityWndId = 0x020,
kWndIdMask = 0x0ff,
kNormByLengthWndFl = 0x100, // mult by 1/wndSmpCnt
kNormBySumWndFl = 0x200 // mult by wndSmpCnt/sum(wndV)
};
typedef struct
{
cmObj obj;
unsigned wndId;
unsigned flags;
cmSample_t* wndV;
cmSample_t* outV;
unsigned outN; // same as wndSmpCnt
double kslRejectDb;
cmMtxFile* mfp;
} cmWndFunc;
/// Set p to NULL to dynamically allocate the object
/// if wndId is set to a valid value this function will internally call cmWndFuncInit()
cmWndFunc* cmWndFuncAlloc( cmCtx* c, cmWndFunc* p, unsigned wndId, unsigned wndSmpCnt, double kaierSideLobeRejectDb );
cmRC_t cmWndFuncFree( cmWndFunc** pp );
cmRC_t cmWndFuncInit( cmWndFunc* p, unsigned wndId, unsigned wndSmpCnt, double kaiserSideLobeRejectDb );
cmRC_t cmWndFuncFinal( cmWndFunc* p );
cmRC_t cmWndFuncExec( cmWndFunc* p, const cmSample_t* sp, unsigned sn );
void cmWndFuncTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH );
//------------------------------------------------------------------------------------------------------------
/// Spectral frame delay. A circular buffer for spectral (or other fixed length) vectors.
typedef struct
{
cmObj obj;
cmSample_t* bufPtr;
unsigned maxDelayCnt;
int inIdx;
unsigned outN; // outN == binCnt
} cmSpecDelay;
/// Set p to NULL to dynamically allocate the object.
/// Allocate a spectral frame delay capable of delaying for 'maxDelayCnt' hops and
/// where each vector contains 'binCnt' elements.
cmSpecDelay* cmSpecDelayAlloc( cmCtx* c, cmSpecDelay* p, unsigned maxDelayCnt, unsigned binCnt );
cmRC_t cmSpecDelayFree( cmSpecDelay** p );
cmRC_t cmSpecDelayInit( cmSpecDelay* p, unsigned maxDelayCnt, unsigned binCnt );
cmRC_t cmSpecDelayFinal(cmSpecDelay* p );
/// Give an input vector to the delay. 'sn' must <= binCnt
cmRC_t cmSpecDelayExec( cmSpecDelay* p, const cmSample_t* sp, unsigned sn );
/// Get a pointer to a delayed vector. 'delayCnt' indicates the length of the delay in hops.
/// (e.g. 1 is the previous hop, 2 is two hops previous, ... )
const cmSample_t* cmSpecDelayOutPtr(cmSpecDelay* p, unsigned delayCnt );
//------------------------------------------------------------------------------------------------------------
typedef struct cmFilter_str
{
cmObj obj;
cmReal_t* a; // feedback coeff's
int an; // count of fb coeff's
cmReal_t* b; // feedforward coeff's
int bn; // count of ff coeffs'
cmReal_t* d; // delay
int di; //
int cn; // length of delay
cmReal_t b0; // 1st feedforward coeff
cmSample_t* outSmpV; // signal output vector
cmReal_t* outRealV;
unsigned outN; // length of outV (procSmpCnt)
} cmFilter;
// d[dn] is the initial value of the delay line where dn = max(an,bn)-1.
// Set d to NULL to intialize the delays to 0.
cmFilter* cmFilterAlloc( cmCtx* c, cmFilter* p, const cmReal_t* b, unsigned bn, const cmReal_t* a, unsigned an, unsigned procSmpCnt, const cmReal_t* d );
cmFilter* cmFilterAllocEllip( cmCtx* c, cmFilter* p, cmReal_t srate, cmReal_t passHz, cmReal_t stopHz, cmReal_t passDb, cmReal_t stopDb, unsigned procSmpCnt, const cmReal_t* d );
cmRC_t cmFilterFree( cmFilter** pp );
cmRC_t cmFilterInit( cmFilter* p, const cmReal_t* b, unsigned bn, const cmReal_t* a, unsigned an, unsigned procSmpCnt, const cmReal_t* d );
cmRC_t cmFilterInitEllip( cmFilter* p, cmReal_t srate, cmReal_t passHz, cmReal_t stopHz, cmReal_t passDb, cmReal_t stopDb, unsigned procSmpCnt, const cmReal_t* d );
cmRC_t cmFilterFinal( cmFilter* p );
// If y==NULL or yn==0 then the output is sent to p->outV[p->outN].
