libcm is a C development framework with an emphasis on audio signal processing applications.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cmAudioSys.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. //| Copyright: (C) 2009-2020 Kevin Larke <contact AT larke DOT org>
  2. //| License: GNU GPL version 3.0 or above. See the accompanying LICENSE file.
  3. //( { file_desc: "This is the kernel of a real-time audio processing engine." kw:[audio rt] }
  4. //
  5. // The audio system is composed a collection of independent sub-systems.
  6. // Each sub-system maintains a thread which runs asynchrounsly
  7. // from the application, the MIDI devices, and the audio devices.
  8. // To faciliate communication between these components each sub-system maintains
  9. // two thread-safe data buffers one for control information and a second
  10. // for audio data.
  11. //
  12. // The audio devices are the primary driver for the system.
  13. // Callbacks from the audio devices (See #cmApCallbackPtr_t)
  14. // inserts incoming audio samples into the audio
  15. // record buffers and extracts samples from the playback buffer.
  16. // When sufficient incoming samples and outgoing empty buffer space exists
  17. // a sub-system thread is waken up by the callback. This triggers a DSP audio
  18. // processing cycle which empties/fills the audio buffers. During a DSP
  19. // processing cycle control messages from the application and MIDI are blocked and
  20. // buffered. Upon completetion of the DSP cycle a control message
  21. // transfer cycles occurs - buffered incoming messages are passed to
  22. // the DSP system and messages originating in the DSP system are
  23. // buffered by the audio system for later pickup by the application
  24. // or MIDI system.
  25. //
  26. // Note that control messages that arrive when the DSP cycle is not
  27. // occurring can pass directly through to the DSP system.
  28. //
  29. // The DSP system sends messages back to the host by calling
  30. // cmAsDspToHostFunc_t provided by cmAudioSysCtx_t. These
  31. // calls are always made from within an audio system call to
  32. // audio or control update within cmAsCallback_t. cmAsDspToHostFunc_t
  33. // simply stores the message in a message buffer. The host picks
  34. // up the message at some later time when it notices that messages
  35. // are waiting via polling cmAudioSysIsMsgWaiting().
  36. //
  37. // Implementation: \n
  38. // The audio sub-systems work by maintaining an internal thread
  39. // which blocks on a mutex condition variable.
  40. // While the thread is blocked the mutex is unlocked allowing messages
  41. // to pass directly through to the DSP procedure via cmAsCallback().
  42. //
  43. // Periodic calls from running audio devices update the audio buffer.
  44. // When the audio buffer has input samples waiting and output space
  45. // available the condition variable is signaled, the mutex is
  46. // then automatically locked by the system, and the DSP execution
  47. // procedure is called via cmAsCallback().
  48. //
  49. // Messages arriving while the mutex is locked are queued and
  50. // delivered to the DSP procedure at the end of the DSP execution
  51. // procedure.
  52. //
  53. //)
  54. #ifndef cmAudioSys_h
  55. #define cmAudioSys_h
  56. #ifdef __cplusplus
  57. extern "C" {
  58. #endif
  59. //(
  60. // Audio system result codes
  61. enum
  62. {
  63. kOkAsRC = cmOkRC,
  64. kThreadErrAsRC,
  65. kMutexErrAsRC,
  66. kTsQueueErrAsRC,
  67. kMsgEnqueueFailAsRC,
  68. kAudioDevSetupErrAsRC,
  69. kAudioBufSetupErrAsRC,
  70. kAudioDevStartFailAsRC,
  71. kAudioDevStopFailAsRC,
  72. kBufTooSmallAsRC,
  73. kNoMsgWaitingAsRC,
  74. kMidiSysFailAsRC,
  75. kSerialPortFailAsRC,
  76. kMsgSerializeFailAsRC,
  77. kStateBufFailAsRC,
  78. kInvalidArgAsRC,
  79. kNotInitAsRC
  80. };
  81. enum
  82. {
  83. kAsDfltMsgQueueByteCnt = 0xffff,
  84. kAsDfltDevFramesPerCycle = 512,
  85. kAsDfltDspFramesPerCycle = 64,
  86. kAsDfltBufCnt = 3,
  87. kAsDfltSrate = 44100,
  88. kAsDfltSyncToInputFl = 1,
  89. kAsDfltMinMeterMs = 10,
  90. kAsDfltMeterMs = 50,
  91. kAsDfltMaxMeterMs = 1000
  92. };
  93. typedef cmHandle_t cmAudioSysH_t; //< Audio system handle type
  94. typedef unsigned cmAsRC_t; //< Audio system result code
  95. struct cmAudioSysCtx_str;
  96. //
  97. // DSP system callback function.
