#include "cmPrefix.h" #include "cmGlobal.h" #include "cmFloatTypes.h" #include "cmRpt.h" #include "cmErr.h" #include "cmCtx.h" #include "cmMem.h" #include "cmMallocDebug.h" #include "cmAudioPort.h" #include "cmAudioNrtDev.h" #include "cmAudioPortFile.h" #include "cmApBuf.h" #include "cmJson.h" #include "cmThread.h" #include "cmUdpPort.h" #include "cmUdpNet.h" #include "cmRtSysMsg.h" #include "cmRtNet.h" #include "cmRtSys.h" #include "cmMidi.h" #include "cmMidiPort.h" #include "cmMath.h" typedef enum { kNoCmdId, kEnableCbCmdId, kDisableCbCmdId } kRtCmdId_t; cmRtSysH_t cmRtSysNullHandle = { NULL }; struct cmRt_str; typedef struct { struct cmRt_str* p; // pointer to the real-time system instance which owns this sub-system cmRtSysSubSys_t ss; // sub-system configuration record cmRtSysCtx_t ctx; // DSP context cmRtSysStatus_t status; // current runtime status of this sub-system cmThreadH_t threadH; // real-time system thread cmTsMp1cH_t htdQueueH; // host-to-dsp thread safe msg queue cmThreadMutexH_t engMutexH; // thread mutex and condition variable cmRtNetH_t netH; bool runFl; // false during finalization otherwise true bool statusFl; // true if regular status notifications should be sent bool syncInputFl; kRtCmdId_t cmdId; // written by app thread, read by rt thread unsigned cbEnableFl; // written by rt thread, read by app thread double* iMeterArray; // double* oMeterArray; // unsigned statusUpdateSmpCnt; // transmit a state update msg every statusUpdateSmpCnt samples unsigned statusUpdateSmpIdx; // state update phase } _cmRtCfg_t; typedef struct cmRt_str { cmErr_t err; cmCtx_t* ctx; _cmRtCfg_t* ssArray; unsigned ssCnt; unsigned waitRtSubIdx; // index of the next sub-system to try with cmRtSysIsMsgWaiting(). cmTsMp1cH_t dthQueH; bool initFl; // true if the real-time system is initialized cmTsQueueCb_t clientCbFunc; // These fields are only used during configuration. void* clientCbArg; // See cmRtBeginCfg() and cmRtCfg(). } cmRt_t; cmRt_t* _cmRtHandleToPtr( cmRtSysH_t h ) { cmRt_t* p = (cmRt_t*)h.h; assert(p != NULL); return p; } cmRtRC_t _cmRtError( cmRt_t* p, cmRtRC_t rc, const char* fmt, ... ) { va_list vl; va_start(vl,fmt); cmErrVMsg(&p->err,rc,fmt,vl); va_end(vl); return rc; } // Wrapper function to put msgs into thread safe queues and handle related errors. cmRtRC_t _cmRtEnqueueMsg( cmRt_t* p, cmTsMp1cH_t qH, const void* msgDataPtrArray[], unsigned msgCntArray[], unsigned segCnt, const char* queueLabel ) { cmRtRC_t rc = kOkRtRC; switch( cmTsMp1cEnqueueSegMsg(qH, msgDataPtrArray, msgCntArray, segCnt) ) { case kOkThRC: break; case kBufFullThRC: { unsigned i; unsigned byteCnt = 0; for(i=0; idspToHostFunc. // It is called by the DSP proces to pass msgs to the host. // therefore it is always called from inside of _cmRtDspExecCallback(). cmRtRC_t _cmRtDspToHostMsgCallback(struct cmRtSysCtx_str* ctx, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt) { cmRt_t* p = (cmRt_t*)ctx->reserved; assert( ctx->rtSubIdx < p->ssCnt ); return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host"); } cmRtRC_t _cmRtSysDspToHostSegMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt) { return _cmRtEnqueueMsg(p,p->dthQueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"DSP-to-Host"); } cmRtRC_t cmRtSysDspToHostSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt) { cmRt_t* p = _cmRtHandleToPtr(h); return _cmRtSysDspToHostSegMsg(p,msgDataPtrArray,msgByteCntArray,msgSegCnt); } cmRtRC_t cmRtSysDspToHost( cmRtSysH_t h, const void* msgDataPtr, unsigned msgByteCnt) { const void* msgDataArray[] = { msgDataPtr }; unsigned msgByteCntArray[] = { msgByteCnt }; return cmRtSysDspToHostSegMsg(h,msgDataArray,msgByteCntArray,1); } cmRtRC_t _cmRtParseNonSubSysMsg( cmRt_t* p, const void* msg, unsigned msgByteCnt ) { cmRtRC_t rc = kOkRtRC; cmRtSysMstr_t* m = (cmRtSysMstr_t*)msg; /* unsigned devIdx = cmRtSysUiInstIdToDevIndex(h->instId); unsigned chIdx = cmRtSysUiInstIdToChIndex(h->instId); unsigned inFl = cmRtSysUiInstIdToInFlag(h->instId); unsigned ctlId = cmRtSysUiInstIdToCtlId(h->instId); */ // if the valuu associated with this msg is a mtx then set // its mtx data area pointer to just after the msg header. //if( cmDsvIsMtx(&h->value) ) // h->value.u.m.u.vp = ((char*)msg) + sizeof(cmDspUiHdr_t); unsigned flags = m->inFl ? kInApFl : kOutApFl; switch( m->ctlId ) { case kSliderUiRtId: // slider cmApBufSetGain(m->devIdx,m->chIdx, flags, m->value); break; case kMeterUiRtId: // meter break; case kMuteUiRtId: // mute flags += m->value == 0 ? kEnableApFl : 0; cmApBufEnableChannel(m->devIdx,m->chIdx,flags); break; case kToneUiRtId: // tone flags += m->value > 0 ? kEnableApFl : 0; cmApBufEnableTone(m->devIdx,m->chIdx,flags); break; case kPassUiRtId: // pass flags += m->value > 0 ? kEnableApFl : 0; cmApBufEnablePass(m->devIdx,m->chIdx,flags); break; default: { assert(0); } } return rc; } // Process a UI msg sent from the host to the real-time system cmRtRC_t _cmRtHandleNonSubSysMsg( cmRt_t* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt ) { cmRtRC_t rc = kOkRtRC; // if the message is contained in a single segment it can be dispatched immediately ... if( msgSegCnt == 1 ) rc = _cmRtParseNonSubSysMsg(p,msgDataPtrArray[0],msgByteCntArray[0]); else { // ... otherwise deserialize the message into contiguous memory .... unsigned byteCnt = 0; unsigned i; for(i=0; istatus.hdr.rtSubIdx = cp->ctx.rtSubIdx; cp->status.hdr.selId = kStatusSelRtId; cmApBufGetStatus( cp->ss.args.inDevIdx, kInApFl, cp->iMeterArray, cp->status.iMeterCnt, &cp->status.overflowCnt ); cmApBufGetStatus( cp->ss.args.outDevIdx, kOutApFl, cp->oMeterArray, cp->status.oMeterCnt, &cp->status.underflowCnt ); unsigned iMeterByteCnt = sizeof(cp->iMeterArray[0]) * cp->status.iMeterCnt; unsigned oMeterByteCnt = sizeof(cp->oMeterArray[0]) * cp->status.oMeterCnt; const void* msgDataPtrArray[] = { &cp->status, cp->iMeterArray, cp->oMeterArray }; unsigned msgByteCntArray[] = { sizeof(cp->status), iMeterByteCnt, oMeterByteCnt }; unsigned segCnt = sizeof(msgByteCntArray)/sizeof(unsigned); _cmRtSysDspToHostSegMsg(cp->p,msgDataPtrArray,msgByteCntArray, segCnt ); return rc; } // This is only called with _cmRtRecd.engMutexH locked cmRtRC_t _cmRtDeliverMsgsWithLock( _cmRtCfg_t* cp ) { int i; cmRtRC_t rc = kOkThRC; // as long as their may be a msg wating in the incoming msg queue for(i=0; rc == kOkThRC; ++i) { // if a msg is waiting transmit it via cfg->cbFunc() if((rc = cmTsMp1cDequeueMsg(cp->htdQueueH,NULL,0)) == kOkThRC) ++cp->status.msgCbCnt; } return rc; } // The DSP execution callback happens through this function. // This function is only called from inside _cmRtThreadCallback() // with the engine mutex locked. void _cmRtDspExecCallback( _cmRtCfg_t* cp ) { // Fill iChArray[] and oChArray[] with pointers to the incoming and outgoing sample buffers. // Notes: // 1) Buffers associated with disabled input/output channels will be set to NULL in iChArray[]/oChArray[]. // 2) Buffers associated with channels marked for pass-through will be set to NULL in oChArray[]. // 3) All samples returned in oChArray[] buffers will be set to zero. cmApBufGetIO(cp->ss.args.inDevIdx, cp->ctx.iChArray, cp->ctx.iChCnt, cp->ss.args.outDevIdx, cp->ctx.oChArray, cp->ctx.oChCnt ); // calling this function results in callbacks to _cmRtNetRecv() // which in turn calls cmRtSysDeliverMsg() which queues any incoming messages // which are then transferred to the DSP processes by the the call to // _cmRtDeliverMsgWithLock() below. if( cmRtNetIsValid(cp->netH) ) if( cmRtNetReceive(cp->netH) != kOkNetRC ) _cmRtError(cp->p,kNetErrRtRC,"Network receive failed."); //if( cp->cbEnableFl ) // cmUdpGetAvailData(cp->udpH,NULL,NULL,NULL); // if there are msgs waiting to be sent to the DSP process send them. if( cp->cbEnableFl ) if( cmTsMp1cMsgWaiting(cp->htdQueueH) ) _cmRtDeliverMsgsWithLock(cp); // call the application provided DSP process if( cp->cbEnableFl ) { cp->ctx.audioRateFl = true; cp->ss.cbFunc( &cp->ctx, 0, NULL ); cp->ctx.audioRateFl = false; } // Notice client callback enable/disable // requests from the client thread switch( cp->cmdId ) { case kNoCmdId: break; case kDisableCbCmdId: if( cp->cbEnableFl ) cmThUIntDecr(&cp->cbEnableFl,1); break; case kEnableCbCmdId: if( cp->cbEnableFl==0) cmThUIntIncr(&cp->cbEnableFl,1); break; } // advance the audio buffer cmApBufAdvance( cp->ss.args.outDevIdx, kOutApFl ); cmApBufAdvance( cp->ss.args.inDevIdx, kInApFl ); // handle periodic status messages to the host if( (cp->statusUpdateSmpIdx += cp->ss.args.dspFramesPerCycle) >= cp->statusUpdateSmpCnt ) { cp->statusUpdateSmpIdx -= cp->statusUpdateSmpCnt; if( cp->statusFl ) _cmRtSendStateStatusToHost(cp); } } // Returns true if audio buffer is has waiting incoming samples and // available outgoing space. bool _cmRtBufIsReady( const _cmRtCfg_t* cp ) { // if there neither the input or output device is valid if( cp->ss.args.inDevIdx==cmInvalidIdx && cp->ss.args.outDevIdx == cmInvalidIdx ) return false; bool ibFl = cmApBufIsDeviceReady(cp->ss.args.inDevIdx, kInApFl); bool obFl = cmApBufIsDeviceReady(cp->ss.args.outDevIdx, kOutApFl); bool iFl = (cp->ss.args.inDevIdx == cmInvalidIdx) || ibFl; bool oFl = (cp->ss.args.outDevIdx == cmInvalidIdx) || obFl; //printf("br: %i %i %i %i\n",ibFl,obFl,iFl,oFl); return iFl && oFl; } // This is the main real-time system loop (and thread callback function). // It blocks by waiting on a cond. var (which simultaneously unlocks a mutex). // With the mutex unlocked messages can pass directly to the DSP process // via calls to cmRtDeliverMsg(). // When the audio buffers need to be serviced the audio device callback // signals the cond. var. which results in this thread waking up (and // simultaneously locking the mutex) as soon as the mutex is available. bool _cmRtThreadCallback(void* arg) { cmRtRC_t rc; _cmRtCfg_t* cp = (_cmRtCfg_t*)arg; // lock the cmRtSys mutex if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkRtRC ) { _cmRtError(cp->p,rc,"The cmRtSys thread