#include "cmPrefix.h" #include "cmGlobal.h" #include "cmRpt.h" #include "cmErr.h" #include "cmCtx.h" #include "cmMem.h" #include "cmMallocDebug.h" #include "cmTime.h" #include "cmAudioPort.h" #include "cmApBuf.h" // only needed for cmApBufTest(). #include "cmAudioPortFile.h" #include "cmAudioAggDev.h" #include "cmAudioNrtDev.h" #ifdef OS_LINUX #include "linux/cmAudioPortAlsa.h" #endif #ifdef OS_OSX #include "osx/cmAudioPortOsx.h" #endif typedef struct { unsigned begDevIdx; unsigned endDevIdx; cmApRC_t (*initialize)( cmRpt_t* rpt, unsigned baseApDevIdx ); cmApRC_t (*finalize)(); cmApRC_t (*deviceCount)(); const char* (*deviceLabel)( unsigned devIdx ); unsigned (*deviceChannelCount)( unsigned devIdx, bool inputFl ); double (*deviceSampleRate)( unsigned devIdx ); unsigned (*deviceFramesPerCycle)( unsigned devIdx, bool inputFl ); cmApRC_t (*deviceSetup)( unsigned devIdx, double sr, unsigned frmPerCycle, cmApCallbackPtr_t cb, void* cbData ); cmApRC_t (*deviceStart)( unsigned devIdx ); cmApRC_t (*deviceStop)( unsigned devIdx ); bool (*deviceIsStarted)( unsigned devIdx ); } cmApDriver_t; typedef struct { cmErr_t err; cmApDriver_t* drvArray; unsigned drvCnt; unsigned devCnt; } cmAp_t; cmAp_t* _ap = NULL; cmApRC_t _cmApIndexToDev( unsigned devIdx, cmApDriver_t** drvPtrPtr, unsigned* devIdxPtr ) { assert( drvPtrPtr != NULL && devIdxPtr != NULL ); *drvPtrPtr = NULL; *devIdxPtr = cmInvalidIdx; unsigned i; for(i=0; i<_ap->drvCnt; ++i) if( _ap->drvArray[i].begDevIdx != cmInvalidIdx ) if( (_ap->drvArray[i].begDevIdx <= devIdx) && (devIdx <= _ap->drvArray[i].endDevIdx) ) { *drvPtrPtr = _ap->drvArray + i; *devIdxPtr = devIdx - _ap->drvArray[i].begDevIdx; return kOkApRC; } return cmErrMsg(&_ap->err,kInvalidDevIdApRC,"The audio port device index %i is not valid.",devIdx); } cmApRC_t cmApInitialize( cmRpt_t* rpt ) { cmApRC_t rc = kOkApRC; if((rc = cmApFinalize()) != kOkApRC ) return rc; _ap = cmMemAllocZ(cmAp_t,1); cmErrSetup(&_ap->err,rpt,"Audio Port Driver"); _ap->drvCnt = 4; _ap->drvArray = cmMemAllocZ(cmApDriver_t,_ap->drvCnt); cmApDriver_t* dp = _ap->drvArray; #ifdef OS_OSX dp->initialize = cmApOsxInitialize; dp->finalize = cmApOsxFinalize; dp->deviceCount = cmApOsxDeviceCount; dp->deviceLabel = cmApOsxDeviceLabel; dp->deviceChannelCount = cmApOsxDeviceChannelCount; dp->deviceSampleRate = cmApOsxDeviceSampleRate; dp->deviceFramesPerCycle = cmApOsxDeviceFramesPerCycle; dp->deviceSetup = cmApOsxDeviceSetup; dp->deviceStart = cmApOsxDeviceStart; dp->deviceStop = cmApOsxDeviceStop; dp->deviceIsStarted = cmApOsxDeviceIsStarted; #endif #ifdef OS_LINUX dp->initialize = cmApAlsaInitialize; dp->finalize = cmApAlsaFinalize; dp->deviceCount = cmApAlsaDeviceCount; dp->deviceLabel = cmApAlsaDeviceLabel; dp->deviceChannelCount = cmApAlsaDeviceChannelCount; dp->deviceSampleRate = cmApAlsaDeviceSampleRate; dp->deviceFramesPerCycle = cmApAlsaDeviceFramesPerCycle; dp->deviceSetup = cmApAlsaDeviceSetup; dp->deviceStart = cmApAlsaDeviceStart; dp->deviceStop = cmApAlsaDeviceStop; dp->deviceIsStarted = cmApAlsaDeviceIsStarted; #endif dp = _ap->drvArray + 1; dp->initialize = cmApFileInitialize; dp->finalize = cmApFileFinalize; dp->deviceCount = cmApFileDeviceCount; dp->deviceLabel = cmApFileDeviceLabel; dp->deviceChannelCount = cmApFileDeviceChannelCount; dp->deviceSampleRate = cmApFileDeviceSampleRate; dp->deviceFramesPerCycle = cmApFileDeviceFramesPerCycle; dp->deviceSetup = cmApFileDeviceSetup; dp->deviceStart = cmApFileDeviceStart; dp->deviceStop = cmApFileDeviceStop; dp->deviceIsStarted = cmApFileDeviceIsStarted; dp = _ap->drvArray + 2; dp->initialize = cmApAggInitialize; dp->finalize = cmApAggFinalize; dp->deviceCount = cmApAggDeviceCount; dp->deviceLabel = cmApAggDeviceLabel; dp->deviceChannelCount = cmApAggDeviceChannelCount; dp->deviceSampleRate = cmApAggDeviceSampleRate; dp->deviceFramesPerCycle = cmApAggDeviceFramesPerCycle; dp->deviceSetup = cmApAggDeviceSetup; dp->deviceStart = cmApAggDeviceStart; dp->deviceStop = cmApAggDeviceStop; dp->deviceIsStarted = cmApAggDeviceIsStarted; dp = _ap->drvArray + 3; dp->initialize = cmApNrtInitialize; dp->finalize = cmApNrtFinalize; dp->deviceCount = cmApNrtDeviceCount; dp->deviceLabel = cmApNrtDeviceLabel; dp->deviceChannelCount = cmApNrtDeviceChannelCount; dp->deviceSampleRate = cmApNrtDeviceSampleRate; dp->deviceFramesPerCycle = cmApNrtDeviceFramesPerCycle; dp->deviceSetup = cmApNrtDeviceSetup; dp->deviceStart = cmApNrtDeviceStart; dp->deviceStop = cmApNrtDeviceStop; dp->deviceIsStarted = cmApNrtDeviceIsStarted; _ap->devCnt = 0; unsigned i; for(i=0; i<_ap->drvCnt; ++i) { unsigned dn; cmApRC_t rc0; _ap->drvArray[i].begDevIdx = cmInvalidIdx; _ap->drvArray[i].endDevIdx = cmInvalidIdx; if((rc0 = _ap->drvArray[i].initialize(rpt,_ap->devCnt)) != kOkApRC ) { rc = rc0; continue; } if((dn = _ap->drvArray[i].deviceCount()) > 0) { _ap->drvArray[i].begDevIdx = _ap->devCnt; _ap->drvArray[i].endDevIdx = _ap->devCnt + dn - 1; _ap->devCnt += dn; } } if( rc != kOkApRC ) cmApFinalize(); return rc; } cmApRC_t cmApFinalize() { cmApRC_t rc=kOkApRC; cmApRC_t rc0 = kOkApRC; unsigned i; if( _ap == NULL ) return kOkApRC; for(i=0; i<_ap->drvCnt; ++i) { if((rc0 = _ap->drvArray[i].finalize()) != kOkApRC ) rc = rc0; } cmMemPtrFree(&_ap->drvArray); cmMemPtrFree(&_ap); return rc; } unsigned cmApDeviceCount() { return _ap->devCnt; } const char* cmApDeviceLabel( unsigned devIdx ) { cmApDriver_t* dp = NULL; unsigned di = cmInvalidIdx; cmApRC_t rc; if( devIdx == cmInvalidIdx ) return NULL; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return cmStringNullGuard(NULL); return dp->deviceLabel(di); } unsigned cmApDeviceLabelToIndex( const cmChar_t* label ) { unsigned n = cmApDeviceCount(); unsigned i; for(i=0; ideviceChannelCount(di,inputFl); } double cmApDeviceSampleRate( unsigned devIdx ) { cmApDriver_t* dp = NULL; unsigned di = cmInvalidIdx; cmApRC_t rc; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return rc; return dp->deviceSampleRate(di); } unsigned cmApDeviceFramesPerCycle( unsigned devIdx, bool inputFl ) { cmApDriver_t* dp = NULL; unsigned di = cmInvalidIdx; cmApRC_t rc; if( devIdx == cmInvalidIdx ) return 0; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return rc; return dp->deviceFramesPerCycle(di,inputFl); } cmApRC_t cmApDeviceSetup( unsigned devIdx, double srate, unsigned framesPerCycle, cmApCallbackPtr_t callbackPtr, void* userCbPtr ) { cmApDriver_t* dp; unsigned di; cmApRC_t rc; if( devIdx == cmInvalidIdx ) return kOkApRC; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return rc; return dp->deviceSetup(di,srate,framesPerCycle,callbackPtr,userCbPtr); } cmApRC_t cmApDeviceStart( unsigned devIdx ) { cmApDriver_t* dp; unsigned di; cmApRC_t rc; if( devIdx == cmInvalidIdx ) return kOkApRC; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return rc; return dp->deviceStart(di); } cmApRC_t cmApDeviceStop( unsigned devIdx ) { cmApDriver_t* dp; unsigned di; cmApRC_t rc; if( devIdx == cmInvalidIdx ) return kOkApRC; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return rc; return dp->deviceStop(di); } bool cmApDeviceIsStarted( unsigned devIdx ) { cmApDriver_t* dp; unsigned di; cmApRC_t rc; if( devIdx == cmInvalidIdx ) return false; if((rc = _cmApIndexToDev(devIdx,&dp,&di)) != kOkApRC ) return rc; return dp->deviceIsStarted(di); } void cmApReport( cmRpt_t* rpt ) { unsigned i,j,k; for(j=0,k=0; j<_ap->drvCnt; ++j) { cmApDriver_t* drvPtr = _ap->drvArray + j; unsigned n = drvPtr->deviceCount(); for(i=0; ideviceSampleRate(i), drvPtr->deviceChannelCount(i,true), drvPtr->deviceFramesPerCycle(i,true), drvPtr->deviceChannelCount(i,false), drvPtr->deviceFramesPerCycle(i,false), drvPtr->deviceLabel(i)); } } //cmApAlsaDeviceReport(rpt); } /// [cmAudioPortExample] // See cmApPortTest() below for the main point of entry. // Data structure used to hold the parameters for cpApPortTest() // and the user defined data record passed to the host from the // audio port callback functions. typedef struct { unsigned bufCnt; // 2=double buffering 3=triple buffering unsigned chIdx; // first test channel unsigned chCnt; // count of channels to test unsigned framesPerCycle; // DSP frames per cycle unsigned bufFrmCnt; // count of DSP frames used by the audio buffer (bufCnt * framesPerCycle) unsigned bufSmpCnt; // count of samples used by the audio buffer (chCnt * bufFrmCnt) unsigned inDevIdx; // input device index unsigned outDevIdx; // output device index double srate; // audio sample rate unsigned meterMs; // audio meter buffer length // param's and state for cmApSynthSine() unsigned phase; // sine synth phase double frqHz; // sine synth frequency in Hz // buffer and state for cmApCopyIn/Out() cmApSample_t* buf; // buf[bufSmpCnt] - circular interleaved audio buffer unsigned bufInIdx; // next input buffer index unsigned bufOutIdx; // next output buffer index unsigned bufFullCnt; // count of full samples // debugging log data arrays unsigned logCnt; // count of elements in log[] and ilong[] char* log; // log[logCnt] unsigned* ilog; // ilog[logCnt] unsigned logIdx; // current log index unsigned cbCnt; // count the callback } cmApPortTestRecd; #ifdef NOT_DEF // The application can request any block of channels from the device. The packets are provided with the starting // device channel and channel count. This function converts device channels and channel counts to buffer // channel indexes and counts. // // Example: // input output // i,n i n // App: 0,4 0 1 2 3 -> 2 2 // Pkt 2,8 2 3 4 5 6 7 8 -> 0 2 // // The return value is the count of application requested channels located in this packet. // // input: *appChIdxPtr and appChCnt describe a block of device channels requested by the application. // *pktChIdxPtr and pktChCnt describe a block of device channels provided to the application // // output:*appChIdxPtr and describe a block of app buffer channels which will send/recv samples. // *pktChIdxPtr and describe a block of pkt buffer channels which will send/recv samples // unsigned _cmApDeviceToBuffer( unsigned* appChIdxPtr, unsigned appChCnt, unsigned* pktChIdxPtr, unsigned pktChCnt ) { unsigned abi = *appChIdxPtr; unsigned aei = abi+appChCnt-1; unsigned pbi = *pktChIdxPtr; unsigned pei = pbi+pktChCnt-1; // if the ch's rqstd by the app do not overlap with this packet - return false. if( aei < pbi || abi > pei ) return 0; // if the ch's rqstd by the app overlap with the beginning of the pkt channel block if( abi < pbi ) { appChCnt -= pbi - abi; *appChIdxPtr = pbi - abi; *pktChIdxPtr = 0; } else { // the rqstd ch's begin inside the pkt channel block pktChCnt -= abi - pbi; *pktChIdxPtr = abi - pbi; *appChIdxPtr = 0; } // if the pkt channels extend beyond the rqstd ch block if( aei < pei ) pktChCnt -= pei - aei; else appChCnt -= aei - pei; // the rqstd ch's extend beyond or coincide with the pkt block // the returned channel count must always be the same for both the rqstd and pkt return cmMin(appChCnt,pktChCnt); } // synthesize a sine signal into an interleaved audio buffer unsigned _cmApSynthSine( cmApPortTestRecd* r, float* p, unsigned