  98. //
  99. // This is the sole point of entry into the DSP system while the audio system is running.
  100. //
  101. // ctxPtr is pointer to a cmAudioSysCtx_t record.
  102. //
  103. // This function is called under two circumstances:
  104. //
  105. // 1) To notify the DSP system that the audio input/output buffers need to be serviced.
  106. // This is a perioidic request which the DSP system uses as its execution trigger.
  107. // cmAudioSysCtx_t.audioRateFl is set to true to indicate this type of callback.
  108. //
  109. // 2) To pass messages from the host application to the DSP system.
  110. // The DSP system is asyncronous with the host because it executes in the
  111. // audio system thread rather than the host thread. The cmAudioSysDeliverMsg()
  112. // function synchronizes incoming messages with the internal audio system
  113. // thread to prevent thread collisions.
  114. //
  115. // Notes:
  116. // This callback is always made with the internal audio system mutex locked.
  117. //
  118. // The signal time covered by the callback is from
  119. // ctx->begSmpIdx to ctx->begSmpIdx+cfg->dspFramesPerCycle.
  120. //
  121. // The return value is currently not used.
  122. typedef cmRC_t (*cmAsCallback_t)(void* ctxPtr, unsigned msgByteCnt, const void* msgDataPtr );
  123. // Audio device sub-sytem configuration record
  124. typedef struct cmAudioSysArgs_str
  125. {
  126. cmRpt_t* rpt; // system console object
  127. const cmChar_t* inDevLabel; // input audio device text label
  128. const cmChar_t* outDevLabel; // output audio device text label
  129. unsigned inDevIdx; // input audio device index
  130. unsigned outDevIdx; // output audio device index
  131. bool syncInputFl; // true/false sync the DSP update callbacks with audio input/output
  132. unsigned msgQueueByteCnt; // Size of the internal msg queue used to buffer msgs arriving via cmAudioSysDeliverMsg().
  133. unsigned devFramesPerCycle; // (512) Audio device samples per channel per device update buffer.
  134. unsigned dspFramesPerCycle; // (64) Audio samples per channel per DSP cycle.
  135. unsigned audioBufCnt; // (3) Audio device buffers.
  136. double srate; // Audio sample rate.
  137. int srateMult; // Sample rate multiplication factor (negative for divide)
  138. } cmAudioSysArgs_t;
  139. // Audio sub-system configuration record.
  140. // This record is provided by the host to configure the audio system
  141. // via cmAudioSystemAllocate() or cmAudioSystemInitialize().
  142. typedef struct cmAudioSysSubSys_str
  143. {
  144. cmAudioSysArgs_t args; // Audio device configuration
  145. cmAsCallback_t cbFunc; // DSP system entry point function.
  146. void* cbDataPtr; // Host provided data for the DSP system callback.
  147. } cmAudioSysSubSys_t;
  148. // Signature of a callback function provided by the audio system to receive messages
  149. // from the DSP system for later dispatch to the host application.
  150. // This declaration is used by the DSP system implementation and the audio system.
  151. // Note that this function is intended to convey one message broken into multiple parts.
  152. // See cmTsQueueEnqueueSegMsg() for the equivalent interface.