// This function can safely filter a signal in plcme therefore it is allowable for x[] and y[] to refer to the same memory.
// If x[] overlaps y[] then y must be <= x.
cmRC_t cmFilterExecS( cmFilter* p, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn );
cmRC_t cmFilterExecR( cmFilter* p, const cmReal_t* x, unsigned xn, cmReal_t* y, unsigned yn );
cmRC_t cmFilterSignal( cmCtx* c, const cmReal_t b[], unsigned bn, const cmReal_t a[], unsigned an, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn );
// Perform forward-reverse filtering.
cmRC_t cmFilterFilterS(cmCtx* c, const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const cmSample_t* x, unsigned xn, cmSample_t* y, unsigned yn );
cmRC_t cmFilterFilterR(cmCtx* c, const cmReal_t bb[], unsigned bn, const cmReal_t aa[], unsigned an, const cmReal_t* x, unsigned xn, cmReal_t* y, unsigned yn );
void cmFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH );
void cmFilterFilterTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmSpecDelay phsDelay;
cmSpecDelay magDelay;
unsigned binCnt;
cmSample_t out;
//cmMtxFile* mfp;
//unsigned cdfSpRegId;
} cmComplexDetect;
/// Set p to NULL to dynamically allocate the object.
cmComplexDetect* cmComplexDetectAlloc(cmCtx* c, cmComplexDetect* p, unsigned binCnt );
cmRC_t cmComplexDetectFree( cmComplexDetect** pp);
cmRC_t cmComplexDetectInit( cmComplexDetect* p, unsigned binCnt );
cmRC_t cmComplexDetectFinal(cmComplexDetect* p);
cmRC_t cmComplexDetectExec( cmComplexDetect* p, const cmSample_t* magV, const cmSample_t* phsV, unsigned binCnt );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
double threshold;
unsigned medSmpCnt;
unsigned frmCnt; // expected number of frames to store
unsigned dfi;
cmSample_t* df;
cmSample_t* fdf;
cmSample_t onrate;
//cmMtxFile* mfp;
} cmComplexOnset;
cmComplexOnset* cmComplexOnsetAlloc( cmCtx* c, cmComplexOnset* p, unsigned procSmpCnt, double srate, unsigned medFiltWndSmpCnt, double threshold, unsigned frameCnt );
cmRC_t cmComplexOnsetFree( cmComplexOnset** pp);
cmRC_t cmComplexOnsetInit( cmComplexOnset* p, unsigned procSmpCnt, double srate, unsigned medFiltWndSmpCnt, double threshold, unsigned frameCnt );
cmRC_t cmComplexOnsetFinal( cmComplexOnset* p);
cmRC_t cmComplexOnsetExec( cmComplexOnset* p, cmSample_t cdf );
cmRC_t cmComplexOnsetCalc( cmComplexOnset* p );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
unsigned melBandCnt;
unsigned dctCoeffCnt;
unsigned binCnt;
cmReal_t* melM;
cmReal_t* dctM;
cmReal_t* outV;
unsigned outN; // outN == dctCoeffCnt
cmMtxFile* mfp;
unsigned mfccSpRegId; // cmStatsProc regId
} cmMfcc;
cmMfcc* cmMfccAlloc( cmCtx* c, cmMfcc* p, double srate, unsigned melBandCnt, unsigned dctCoeffCnt, unsigned binCnt );
cmRC_t cmMfccFree( cmMfcc** pp );
cmRC_t cmMfccInit( cmMfcc* p, double srate, unsigned melBandCnt, unsigned dctCoeffCnt, unsigned binCnt );
cmRC_t cmMfccFinal( cmMfcc* p );
cmRC_t cmMfccExecPower( cmMfcc* p, const cmReal_t* magPowV, unsigned binCnt );
cmRC_t cmMfccExecAmplitude( cmMfcc* p, const cmReal_t* magAmpV, unsigned binCnt );
void cmMfccTest();
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmReal_t* ttmV; // Terhardt outer ear filter
cmReal_t* sfM; // Shroeder spreading function
unsigned* barkIdxV; // Bark to bin map