mutex lock failed."); return false; } // runFl is always set except during finalization while( cp->runFl ) { // if the buffer is NOT ready or the cmRtSys is disabled if(_cmRtBufIsReady(cp) == false || cp->cbEnableFl==false ) { // block on the cond var and unlock the mutex if( cmThreadMutexWaitOnCondVar(cp->engMutexH,false) != kOkRtRC ) { cmThreadMutexUnlock(cp->engMutexH); _cmRtError(cp->p,rc,"The cmRtSys cond. var. wait failed."); return false; } // // the cond var was signaled and the mutex is now locked // ++cp->status.wakeupCnt; } // be sure we are still enabled and the buffer is still ready while( cp->runFl && _cmRtBufIsReady(cp) ) { ++cp->status.audioCbCnt; // make the cmRtSys callback _cmRtDspExecCallback( cp ); // update the signal time cp->ctx.begSmpIdx += cp->ss.args.dspFramesPerCycle; } } // unlock the mutex cmThreadMutexUnlock(cp->engMutexH); return true; } void _cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl ) { static unsigned rtPhase = 0; //fill output with noise unsigned i = 0,j =0, k = 0, phs = 0; for(; iaudioBytesPtr; phs = a->audioFramesCnt; if( sineFl ) { for(j=0; jaudioFramesCnt; ++j) { cmApSample_t v = (cmApSample_t)(0.7 * sin(2*M_PI/44100.0 * rtPhase + j )); for(k=0; kchCnt; ++k,++dp) *dp = v; } } else { for(j=0; jaudioFramesCnt*a->chCnt; ++j,++dp) *dp = (cmApSample_t)(rand() - (RAND_MAX/2))/(RAND_MAX/2); } } rtPhase += phs; } // This is the audio port callback function. // // _cmRtSysAudioUpdate() assumes that at most two audio device threads // (input and output) may call it. cmApBufUpdate() is safe under these conditions // since the input and output buffers are updated separately. // p->syncInputFl is used to allow either the input or output thread to signal // the condition variable. This flag is necessary to prevent both threads from simultaneously // attempting to signal the condition variable (which will lock the system). // // If more than two audio device threads call the function then this function is not safe. void _cmRtSysAudioUpdate( cmApAudioPacket_t* inPktArray, unsigned inPktCnt, cmApAudioPacket_t* outPktArray, unsigned outPktCnt ) { _cmRtCfg_t* cp = (_cmRtCfg_t*)(inPktArray!=NULL ? inPktArray[0].userCbPtr : outPktArray[0].userCbPtr); ++cp->status.updateCnt; if( cp->runFl ) { // transfer incoming/outgoing samples from/to the audio device cmApBufUpdate(inPktArray,inPktCnt,outPktArray,outPktCnt); // generate a test signal //_cmRtGenSignal( cmApAudioPacket_t* outPktArray, unsigned outPktCnt, bool sineFl ); //return; bool testBufFl = (cp->syncInputFl==true && inPktCnt>0) || (cp->syncInputFl==false && outPktCnt>0); //printf("%i %i %i %i\n",testBufFl,cp->syncInputFl,inPktCnt,outPktCnt); // if the input/output buffer contain samples to be processed then signal the condition variable // - this will cause the real-time system thread to unblock and the used defined DSP process will be called. if( testBufFl && _cmRtBufIsReady(cp) ) { if( cmThreadMutexSignalCondVar(cp->engMutexH) != kOkThRC ) _cmRtError(cp->p,kMutexErrRtRC,"CmRtSys signal cond. var. failed."); } } } // Called when MIDI messages arrive from external MIDI ports. void _cmRtSysMidiCallback( const cmMidiPacket_t* pktArray, unsigned pktCnt ) { unsigned i; for(i=0; icbDataPtr); if( !cp->runFl ) continue; cmRtSysH_t asH; asH.h = cp->p; cmRtSysMidi_t m; m.hdr.rtSubIdx = cp->ctx.rtSubIdx; m.hdr.selId = kMidiMsgArraySelRtId; m.devIdx = pkt->devIdx; m.portIdx = pkt->portIdx; m.msgCnt = pkt->msgCnt; /* unsigned selId = kMidiMsgArraySelRtId; const void* msgPtrArray[] = { &cp->ctx.rtSubIdx, &selId, &pkt->devIdx, &pkt->portIdx, &pkt->msgCnt, pkt->msgArray }; unsigned msgByteCntArray[] = { sizeof(cp->ctx.rtSubIdx), sizeof(selId), sizeof(pkt->devIdx), sizeof(pkt->portIdx), sizeof(pkt->msgCnt), pkt->msgCnt*sizeof(cmMidiMsg) }; unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned); */ const void* msgPtrArray[] = { &m, pkt->msgArray }; unsigned msgByteCntArray[] = { sizeof(m), pkt->msgCnt*sizeof(cmMidiMsg) }; unsigned msgSegCnt = sizeof(msgByteCntArray)/sizeof(unsigned); cmRtSysDeliverSegMsg(asH,msgPtrArray,msgByteCntArray,msgSegCnt,cmInvalidId); } } // This funciton is called from the real-time thread void _cmRtNetRecv( void* cbArg, const char* data, unsigned dataByteCnt, const struct sockaddr_in* fromAddr ) { _cmRtCfg_t* cp = (_cmRtCfg_t*)cbArg; cmRtSysMsgHdr_t* hdr = (cmRtSysMsgHdr_t*)data; // is this a network sync. msg. if( hdr->selId == kNetSyncSelRtId ) { if( cmRtNetSyncModeRecv(cp->netH, data, dataByteCnt, fromAddr ) != kOkNetRC ) cmErrMsg(&cp->p->err,kNetErrRtRC,"Network sync mode receive failed."); } else { cmRtSysH_t h; h.h = cp->p; cmRtSysDeliverMsg(h,data,dataByteCnt,cmInvalidId); } // If the network is in sync mode if( cmRtNetIsValid(cp->netH) && cmRtNetIsInSyncMode(cp->netH) ) if( cmRtNetSyncModeSend(cp->netH) != kOkNetRC ) cmErrMsg(&cp->p->err,kNetErrRtRC,"Net sync send failed."); } cmRtRC_t cmRtSysAllocate( cmRtSysH_t* hp, cmCtx_t* ctx ) { cmRtRC_t rc; if((rc = cmRtSysFree(hp)) != kOkRtRC ) return rc; cmRt_t* p = cmMemAllocZ( cmRt_t, 1 ); cmErrSetup(&p->err,&ctx->rpt,"Real-Time System"); p->ctx = ctx; hp->h = p; return rc; } cmRtRC_t cmRtSysFree( cmRtSysH_t* hp ) { cmRtRC_t rc; if( hp == NULL || hp->h == NULL ) return kOkRtRC; if((rc = cmRtSysFinalize(*hp)) != kOkRtRC ) return rc; cmRt_t* p = _cmRtHandleToPtr(*hp); cmMemFree(p); hp->h = NULL; return rc; } cmRtRC_t _cmRtSysEnable( cmRt_t* p, bool enableFl ) { cmRtRC_t rc = kOkRtRC; unsigned i; unsigned n; unsigned tickMs = 20; unsigned timeOutMs = 10000; for(i=0; issCnt; ++i) { _cmRtCfg_t* cp = p->ssArray + i; if( enableFl ) { cp->cmdId = kNoCmdId; cmThUIntIncr(&cp->cmdId,kEnableCbCmdId); for(n=0; ncbEnableFl==false; n+=tickMs ) cmSleepMs(tickMs); cmThUIntDecr(&cp->cmdId,kEnableCbCmdId); } else { cp->cmdId = kNoCmdId; cmThUIntIncr(&cp->cmdId,kDisableCbCmdId); // wait for the rt thread to return from a client callbacks for(n=0; ncbEnableFl; n+=tickMs ) cmSleepMs(tickMs); cmThUIntDecr(&cp->cmdId,kDisableCbCmdId); } if( n >= timeOutMs ) rc = cmErrMsg(&p->err,kTimeOutErrRtRC,"RT System %s timed out after %i milliseconds.",enableFl?"enable":"disable",timeOutMs); } // enable network sync mode if( enableFl) for(i=0; issCnt; ++i) { _cmRtCfg_t* cp = p->ssArray + i; if( cmRtNetIsValid(cp->netH) ) if( cmRtNetBeginSyncMode(cp->netH) != kOkNetRC ) rc = cmErrMsg(&p->err,kNetErrRtRC,"Network Mgr. failed on entering sync mode."); } return rc; } cmRtRC_t _cmRtSysFinalize( cmRt_t* p ) { cmRtRC_t rc = kOkRtRC; unsigned i; // mark the real-time system as NOT initialized p->initFl = false; // be sure all audio callbacks are disabled before continuing. if((rc = _cmRtSysEnable(p,false)) != kOkRtRC ) return _cmRtError(p,rc,"real-time system finalize failed because device halting failed."); // stop the audio devices for(i=0; issCnt; ++i) { _cmRtCfg_t* cp = p->ssArray + i; // stop the input device if((rc = cmApDeviceStop( cp->ss.args.inDevIdx )) != kOkRtRC ) return _cmRtError(p,kAudioDevStopFailRtRC,"The audio input device stop failed."); // stop the output device if((rc = cmApDeviceStop( cp->ss.args.outDevIdx )) != kOkRtRC ) return _cmRtError(p,kAudioDevStopFailRtRC,"The audio output device stop failed."); } for(i=0; issCnt; ++i) { _cmRtCfg_t* cp = p->ssArray + i; if( cmThreadIsValid( cp->threadH )) { // inform the thread that it should exit cp->runFl = false; cp->statusFl = false; // signal the cond var to cause the thread to run if((rc = cmThreadMutexSignalCondVar(cp->engMutexH)) != kOkThRC ) _cmRtError(p,kMutexErrRtRC,"Finalize signal cond. var. failed."); // wait to take control of the mutex - this will occur when the thread function exits if((rc = cmThreadMutexLock(cp->engMutexH)) != kOkThRC ) _cmRtError(p,kMutexErrRtRC,"Finalize lock failed."); // unlock the mutex because it is no longer needed and must be unlocked to be destroyed if((rc = cmThreadMutexUnlock(cp->engMutexH)) != kOkThRC ) _cmRtError(p,kMutexErrRtRC,"Finalize unlock failed."); // destroy the thread if((rc = cmThreadDestroy( &cp->threadH )) != kOkThRC ) _cmRtError(p,kThreadErrRtRC,"Thread destroy failed."); } // destroy the mutex if( cmThreadMutexIsValid(cp->engMutexH) ) if((rc = cmThreadMutexDestroy( &cp->engMutexH )) != kOkThRC ) _cmRtError(p,kMutexErrRtRC,"Mutex destroy failed."); // release the network mgr if( cmRtNetFree(&cp->netH) != kOkNetRC ) _cmRtError(p,kNetErrRtRC,"Network Mrr. release failed."); // remove the MIDI callback if( cmMpIsInitialized() && cmMpUsesCallback(-1,-1, _cmRtSysMidiCallback, cp) ) if( cmMpRemoveCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC ) _cmRtError(p,kMidiSysFailRtRC,"MIDI callback removal failed."); // destroy the host-to-dsp msg queue if( cmTsMp1cIsValid(cp->htdQueueH ) ) if((rc = cmTsMp1cDestroy( &cp->htdQueueH )) != kOkThRC ) _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue destroy failed."); // destroy the dsp-to-host msg queue if( cmTsMp1cIsValid(p->dthQueH) ) if((rc = cmTsMp1cDestroy( &p->dthQueH )) != kOkThRC ) _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue destroy failed."); cmMemPtrFree(&cp->ctx.iChArray); cmMemPtrFree(&cp->ctx.oChArray); cp->ctx.iChCnt = 0; cp->ctx.oChCnt = 0; cmMemPtrFree(&cp->iMeterArray); cmMemPtrFree(&cp->oMeterArray); cp->status.iMeterCnt = 0; cp->status.oMeterCnt = 0; } cmMemPtrFree(&p->ssArray); p->ssCnt = 0; return rc; } // A given device may be used as an input device exactly once and an // output device exactly once. When the input to a given device is used // by one sub-system and the output is used by another then both sub-systems // must use the same srate,devFramesPerCycle, audioBufCnt and dspFramesPerCycle. cmRtRC_t _cmRtSysValidate( cmRt_t* p ) { unsigned i,j,k; for(i=0; i<2; ++i) { // examine input devices - then output devices bool inputFl = i==0; bool outputFl = !inputFl; for(j=0; jssCnt; ++j) { cmRtSysArgs_t* s0 = &p->ssArray[j].ss.args; unsigned devIdx = inputFl ? s0->inDevIdx : s0->outDevIdx; for(k=0; kssCnt && devIdx != cmInvalidIdx; ++k) if( k != j ) { cmRtSysArgs_t* s1 = &p->ssArray[k].ss.args; // if the device was used as input or output multple times then signal an error if( (inputFl && (s1->inDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx) ) return cmErrMsg(&p->err,kInvalidArgRtRC,"The device %i was used as an %s by multiple sub-systems.", devIdx, inputFl ? "input" : "output"); // if this device is being used by another subsystem ... if( (inputFl && (s1->outDevIdx == devIdx) && s1->inDevIdx != cmInvalidIdx) || (outputFl && (s1->outDevIdx == devIdx) && s1->outDevIdx != cmInvalidIdx ) ) { // ... then some of its buffer spec's must match if( s0->srate != s1->srate || s0->audioBufCnt != s1->audioBufCnt || s0->dspFramesPerCycle != s1->dspFramesPerCycle || s0->devFramesPerCycle != s1->devFramesPerCycle ) return cmErrMsg(&p->err,kInvalidArgRtRC,"The device %i is used by different sub-system with different audio buffer parameters.",devIdx); } } } } return kOkRtRC; } cmRtRC_t cmRtSysBeginCfg( cmRtSysH_t h, cmTsQueueCb_t clientCbFunc, void* clientCbArg, unsigned meterMs, unsigned ssCnt ) { cmRt_t* p = _cmRtHandleToPtr(h); cmRtRC_t rc; // always finalize before iniitalize if((rc = cmRtSysFinalize(h)) != kOkRtRC ) return rc; p->ssArray = cmMemAllocZ( _cmRtCfg_t, ssCnt ); p->ssCnt = ssCnt; p->clientCbFunc = clientCbFunc; p->clientCbArg = clientCbArg; return rc; } cmRtRC_t cmRtSysCfg( cmRtSysH_t h, const cmRtSysSubSys_t* ss, unsigned rtSubIdx ) { cmRtRC_t rc; unsigned j; cmRt_t* p = _cmRtHandleToPtr(h); assert( rtSubIdx < p->ssCnt); _cmRtCfg_t* cp = p->ssArray + rtSubIdx;; cp->p = p; cp->ss = *ss; // copy the cfg into the internal real-time system state cp->runFl = false; cp->statusFl = false; cp->ctx.reserved = p; cp->ctx.rtSubIdx = rtSubIdx; cp->ctx.ss = &cp->ss; cp->ctx.begSmpIdx = 0; cp->ctx.dspToHostFunc = _cmRtDspToHostMsgCallback; // validate the input device index if( ss->args.inDevIdx != cmInvalidIdx && ss->args.inDevIdx >= cmApDeviceCount() ) { rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio input device index %i is invalid.",ss->args.inDevIdx); goto errLabel; } // validate the output device index if( ss->args.outDevIdx != cmInvalidIdx && ss->args.outDevIdx >= cmApDeviceCount() ) { rc = _cmRtError(p,kAudioDevSetupErrRtRC,"The audio output device index %i is invalid.",ss->args.outDevIdx); goto errLabel; } // setup the input device if( ss->args.inDevIdx != cmInvalidIdx ) if((rc = cmApDeviceSetup( ss->args.inDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC ) { rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio input device setup failed."); goto errLabel; } // setup the output device if( ss->args.outDevIdx != ss->args.inDevIdx && ss->args.outDevIdx != cmInvalidIdx ) if((rc = cmApDeviceSetup( ss->args.outDevIdx, ss->args.srate, ss->args.devFramesPerCycle, _cmRtSysAudioUpdate, cp )) != kOkRtRC ) { rc = _cmRtError(p,kAudioDevSetupErrRtRC,"Audio output device setup failed."); goto errLabel; } // setup the input device buffer if( ss->args.inDevIdx != cmInvalidIdx ) if((rc = cmApBufSetup( ss->args.inDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.inDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.inDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC ) { rc = _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer input setup failed."); goto errLabel; } cmApBufEnableMeter(ss->args.inDevIdx, -1, kInApFl | kEnableApFl ); cmApBufEnableMeter(ss->args.outDevIdx,-1, kOutApFl | kEnableApFl ); // setup the input audio buffer ptr array - used to send input audio to the DSP system in _cmRtDspExecCallback() if((cp->ctx.iChCnt = cmApDeviceChannelCount(ss->args.inDevIdx, true)) != 0 ) cp->ctx.iChArray = cmMemAllocZ( cmSample_t*, cp->ctx.iChCnt ); // setup the output device buffer if( ss->args.outDevIdx != ss->args.inDevIdx ) if((rc = cmApBufSetup( ss->args.outDevIdx, ss->args.srate, ss->args.dspFramesPerCycle, ss->args.audioBufCnt, cmApDeviceChannelCount(ss->args.outDevIdx, true), ss->args.devFramesPerCycle, cmApDeviceChannelCount(ss->args.outDevIdx, false), ss->args.devFramesPerCycle )) != kOkRtRC ) return _cmRtError(p,kAudioBufSetupErrRtRC,"Audio buffer ouput device setup failed."); // setup the output audio buffer ptr array - used to recv output audio from the DSP system in _cmRtDspExecCallback() if((cp->ctx.oChCnt = cmApDeviceChannelCount(ss->args.outDevIdx, false)) != 0 ) cp->ctx.oChArray = cmMemAllocZ( cmSample_t*, cp->ctx.oChCnt ); // determine the sync source cp->syncInputFl = ss->args.syncInputFl; // if sync'ing to an unavailable device then sync to the available device if( ss->args.syncInputFl && cp->ctx.iChCnt == 0 ) cp->syncInputFl = false; if( ss->args.syncInputFl==false && cp->ctx.oChCnt == 0 ) cp->syncInputFl = true; // setup the status record cp->status.hdr.rtSubIdx = cp->ctx.rtSubIdx; cp->status.iDevIdx = ss->args.inDevIdx; cp->status.oDevIdx = ss->args.outDevIdx; cp->status.iMeterCnt = cp->ctx.iChCnt; cp->status.oMeterCnt = cp->ctx.oChCnt; cp->iMeterArray = cmMemAllocZ( double, cp->status.iMeterCnt ); cp->oMeterArray = cmMemAllocZ( double, cp->status.oMeterCnt ); //cp->udpH = cfg->udpH; // create the real-time system thread if((rc = cmThreadCreate( &cp->threadH, _cmRtThreadCallback, cp, ss->args.rpt )) != kOkThRC ) { rc = _cmRtError(p,kThreadErrRtRC,"Thread create failed."); goto errLabel; } // create the real-time system mutex if((rc = cmThreadMutexCreate( &cp->engMutexH, ss->args.rpt )) != kOkThRC ) { rc = _cmRtError(p,kMutexErrRtRC,"Thread mutex create failed."); goto errLabel; } // create the host-to-dsp thread safe msg queue if((rc = cmTsMp1cCreate( &cp->htdQueueH, ss->args.msgQueueByteCnt, ss->cbFunc, &cp->ctx, ss->args.rpt )) != kOkThRC ) { rc = _cmRtError(p,kTsQueueErrRtRC,"Host-to-DSP msg queue create failed."); goto errLabel; } // create the dsp-to-host thread safe msg queue if( cmTsMp1cIsValid( p->dthQueH ) == false ) { if((rc = cmTsMp1cCreate( &p->dthQueH, ss->args.msgQueueByteCnt, p->clientCbFunc, p->clientCbArg, ss->args.rpt )) != kOkThRC ) { rc = _cmRtError(p,kTsQueueErrRtRC,"DSP-to-Host msg queue create failed."); goto errLabel; } } // install an external MIDI port callback handler for incoming MIDI messages if( cmMpIsInitialized() ) if( cmMpInstallCallback( -1, -1, _cmRtSysMidiCallback, cp ) != kOkMpRC ) { rc = _cmRtError(p,kMidiSysFailRtRC,"MIDI system callback installation failed."); goto errLabel; } // setup the sub-system status notification cp->statusUpdateSmpCnt = floor(cmApBufMeterMs() * cp->ss.args.srate / 1000.0 ); cp->statusUpdateSmpIdx = 0; // allocate the network mgr if( cmRtNetAlloc(p->ctx,&cp->netH, _cmRtNetRecv, cp ) != kOkNetRC ) { rc = _cmRtError(p,kNetErrRtRC,"Network allocation failed."); goto errLabel; } // register the local and remote notes for(j=0; jnetNodeCnt; ++j) { cmRtSysNetNode_t* nn = ss->netNodeArray + j; if( cmRtNetCreateNode( cp->netH, nn->label, nn->ipAddr, nn->ipPort) != kOkNetRC ) { rc = _cmRtError(p,kNetErrRtRC,"Network node allocation failed on label:%s addr:%s port:%i.",cmStringNullGuard(nn->label),cmStringNullGuard(nn->ipAddr),nn->ipPort); goto errLabel; } } // register the local endpoints for(j=0; jendptCnt; ++j) { cmRtSysNetEndpt_t* ep = ss->endptArray + j; if( cmRtNetRegisterEndPoint( cp->netH, ep->label, ep->id ) != kOkNetRC ) { rc = _cmRtError(p,kNetErrRtRC,"Network end point allocation failed on label:%s id:%i.",cmStringNullGuard(ep->label),ep->id); goto errLabel; } } errLabel: if( rc != kOkRtRC ) _cmRtSysFinalize(p); return rc; } cmRtRC_t cmRtSysEndCfg( cmRtSysH_t h ) { cmRtRC_t rc; cmRt_t* p = _cmRtHandleToPtr(h); unsigned i; if((rc = _cmRtSysValidate(p)) != kOkRtRC ) goto errLabel; for(i=0; issCnt; ++i) { _cmRtCfg_t* cp = p->ssArray + i; cp->runFl = true; // start the real-time system thread if( cmThreadPause( cp->threadH, 0 ) != kOkThRC ) { rc = _cmRtError(p,kThreadErrRtRC,"Thread start failed."); goto errLabel; } // start the input device if((rc = cmApDeviceStart( cp->ss.args.inDevIdx )) != kOkRtRC ) return _cmRtError(p,kAudioDevStartFailRtRC,"The audio input device start failed."); // start the output device if( cmApDeviceStart( cp->ss.args.outDevIdx ) != kOkRtRC ) return _cmRtError(p,kAudioDevStartFailRtRC,"The audio ouput device start failed."); } p->initFl = true; errLabel: if( rc != kOkRtRC ) _cmRtSysFinalize(p); return rc; } cmRtRC_t cmRtSysFinalize(cmRtSysH_t h ) { cmRtRC_t rc = kOkRtRC; if( cmRtSysHandleIsValid(h) == false ) return rc; cmRt_t* p = _cmRtHandleToPtr(h); rc = _cmRtSysFinalize(p); h.h = NULL; return rc; } bool cmRtSysIsInitialized( cmRtSysH_t h ) { cmRt_t* p = _cmRtHandleToPtr(h); return p->initFl; } cmRtRC_t _cmRtSysVerifyInit( cmRt_t* p, bool errFl ) { if( p->initFl == false ) { // if the last msg generated was also a not init msg then don't // generate another message - just return the error if( errFl ) if( cmErrLastRC(&p->err) != kNotInitRtRC ) cmErrMsg(&p->err,kNotInitRtRC,"The real-time system is not initialized."); return kNotInitRtRC; } return kOkRtRC; } bool cmRtSysIsEnabled( cmRtSysH_t h ) { if( cmRtSysIsInitialized(h) == false ) return false; cmRt_t* p = _cmRtHandleToPtr(h); unsigned i; for(i=0; issCnt; ++i) if( p->ssArray[i].cbEnableFl ) return true; return false; } cmRtRC_t cmRtSysEnable( cmRtSysH_t h, bool enableFl ) { cmRt_t* p = _cmRtHandleToPtr(h); return _cmRtSysEnable(p,enableFl); } cmRtRC_t cmRtSysDeliverSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId ) { cmRt_t* p = _cmRtHandleToPtr(h); cmRtRC_t rc; // the system must be initialized to use this function if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC ) return rc; if( msgSegCnt == 0 ) return kOkRtRC; // BUG BUG BUG - there is no reason that both the rtSubIdx and the selId must // be in the first segment but it would be nice. assert( msgByteCntArray[0] >= 2*sizeof(unsigned) || (msgSegCnt>1 && msgByteCntArray[0]==sizeof(unsigned) && msgByteCntArray[1]>=sizeof(unsigned)) ); // The audio sub-system index is always the first field of the msg // and the msg selector id is always the second field