  153. typedef cmAsRC_t (*cmAsDspToHostFunc_t)(struct cmAudioSysCtx_str* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt);
  154. // Record passed with each call to the DSP callback function cmAsCallback_t
  155. typedef struct cmAudioSysCtx_str
  156. {
  157. void* reserved; // used internally by the audio system
  158. bool audioRateFl; // true if this is an audio update callback
  159. unsigned srcNetNodeId; // Source net node if this is a msg callback originating from a remote network node.
  160. unsigned asSubIdx; // index of the sub-system this DSP process is serving
  161. cmAudioSysSubSys_t* ss; // ptr to a copy of the cfg recd used to initialize the audio system
  162. unsigned begSmpIdx; // gives signal time as a sample count
  163. cmAsDspToHostFunc_t dspToHostFunc; // Callback used by the DSP process to send messages to the host
  164. // via the audio system. Returns a cmAsRC_t result code.
  165. // output (playback) buffers
  166. cmSample_t** oChArray; // each ele is a ptr to buffer with cfg.dspFramesPerCycle samples
  167. unsigned oChCnt; // count of output channels (ele's in oChArray[])
  168. cmTimeSpec_t oTimeStamp;
  169. // input (recording) buffers
  170. cmSample_t** iChArray; // each ele is a ptr to buffer with cfg.dspFramesPerCycle samples
  171. unsigned iChCnt; // count of input channels (ele's in iChArray[])
  172. cmTimeSpec_t iTimeStamp;
  173. } cmAudioSysCtx_t;
  174. // Audio system configuration record used by cmAudioSysAllocate().
  175. typedef struct cmAudioSysCfg_str
  176. {
  177. cmAudioSysSubSys_t* ssArray; // sub-system cfg record array
  178. unsigned ssCnt; // count of sub-systems
  179. unsigned meterMs; // Meter sample period in milliseconds
  180. void* clientCbData; // User arg. for clientCbFunc().
  181. cmTsQueueCb_t clientCbFunc; // Called by cmAudioSysReceiveMsg() to deliver internally generated msg's to the host.
  182. // Set to NULL if msg's will be directly returned by buffers passed to cmAudioSysReceiveMsg().
  183. cmUdpNetH_t netH;
  184. cmSeH_t serialPortH;
  185. } cmAudioSysCfg_t;
  186. extern cmAudioSysH_t cmAudioSysNullHandle;
  187. // Allocate and initialize an audio system as a collection of 'cfgCnt' sub-systems.
  188. // Prior to call this function the audio audio ports system must be initalized
  189. // (via cmApInitialize()) and the MIDI port system must be initialized
  190. // (via cmMpInitialize()). Note also that cmApFinalize() and cmMpFinalize()
  191. // cannot be called prior to cmAudioSysFree().
  192. // See cmAudioSystemTest() for a complete example.
  193. cmAsRC_t cmAudioSysAllocate( cmAudioSysH_t* hp, cmRpt_t* rpt, const cmAudioSysCfg_t* cfg );
  194. // Finalize and release any resources held by the audio system.
  195. cmAsRC_t cmAudioSysFree( cmAudioSysH_t* hp );
  196. // Returns true if 'h' is a handle which was successfully allocated by
  197. // cmAudioSysAllocate().
  198. bool cmAudioSysHandleIsValid( cmAudioSysH_t h );
  199. // Reinitialize a previously allocated audio system. This function
  200. // begins with a call to cmAudioSysFinalize().
  201. // Use cmAudioSysEnable(h,true) to begin processing audio following this call.
  202. cmAsRC_t cmAudioSysInitialize( cmAudioSysH_t h, const cmAudioSysCfg_t* cfg );
  203. // Complements cmAudioSysInitialize(). In general there is no need to call this function
  204. // since calls to cmAudioSysInitialize() and cmAudioSysFree() automaticatically call it.
  205. cmAsRC_t cmAudioSysFinalize( cmAudioSysH_t h );
  206. // Returns true if the audio system has been successfully initialized.