unsigned* barkCntV; //
cmReal_t* outV; // specific loudness in sones
unsigned outN; // outN == barkBandCnt;
cmReal_t overallLoudness; // overall loudness in sones
unsigned binCnt; // expected length of incoming power spectrum
unsigned barkBandCnt; // count of bark bands
unsigned flags; //
cmMtxFile* mfp;
unsigned sonesSpRegId;
unsigned loudSpRegId;
} cmSones;
enum { kDontUseEqlLoudSonesFl=0x00, kUseEqlLoudSonesFl=0x01 };
cmSones* cmSonesAlloc( cmCtx* c, cmSones* p, double srate, unsigned barkBandCnt, unsigned binCnt, unsigned flags );
cmRC_t cmSonesFree( cmSones** pp );
cmRC_t cmSonesInit( cmSones* p, double srate, unsigned barkBandCnt, unsigned binCnt, unsigned flags );
cmRC_t cmSonesFinal( cmSones* p );
cmRC_t cmSonesExec( cmSones* p, const cmReal_t* magPowV, unsigned binCnt );
void cmSonesTest();
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
unsigned cBufCnt;
unsigned cBufCurCnt;
unsigned cBufIdx;
double cBufSum;
unsigned cCntSum;
cmReal_t* cBufPtr;
unsigned* cCntPtr;
cmSample_t offset;
double dBref;
cmSample_t* outV;
unsigned outN; // (outN == procSmpCnt)
unsigned flags;
cmMtxFile* mfp;
} cmAudioOffsetScale;
/// This processor adds an offset to an audio signal and scales into dB (SPL) using one of two techniques
/// 1) Measures the effective sound pressure (via RMS) and then scales the signal to the reference dB (SPL)
/// In this case dBref is commonly set to 70. See Timony, 2004, Implementing Loudness Models in Matlab.
///
/// 2) treats the dBref as the maximum dB (SPL) and scales the signal by this amount without regard
/// measured signal level. In this case dBref is commonly set to 96 (max. dB (SPL) value for 16 bits)
/// and rmsWndSecs is ignored.
///
/// Note that setting rmsWndSecs to zero has the effect of using procSmpCnt as the window length.
enum { kNoAudioScaleFl=0x01, kRmsAudioScaleFl=0x02, kFixedAudioScaleFl=0x04 };
cmAudioOffsetScale* cmAudioOffsetScaleAlloc( cmCtx* c, cmAudioOffsetScale* p, unsigned procSmpCnt, double srate, cmSample_t offset, double rmsWndSecs, double dBref, unsigned flags );
cmRC_t cmAudioOffsetScaleFree( cmAudioOffsetScale** pp );
cmRC_t cmAudioOffsetScaleInit( cmAudioOffsetScale* p, unsigned procSmpCnt, double srate, cmSample_t offset, double rmsWndSecs, double dBref, unsigned flags );
cmRC_t cmAudioOffsetScaleFinal( cmAudioOffsetScale* p );
cmRC_t cmAudioOffsetScaleExec( cmAudioOffsetScale* p, const cmSample_t* sp, unsigned sn );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmReal_t* rmsV;
cmReal_t* hfcV;
cmReal_t* scnV;
cmReal_t rmsSum;
cmReal_t hfcSum;
cmReal_t scnSum;
cmReal_t ssSum;
cmReal_t rms; // RMS output
cmReal_t hfc; // high-frequency content output
cmReal_t sc; // spectral centroid output
cmReal_t ss; // spectral spread output
unsigned binCnt;
unsigned flags;
unsigned wndFrmCnt;
unsigned frameIdx;
unsigned frameCnt;
double binHz;
cmMtxFile* mfp;
unsigned rmsSpRegId;
unsigned hfcSpRegId;
unsigned scSpRegId;
unsigned ssSpRegId;
} cmSpecMeas;
/// Set wndFrmCnt to the number of spectral frames to take the measurement over.
/// Setting wndFrmCnt to 1 has the effect of calculating the value on the current frame only.
/// Set flags = kWholeSigSpecMeasFl to ignore wndFrmCnt and calculate the result on the entire signal.