chIdx, unsigned chCnt, unsigned frmCnt, unsigned phs, double hz ) { long ph = 0; unsigned i; unsigned bufIdx = r->chIdx; unsigned bufChCnt; if( (bufChCnt = _cmApDeviceToBuffer( &bufIdx, r->chCnt, &chIdx, chCnt )) == 0) return phs; //if( r->cbCnt < 50 ) // printf("ch:%i cnt:%i ch:%i cnt:%i bi:%i bcn:%i\n",r->chIdx,r->chCnt,chIdx,chCnt,bufIdx,bufChCnt); for(i=bufIdx; israte )); } } return ph; } // Copy the audio samples in the interleaved audio buffer sp[srcChCnt*srcFrameCnt] // to the internal record buffer. void _cmApCopyIn( cmApPortTestRecd* r, const cmApSample_t* sp, unsigned srcChIdx, unsigned srcChCnt, unsigned srcFrameCnt ) { unsigned i,j; unsigned chCnt = cmMin(r->chCnt,srcChCnt); for(i=0; ibuf[ r->bufInIdx + j ] = sp[ (i*srcChCnt) + j ]; for(; jchCnt; ++j) r->buf[ r->bufInIdx + j ] = 0; r->bufInIdx = (r->bufInIdx+r->chCnt) % r->bufFrmCnt; } //r->bufFullCnt = (r->bufFullCnt + srcFrameCnt) % r->bufFrmCnt; r->bufFullCnt += srcFrameCnt; } // Copy audio samples out of the internal record buffer into dp[dstChCnt*dstFrameCnt]. void _cmApCopyOut( cmApPortTestRecd* r, cmApSample_t* dp, unsigned dstChIdx, unsigned dstChCnt, unsigned dstFrameCnt ) { // if there are not enough samples available to fill the destination buffer then zero the dst buf. if( r->bufFullCnt < dstFrameCnt ) { printf("Empty Output Buffer\n"); memset( dp, 0, dstFrameCnt*dstChCnt*sizeof(cmApSample_t) ); } else { unsigned i,j; unsigned chCnt = cmMin(dstChCnt, r->chCnt); // for each output frame for(i=0; ibuf[ r->bufOutIdx + j ]; // zero any output ch's for which there is no internal buf channel for(; jbufOutIdx = (r->bufOutIdx + r->chCnt) % r->bufFrmCnt; } r->bufFullCnt -= dstFrameCnt; } } // Audio port callback function called from the audio device thread. void _cmApPortCb( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt ) { unsigned i; // for each incoming audio packet for(i=0; iinDevIdx ) { // copy the incoming audio into an internal buffer where it can be picked up by _cpApCopyOut(). _cmApCopyIn( r, (cmApSample_t*)inPktArray[i].audioBytesPtr, inPktArray[i].begChIdx, inPktArray[i].chCnt, inPktArray[i].audioFramesCnt ); } ++r->cbCnt; //printf("i %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx); } unsigned hold_phase = 0; // for each outgoing audio packet for(i=0; ioutDevIdx ) { // zero the output buffer memset(outPktArray[i].audioBytesPtr,0,outPktArray[i].chCnt * outPktArray[i].audioFramesCnt * sizeof(cmApSample_t) ); // if the synth is enabled if( r->synthFl ) { unsigned tmp_phase = _cmApSynthSine( r, outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt, r->phase, r->frqHz ); // the phase will only change on packets that are actually used if( tmp_phase != r->phase ) hold_phase = tmp_phase; } else { // copy the any audio in the internal record buffer to the playback device _cmApCopyOut( r, (cmApSample_t*)outPktArray[i].audioBytesPtr, outPktArray[i].begChIdx, outPktArray[i].chCnt, outPktArray[i].audioFramesCnt ); } } r->phase = hold_phase; //printf("o %4i in:%4i out:%4i\n",r->bufFullCnt,r->bufInIdx,r->bufOutIdx); // count callbacks ++r->cbCnt; } } #endif // print the usage message for cmAudioPortTest.c void _cmApPrintUsage( cmRpt_t* rpt ) { char msg[] = "cmApPortTest() command switches\n" "-r -c -b -f -i -o -t -p -h \n" "\n" "-r = sample rate\n" "-a = first channel\n" "-c = audio channels\n" "-b = count of buffers\n" "-f = count of samples per buffer\n" "-i = input device index\n" "-o = output device index\n" "-p = print report but do not start audio devices\n" "-h = print this usage message\n"; cmRptPrintf(rpt,msg); } // Get a command line option. int _cmApGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl ) { int i = 0; for(; i