unsigned* array = (unsigned*)msgDataPtrArray[0]; unsigned rtSubIdx = array[0]; unsigned selId = array[1]; if( selId == kUiMstrSelRtId ) return _cmRtHandleNonSubSysMsg( p, msgDataPtrArray, msgByteCntArray, msgSegCnt ); /* if( selId == kNetSyncSelRtId ) { assert( msgSegCnt==1); assert( rtSubIdx < p->ssCnt ); p->ssArray[rtSubIdx].ctx.srcNetNodeId = srcNetNodeId; p->ssArray[rtSubIdx].ss.cbFunc(&p->ssArray[rtSubIdx].ctx,msgByteCntArray[0],msgDataPtrArray[0]); return kOkRtRC; } */ return _cmRtEnqueueMsg(p,p->ssArray[rtSubIdx].htdQueueH,msgDataPtrArray,msgByteCntArray,msgSegCnt,"Host-to-DSP"); } cmRtRC_t cmRtSysDeliverMsg( cmRtSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId ) { const void* msgDataPtrArray[] = { msgPtr }; unsigned msgByteCntArray[] = { msgByteCnt }; return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,1,srcNetNodeId); } cmRtRC_t cmRtSysDeliverIdMsg( cmRtSysH_t h, unsigned rtSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId ) { cmRtRC_t rc; cmRt_t* p = _cmRtHandleToPtr(h); // the system must be initialized to use this function if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC ) return rc; const void* msgDataPtrArray[] = { &rtSubIdx, &id, msgPtr }; unsigned msgByteCntArray[] = { sizeof(rtSubIdx), sizeof(id), msgByteCnt }; return cmRtSysDeliverSegMsg(h,msgDataPtrArray,msgByteCntArray,3,srcNetNodeId); } unsigned cmRtSysIsMsgWaiting( cmRtSysH_t h ) { cmRtRC_t rc; cmRt_t* p = _cmRtHandleToPtr(h); // the system must be initialized to use this function if((rc = _cmRtSysVerifyInit(p,false)) != kOkRtRC ) return 0; unsigned n = 0; unsigned retByteCnt; for(n=0; n < p->ssCnt; ++n ) { if( (retByteCnt = cmTsMp1cDequeueMsgByteCount(p->dthQueH)) > 0 ) return retByteCnt; p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt; } return 0; } cmRtRC_t cmRtSysReceiveMsg( cmRtSysH_t h, void* msgDataPtr, unsigned msgByteCnt ) { cmRtRC_t rc; cmRt_t* p = _cmRtHandleToPtr(h); // the system must be initialized to use this function if((rc = _cmRtSysVerifyInit(p,true)) != kOkRtRC ) return rc; //switch( cmTsMp1cDequeueMsg(p->ssArray[p->waitRtSubIdx].dthQueueH,msgDataPtr,msgByteCnt) ) switch( cmTsMp1cDequeueMsg(p->dthQueH,msgDataPtr,msgByteCnt) ) { case kOkThRC: p->waitRtSubIdx = (p->waitRtSubIdx + 1) % p->ssCnt; return kOkRtRC; case kBufTooSmallThRC: return kBufTooSmallRtRC; case kBufEmptyThRC: return kNoMsgWaitingRtRC; } return _cmRtError(p,kTsQueueErrRtRC,"A deque operation failed on the DSP-to-Host message queue."); } void cmRtSysStatus( cmRtSysH_t h, unsigned rtSubIdx, cmRtSysStatus_t* statusPtr ) { cmRt_t* p = _cmRtHandleToPtr(h); // the system must be initialized to use this function if( _cmRtSysVerifyInit(p,true) != kOkRtRC ) return; if( rtSubIdx < p->ssCnt ) *statusPtr = p->ssArray[rtSubIdx].status; } void cmRtSysStatusNotifyEnable( cmRtSysH_t h, unsigned rtSubIdx, bool enableFl ) { cmRt_t* p = _cmRtHandleToPtr(h); // the system must be initialized to use this function if( _cmRtSysVerifyInit(p,true) != kOkRtRC ) return; unsigned i = rtSubIdx == cmInvalidIdx ? 0 : rtSubIdx; unsigned n = rtSubIdx == cmInvalidIdx ? p->ssCnt : rtSubIdx+1; for(; issArray[i].statusFl = enableFl; } bool cmRtSysHandleIsValid( cmRtSysH_t h ) { return h.h != NULL; } cmRtSysCtx_t* cmRtSysContext( cmRtSysH_t h, unsigned rtSubIdx ) { cmRt_t* p = _cmRtHandleToPtr(h); if( _cmRtSysVerifyInit(p,true) != kOkRtRC ) return NULL; return &p->ssArray[rtSubIdx].ctx; } unsigned cmRtSysSubSystemCount( cmRtSysH_t h ) { cmRt_t* p = _cmRtHandleToPtr(h); if( _cmRtSysVerifyInit(p,true) != kOkRtRC ) return 0; return p->ssCnt; } //=========================================================================================================================== // // cmRtTest() // /// [cmRtSysTest] typedef struct { double hz; // current synth frq long phs; // current synth phase double srate; // audio sample rate unsigned cbCnt; // DSP cycle count bool synthFl; // true=synth false=pass through } _cmRtTestCbRecd; typedef struct { unsigned rtSubIdx; // rtSubIdx must always be the first field in the msg unsigned id; // 0 = set DSP Hz, 1 = report cbCount to host double hz; unsigned uint; } _cmRtTestMsg; long _cmRtSynthSine( _cmRtTestCbRecd* r, cmApSample_t* p, unsigned chCnt, unsigned frmCnt ) { long ph = 0; unsigned i; for(i=0; iphs; for(j=0; jhz * ph / r->srate )); } return ph; } unsigned _cmRtTestChIdx = 0; cmRC_t _cmRtTestCb( void* cbPtr, unsigned msgByteCnt, const void* msgDataPtr ) { cmRC_t rc = cmOkRC; cmRtSysCtx_t* ctx = (cmRtSysCtx_t*)cbPtr; cmRtSysSubSys_t* ss = ctx->ss; _cmRtTestCbRecd* r = (_cmRtTestCbRecd*)ss->cbDataPtr; // update the calback counter ++r->cbCnt; // if this is an audio update request if( msgByteCnt == 0 ) { unsigned i; if( r->synthFl ) { long phs = 0; if(0) { for(i=0; ioChCnt; ++i) if( ctx->oChArray[i] != NULL ) phs = _cmRtSynthSine(r, ctx->oChArray[i], 1, ss->args.dspFramesPerCycle ); } else { if( _cmRtTestChIdx < ctx->oChCnt ) phs = _cmRtSynthSine(r, ctx->oChArray[_cmRtTestChIdx], 1, ss->args.dspFramesPerCycle ); } r->phs = phs; } else { // BUG BUG BUG - this assumes that the input and output channels are the same. unsigned chCnt = cmMin(ctx->oChCnt,ctx->iChCnt); for(i=0; ioChArray[i],ctx->iChArray[i],sizeof(cmSample_t)*ss->args.dspFramesPerCycle); } } else // ... otherwise it is a msg for the DSP process from the host { _cmRtTestMsg* msg = (_cmRtTestMsg*)msgDataPtr; msg->rtSubIdx = ctx->rtSubIdx; switch(msg->id) { case 0: r->hz = msg->hz; break; case 1: msg->uint = r->cbCnt; msgByteCnt = sizeof(_cmRtTestMsg); rc = ctx->dspToHostFunc(ctx,(const void **)&msg,&msgByteCnt,1); break; } } return rc; } // print the usage message for cmAudioPortTest.c void _cmRtPrintUsage( cmRpt_t* rpt ) { char msg[] = "cmRtSysTest() command switches:\n" "-r -c -b -f -i -o -m -d -t -p -h \n" "\n" "-r = sample rate (48000)\n" "-c = audio channels (2)\n" "-b = count of buffers (3)\n" "-f = count of samples per buffer (512)\n" "-i = input device index (0)\n" "-o = output device index (2)\n" "-m = message queue byte count (1024)\n" "-d = samples per DSP frame (64)\n" "-s = true: sync to input port false: sync to output port\n" "-t = copy input to output otherwise synthesize a 1000 Hz sine (false)\n" "-p = report but don't start audio devices\n" "-h = print this usage message\n"; cmRptPrintf(rpt,"%s",msg); } // Get a command line option. int _cmRtGetOpt( int argc, const char* argv[], const char* label, int defaultVal, bool boolFl ) { int i = 0; for(; irpt; unsigned meterMs = 50; unsigned ssCnt = 1; unsigned rtSubIdx = 0; if(_cmRtGetBoolOpt(argc,argv,"-h",false)) _cmRtPrintUsage(rpt); cbRecd.srate = _cmRtGetIntOpt(argc,argv,"-r",48000); cbRecd.synthFl = _cmRtGetBoolOpt(argc,argv,"-t",false)==false; ss.args.rpt = rpt; ss.args.inDevIdx = _cmRtGetIntOpt( argc,argv,"-i",0); ss.args.outDevIdx = _cmRtGetIntOpt( argc,argv,"-o",2); ss.args.syncInputFl = _cmRtGetBoolOpt(argc,argv,"-s",true); ss.args.msgQueueByteCnt = _cmRtGetIntOpt( argc,argv,"-m",8192); ss.args.devFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-f",512); ss.args.dspFramesPerCycle = _cmRtGetIntOpt( argc,argv,"-d",64);; ss.args.audioBufCnt = _cmRtGetIntOpt( argc,argv,"-b",3); ss.args.srate = cbRecd.srate; ss.cbFunc = _cmRtTestCb; // set the DSP entry function ss.cbDataPtr = &cbRecd; // set the DSP function argument record cmRptPrintf(rpt,"in:%i out:%i syncFl:%i que:%i fpc:%i dsp:%i bufs:%i sr:%f\n",ss.args.inDevIdx,ss.args.outDevIdx,ss.args.syncInputFl, ss.args.msgQueueByteCnt,ss.args.devFramesPerCycle,ss.args.dspFramesPerCycle,ss.args.audioBufCnt,ss.args.srate); if( cmApNrtAllocate(rpt) != kOkApRC ) goto errLabel; if( cmApFileAllocate(rpt) != kOkApRC ) goto errLabel; // initialize the audio device system if( cmApInitialize(rpt) != kOkApRC ) goto errLabel; cmApReport(rpt); // initialize the audio buffer if( cmApBufInitialize( cmApDeviceCount(), meterMs ) != kOkApRC ) goto errLabel; // initialize the real-time system if( cmRtSysAllocate(&h,ctx) != kOkRtRC ) goto errLabel; if( cmRtSysBeginCfg(h,NULL,NULL,meterMs,ssCnt) != kOkRtRC ) goto errLabel; if( cmRtSysCfg(h,&ss,rtSubIdx) != kOkRtRC ) goto errLabel; if( cmRtSysEndCfg(h) != kOkRtRC ) goto errLabel; // start the real-time system cmRtSysEnable(h,true); char c = 0; printf("q=quit a-g=note n=ch r=rqst s=status\n"); // simulate a host event loop while(c != 'q') { _cmRtTestMsg msg = {0,0,0,0}; bool fl = true; // wait here for a key press c =(char)fgetc(stdin); fflush(stdin); switch(c) { case 'c': msg.hz = cmMidiToHz(60); break; case 'd': msg.hz = cmMidiToHz(62); break; case 'e': msg.hz = cmMidiToHz(64); break; case 'f': msg.hz = cmMidiToHz(65); break; case 'g': msg.hz = cmMidiToHz(67); break; case 'a': msg.hz = cmMidiToHz(69); break; case 'b': msg.hz = cmMidiToHz(71); break; case 'r': msg.id = 1; break; // request DSP process to send a callback count case 'n': ++_cmRtTestChIdx; printf("ch:%i\n",_cmRtTestChIdx); break; case 's': // report the real-time system status cmRtSysStatus(h,0,&status); printf("phs:%li cb count:%i (upd:%i wake:%i acb:%i msgs:%i)\n",cbRecd.phs, cbRecd.cbCnt, status.updateCnt, status.wakeupCnt, status.audioCbCnt, status.msgCbCnt); //printf("%f \n",status.oMeterArray[0]); fl = false; break; default: fl=false; } if( fl ) { // transmit a command to the DSP process cmRtSysDeliverMsg(h,&msg, sizeof(msg), cmInvalidId); } // check if messages are waiting to be delivered from the DSP process unsigned msgByteCnt; if((msgByteCnt = cmRtSysIsMsgWaiting(h)) > 0 ) { char buf[ msgByteCnt ]; // rcv a msg from the DSP process if( cmRtSysReceiveMsg(h,buf,msgByteCnt) == kOkRtRC ) { _cmRtTestMsg* msg = (_cmRtTestMsg*)buf; switch(msg->id) { case 1: printf("RCV: Callback count:%i\n",msg->uint); break; } } } // report the audio buffer status //cmApBufReport(ss.args.rpt); } // stop the real-time system cmRtSysEnable(h,false); goto exitLabel; errLabel: printf("REAL-TIME SYSTEM TEST ERROR\n"); exitLabel: cmRtSysFree(&h); cmApFinalize(); cmApFileFree(); cmApNrtFree(); cmApBufFinalize(); } /// [cmRtSysTest]