/// In effect this treats the entire signal as the length of the measurement window.
enum { kWholeSigSpecMeasFl=0x00, kUseWndSpecMeasFl=0x01 };
cmSpecMeas* cmSpecMeasAlloc( cmCtx* c, cmSpecMeas* p, double srate, unsigned binCnt, unsigned wndFrmCnt, unsigned flags );
cmRC_t cmSpecMeasFree( cmSpecMeas** pp );
cmRC_t cmSpecMeasInit( cmSpecMeas* p, double srate, unsigned binCnt, unsigned wndFrmCnt, unsigned flags );
cmRC_t cmSpecMeasFinal( cmSpecMeas* p );
cmRC_t cmSpecMeasExec( cmSpecMeas* p, const cmReal_t* magPowV, unsigned binCnt );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmShiftBuf* sbp; // shift buffer used internally if procSmpCnt < measSmpCnt
cmShiftBuf shiftBuf;
double srate; //
cmReal_t zcr; // zero crossing rate per second
cmSample_t zcrDelay; // used internally by zero crossing count algorithm
unsigned measSmpCnt; // length of measurement window in samples
unsigned procSmpCnt; // expected number of samples per call to exec
unsigned zcrSpRegId;
cmMtxFile* mfp;
} cmSigMeas;
// procSmpCnt must be <= measSmpCnt
cmSigMeas* cmSigMeasAlloc( cmCtx* c, cmSigMeas* p, double srate, unsigned procSmpCnt, unsigned measSmpCnt );
cmRC_t cmSigMeasFree( cmSigMeas** pp );
cmRC_t cmSigMeasInit( cmSigMeas* p, double srate, unsigned procSmpCnt, unsigned measSmpCnt );
cmRC_t cmSigMeasFinal( cmSigMeas* p );
cmRC_t cmSigMeasExec( cmSigMeas* p, const cmSample_t* sigV, unsigned smpCnt );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmFilter filt;
cmSample_t* outV;
unsigned outN;
unsigned upFact;
unsigned dnFact;
unsigned upi;
unsigned dni;
cmMtxFile* mfp;
} cmSRC;
/// The srate paramater is the sample rate of the source signal provided via cmSRCExec()
cmSRC* cmSRCAlloc( cmCtx* c, cmSRC* p, double srate, unsigned procSmpCnt, unsigned upFact, unsigned dnFact );
cmRC_t cmSRCFree( cmSRC** pp );
cmRC_t cmSRCInit( cmSRC* p, double srate, unsigned procSmpCnt, unsigned upFact, unsigned dnFact );
cmRC_t cmSRCFinal( cmSRC* p );
cmRC_t cmSRCExec( cmSRC* p, const cmSample_t* sp, unsigned sn );
void cmSRCTest();
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmComplexR_t* fiV;
cmComplexR_t* foV;
cmComplexR_t* skM; // skM[ wndSmpCnt, constQBinCnt ]
unsigned* skBegV; // skBegV[ constQBinCnt ] indexes used to decrease the size of the mtx mult in cmConstQExex()
unsigned* skEndV; // skEndV[ constQBinCnt ]
unsigned wndSmpCnt; // window length of the complex FFT required to feed this transform
unsigned constQBinCnt; // count of bins in the const Q output
unsigned binsPerOctave; //
cmComplexR_t* outV; // outV[ constQBinCnt ]
cmReal_t* magV; // outV[ constQBinCnt ]
cmMtxFile* mfp;
} cmConstQ;
cmConstQ* cmConstQAlloc( cmCtx* c, cmConstQ* p, double srate, unsigned minMidiPitch, unsigned maxMidiPitch, unsigned binsPerOctave, double thresh );
cmRC_t cmConstQFree( cmConstQ** pp );
cmRC_t cmConstQInit( cmConstQ* p, double srate, unsigned minMidiPitch, unsigned maxMidiPitch, unsigned binsPerOctave, double thresh );
cmRC_t cmConstQFinal( cmConstQ* p );
cmRC_t cmConstQExec( cmConstQ* p, const cmComplexR_t* ftV, unsigned binCnt );
//------------------------------------------------------------------------------------------------------------
typedef struct
{
cmObj obj;
cmReal_t* hpcpM; // hpcpM[ frameCnt , binsPerOctave ] - stored hpcp
cmReal_t* fhpcpM;// fhpcpM[ binsPerOctave, frameCnt ] - filtered hpcp (note transposed relative to hpcpA)
unsigned* histV; // histM[ binsPerOctave/12 ]
cmReal_t* outM; // outM[ 12, frameCnt ];
unsigned histN; // binsPerOctave/12
unsigned binsPerOctave; // const-q bins representing 1 octave
unsigned constQBinCnt; // total count of const-q bins
unsigned frameCnt; // expected count of hpcp vectors to store.