  207. bool cmAudioSysIsInitialized( cmAudioSysH_t );
  208. // Returns true if the audio system is enabled.
  209. bool cmAudioSysIsEnabled( cmAudioSysH_t h );
  210. // Enable/disable the audio system. Enabling the starts audio stream
  211. // in/out of the system.
  212. cmAsRC_t cmAudioSysEnable( cmAudioSysH_t h, bool enableFl );
  213. //
  214. // Host to DSP delivery functions
  215. //
  216. // Deliver a message from the host application to the DSP process. (host -> DSP);
  217. // The message is formed as a concatenation of the bytes in each of the segments
  218. // pointed to by 'msgDataPtrArrary[segCnt][msgByteCntArray[segCnt]'.
  219. // This is the canonical msg delivery function in so far as the other host->DSP
  220. // msg delivery function are written in terms of this function.
  221. // The first 4 bytes in the first segment must contain the index of the audio sub-system
  222. // which is to receive the message.
  223. cmAsRC_t cmAudioSysDeliverSegMsg( cmAudioSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId );
  224. // Deliver a single message from the host to the DSP system.
  225. cmAsRC_t cmAudioSysDeliverMsg( cmAudioSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId );
  226. // Deliver a single message from the host to the DSP system.
  227. // Prior to delivery the 'id' is prepended to the message.
  228. cmAsRC_t cmAudioSysDeliverIdMsg( cmAudioSysH_t h, unsigned asSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId );
  229. //
  230. // DSP to Host message functions
  231. //
  232. // Is a msg from the DSP waiting to be picked up by the host? (host <- DSP)
  233. // 0 = no msgs are waiting or the msg queue is locked by the DSP process.
  234. // >0 = the size of the buffer required to hold the next msg returned via
  235. // cmAudioSysReceiveMsg().
  236. unsigned cmAudioSysIsMsgWaiting( cmAudioSysH_t h );
  237. // Copy the next available msg sent from the DSP process to the host into the host supplied msg buffer
  238. // pointed to by 'msgBufPtr'. Set 'msgDataPtr' to NULL to receive msg by callback from cmAudioSysCfg_t.clientCbFunc.
  239. // Returns kBufTooSmallAsRC if msgDataPtr[msgByteCnt] is too small to hold the msg.
  240. // Returns kNoMsgWaitingAsRC if no messages are waiting for delivery or the msg queue is locked by the DSP process.
  241. // Returns kOkAsRC if a msg was delivered.
  242. // Call cmAudioSysIsMsgWaiting() prior to calling this function to get
  243. // the size of the data buffer required to hold the next message.
  244. cmAsRC_t cmAudioSysReceiveMsg( cmAudioSysH_t h, void* msgDataPtr, unsigned msgByteCnt );
  245. // Fill an audio system status record.
  246. void cmAudioSysStatus( cmAudioSysH_t h, unsigned asSubIdx, cmAudioSysStatus_t* statusPtr );
  247. // Enable cmAudioSysStatus_t notifications to be sent periodically to the host.
  248. // Set asSubIdx to cmInvalidIdx to enable/disable all sub-systems.
  249. // The notifications occur approximately every cmAudioSysCfg_t.meterMs milliseconds.
  250. void cmAudioSysStatusNotifyEnable( cmAudioSysH_t, unsigned asSubIdx, bool enableFl );
  251. // Return a pointer the context record associated with a sub-system
  252. cmAudioSysCtx_t* cmAudioSysContext( cmAudioSysH_t h, unsigned asSubIdx );
  253. // Return the count of audio sub-systems.
  254. // This is the same as the count of cfg recds passed to cmAudioSystemInitialize().
  255. unsigned cmAudioSysSubSystemCount( cmAudioSysH_t h );
  256. // Audio system test and example function.
  257. void cmAudioSysTest( cmRpt_t* rpt, int argc, const char* argv[] );
  258. //)
  259. #ifdef __cplusplus
  260. }
  261. #endif
  262. #endif