unsigned frameIdx; // next column in hpcpM[] to receive input
unsigned cqMinMidiPitch;
unsigned medFiltOrder;
cmReal_t* meanV; // meanV[12]
cmReal_t* varV; // varV[12]
cmMtxFile* mf0p; // debug files
cmMtxFile* mf1p;
cmMtxFile* mf2p;
} cmHpcp;
cmHpcp* cmTunedHpcpAlloc( cmCtx* c, cmHpcp* p, unsigned binsPerOctave, unsigned constQBinCnt, unsigned cqMinMidiPitch, unsigned frameCnt, unsigned medFiltOrder );
cmRC_t cmTunedHpcpFree( cmHpcp** pp );
cmRC_t cmTunedHpcpInit( cmHpcp* p, unsigned binsPerOctave, unsigned constQBinCnt, unsigned cqMinMidiPitch, unsigned frameCnt, unsigned medFiltOrder );
cmRC_t cmTunedHpcpFinal( cmHpcp* p );
cmRC_t cmTunedHpcpExec( cmHpcp* p, const cmComplexR_t* constQBinPtr, unsigned constQBinCnt );
cmRC_t cmTunedHpcpTuneAndFilter( cmHpcp* p);
//------------------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------------------------
struct cmFftRR_str;
struct cmIFftRR_str;
typedef struct
{
cmObj obj;
struct cmFftRR_str* fft;
struct cmIFftRR_str* ifft;
unsigned frmCnt; // 512 length of df
unsigned maxLagCnt; // 128 length of longest CMF lag
unsigned histBinCnt; // 15 count of histogram elements and rows in H[]
unsigned hColCnt; // 128 count of columns in H[]
cmReal_t* m; // m[ frmCnt x maxLagCnt ]
cmReal_t* H; // histogram transformation mtx
cmReal_t* df; // df[ frmCnt ] onset detection function
cmReal_t* fdf; // fdf[ frmCnt ] filtered onset detection function
unsigned dfi; // index next df[] location to receive an incoming value
cmReal_t* histV; // histV[ histBinCnt ] histogram output
cmMtxFile* mfp;
} cmBeatHist;
cmBeatHist* cmBeatHistAlloc( cmCtx* c, cmBeatHist* p, unsigned frmCnt );
cmRC_t cmBeatHistFree( cmBeatHist** pp );
cmRC_t cmBeatHistInit( cmBeatHist* p, unsigned frmCnt );
cmRC_t cmBeatHistFinal( cmBeatHist* p );
cmRC_t cmBeatHistExec( cmBeatHist* p, cmSample_t df );
cmRC_t cmBeatHistCalc( cmBeatHist* p );
//------------------------------------------------------------------------------------------------------------
// Gaussian Mixture Model containing N Gaussian PDF's each of dimension D
typedef struct
{
cmObj obj;
unsigned K; // count of components
unsigned D; // dimensionality of each component
cmReal_t* gV; // gM[ K ] mixture gain vector
cmReal_t* uM; // uM[ D x K ] component mean column vectors
cmReal_t* sMM; // sMM[D x D x K ] component covariance matrices - each column is a DxD matrix
cmReal_t* isMM; // isMM[D x D x K] inverted covar matrices
cmReal_t* uMM; // uMM[ D x D x K] upper triangle factor of chol(sMM)
cmReal_t* logDetV;// detV[ K ] determinent of covar matrices
cmReal_t* t; // t[ D x D ]scratch matrix used for training
unsigned uflags; // user defined flags
} cmGmm_t;
enum { cmMdgNoFlags=0x0, cmGmmDiagFl=0x01, cmGmmSkipKmeansFl=0x02 };
cmGmm_t* cmGmmAlloc( cmCtx* c, cmGmm_t* p, unsigned N, unsigned D, const cmReal_t* gV, const cmReal_t* uM, const cmReal_t* sMM, unsigned flags );
cmRC_t cmGmmFree( cmGmm_t** pp );
cmRC_t cmGmmInit( cmGmm_t* p, unsigned N, unsigned D, const cmReal_t* gV, const cmReal_t* uM, const cmReal_t* sMM, unsigned flags );
cmRC_t cmGmmFinal( cmGmm_t* p );
// Estimate the parameters of the GMM using the training data in xM[p->D,xN].
// *iterCntPtr on input is the number of iterations with no change in class assignment to signal convergence.
// *iterCntPtr on output is the total number of interations required to converge.
cmRC_t cmGmmTrain( cmGmm_t* p, const cmReal_t* xM, unsigned xN, unsigned* iterCntPtr );
// Return a pointer to the feature vector at frmIdx containing D elements.
typedef const cmReal_t* (*cmGmmReadFunc_t)( void* userPtr, unsigned colIdx );
// Same as cmGmmTrain() but uses a function to access the feature vector.
// The optional matrix uM[D,K] contains the initial mean values or NULL if not used.
// The optional flag array roFlV[K] is used to indicate read-only components and is only used
// when the uM[] arg. is non-NULL. Set roFlV[i] to true to indicate that the mean value supplied by
// the uM[] arg. should not be alterned by the training process.
// If 'maxIterCnt' is positive then it is the maximum number of iterations the training process will make
// otherwise it is ignored.
cmRC_t cmGmmTrain2( cmGmm_t* p, cmGmmReadFunc_t readFunc, void* userFuncPtr, unsigned xN, unsigned* iterCntPtr, const cmReal_t* uM, const bool* roFlV, int maxIterCnt );
// Generate data yN data points from the GMM and store the result in yM[p->D,yN].
cmRC_t cmGmmGenerate( cmGmm_t* p, cmReal_t* yM, unsigned yN );
// Evaluate the probability of each column of xM[p->D,xN] and return the result in y[xN].
// If yM[xN,K] is non-NULL then the individual component prob. values are returned
cmRC_t cmGmmEval( cmGmm_t* p, const cmReal_t* xM, unsigned xN, cmReal_t* yV, cmReal_t* yM);
// Same as cmGmmEval() but uses a a function to access each data vector
cmRC_t cmGmmEval2( cmGmm_t* p, cmGmmReadFunc_t readFunc, void* userFuncPtr, unsigned xN, cmReal_t* yV, cmReal_t* yM);
// Evaluate each component for a single data point
// xV[D] - observed data point
// yV[K] - output contains the evaluation for each component
cmRC_t cmGmmEval3( cmGmm_t* p, const cmReal_t* xV, cmReal_t* yV );
void cmGmmPrint( cmGmm_t* p, bool detailsFl );
void cmGmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH );
//------------------------------------------------------------------------------------------------------------
// Continuous Hidden Markov Model
typedef struct
{
cmObj obj;
unsigned N; // count of states
unsigned K; // count of components per mixture
unsigned D; // dimensionality of the observation data
cmReal_t* iV; // iV[ N ] initial state probability mtx
cmReal_t* aM; // aM[ N x N] transition probability mtx
cmGmm_t** bV; // bV[ N ] observation probability mtx (array of pointers to GMM's)
cmReal_t* bM; // bM[ N,T] state-observation probability matrix
cmMtxFile* mfp;
} cmChmm_t;
// Continuous HMM consisting of stateN states where the observations
// associated with each state are generated by a Gaussian mixture PDF.
// stateN - count of states
// mixN - count of components in the mixtures
// dimN - dimensionality of the observation data
cmChmm_t* cmChmmAlloc( cmCtx* c, cmChmm_t* p, unsigned stateN, unsigned mixN, unsigned dimN, const cmReal_t* iV, const cmReal_t* aM );
cmRC_t cmChmmFree( cmChmm_t** pp );
cmRC_t cmChmmInit( cmChmm_t* p, unsigned stateN, unsigned mixN, unsigned dimN, const cmReal_t* iV, const cmReal_t* aM );
cmRC_t cmChmmFinal( cmChmm_t* p );
// Set the iV,aM and bV parameters to well-formed random values.
cmRC_t cmChmmRandomize( cmChmm_t* p, const cmReal_t* oM, unsigned T );
// Train the HMM using segmental k-means to initialize the model parameters.
// threshProb is the min change in fit between the data and the model above which the procedure will continue to iterate.
// maxIterCnt is the maximum number of iterations the algorithm will make without regard for threshProb.
// iterCnt is the value of iterCnt used in the call cmChmmTrain() on each iteration
cmRC_t cmChmmSegKMeans( cmChmm_t* p, const cmReal_t* oM, unsigned T, cmReal_t threshProb, unsigned maxIterCnt, unsigned iterCnt );
cmRC_t cmChmmSetGmm( cmChmm_t* p, unsigned i, const cmReal_t* wV, const cmReal_t* uM, const cmReal_t* sMM, unsigned flags );
// oM[D,T] - observation matrix
// alphaM[N,T] - prob of being in each state and observtin oM(:,t)
// logPrV[T] - (optional) record the log prob of the data given the model at each time step
// Returns sum(logPrV[T])
cmReal_t cmChmmForward( const cmChmm_t* p, const cmReal_t* oM, unsigned T, cmReal_t* alphaM, cmReal_t* logPrV );
void cmChmmBackward( const cmChmm_t* p, const cmReal_t* oM, unsigned T, cmReal_t* betaM );
// bM[N,T] the state-observation probability table is optional
cmReal_t cmChmmCompare( const cmChmm_t* p0, const cmChmm_t* p1, unsigned T );
// Generate a series of observations.
// oM[ p->D , T ] - output matrix
// sV[ T ] - optional vector to record the state used to generate the ith observation.
cmRC_t cmChmmGenerate( const cmChmm_t* p, cmReal_t* oM, unsigned T, unsigned* sV );
// Infer the HMM parameters (p->iV,p->aM,p->bV) from the observations oM[D,T]
enum { kNoTrainMixCoeffChmmFl=0x01, kNoTrainMeanChmmFl=0x02, kNoTrainCovarChmmFl=0x04 };
cmRC_t cmChmmTrain( cmChmm_t* p, const cmReal_t* oM, unsigned T, unsigned iterCnt, cmReal_t thresh, unsigned flags );
// Determine the ML state sequence yV[T] given the observations oM[D,T].
cmRC_t cmChmmDecode( cmChmm_t* p, const cmReal_t* oM, unsigned T, unsigned* yV );
void cmChmmPrint( cmChmm_t* p );
void cmChmmTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH );
//------------------------------------------------------------------------------------------------------------
// Chord recognizer
typedef struct
{
cmObj obj;
cmChmm_t* h; // hmm
unsigned N; // state count N=24
unsigned D; // data dimension D=12
unsigned S; // tonal space dim S=6
unsigned T; // frames in chromaM
cmReal_t* iV; // iV[N]
cmReal_t* aM; // aM[N,N]
cmReal_t* uM; // uM[D,N]
cmReal_t* sMM; // sMM[D*D,N]
cmReal_t* phiM; // phiM[S,T]
cmReal_t* chromaM; // chromaM[D,T]
cmReal_t* tsM; // tsM[S,T]
cmReal_t* cdtsV; // cdts[1,T]
cmReal_t triadSeqMode;
cmReal_t triadSeqVar;
cmReal_t triadIntMean;
cmReal_t triadIntVar;
cmReal_t* tsMeanV; // tsMeanV[S];
cmReal_t* tsVarV; // tsVarV[S]
cmReal_t cdtsMean;
cmReal_t cdtsVar;
} cmChord;
cmChord* cmChordAlloc( cmCtx* c, cmChord* p, const cmReal_t* chromaM, unsigned T );
cmRC_t cmChordFree( cmChord** p );
cmRC_t cmChordInit( cmChord* p, const cmReal_t* chromaM, unsigned T );
cmRC_t cmChordFinal( cmChord* p );
void cmChordTest( cmRpt_t* rpt, cmLHeapH_t lhH, cmSymTblH_t stH );
#ifdef __cplusplus
}
#endif
#endif