#include "cmPrefix.h" #include "cmGlobal.h" #include "cmRpt.h" #include "cmErr.h" #include "cmCtx.h" #include "cmMem.h" #include "cmMallocDebug.h" #include "cmLinkedHeap.h" #include "cmSymTbl.h" #include "cmFloatTypes.h" #include "cmComplexTypes.h" #include "cmFileSys.h" #include "cmJson.h" #include "cmProcObj.h" #include "cmProcTemplate.h" #include "cmAudioFile.h" #include "cmMath.h" #include "cmProc.h" #include "cmVectOps.h" #include "cmProc3.h" #include "cmMidi.h" // cmMidiToSciPitch(); cmPitchShift* cmPitchShiftAlloc( cmCtx* c, cmPitchShift* p, unsigned procSmpCnt, cmReal_t srate ) { cmPitchShift* op = cmObjAlloc(cmPitchShift, c, p ); if( procSmpCnt != 0 ) if( cmPitchShiftInit(op, procSmpCnt,srate) != cmOkRC ) cmPitchShiftFree(&op); return op; } cmRC_t cmPitchShiftFinal(cmPitchShift* p ) { return cmOkRC; } #define _cube_interp(x,y0,y1,y2,y3) ((y3) - (y2) - (y0) + (y1))*(x)*(x)*(x) + ((y0) - (y1) - ((y3) - (y2) - (y0) + (y1)))*(x)*(x) + ((y2) - (y0))*(x) + (y1) #define _lin_interp(x,y0,y1) (y0) + (x) * ((y1)-(y0)) /* cmRC_t cmPitchShiftFree( cmPitchShift** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmPitchShift* p = *pp; if(( rc = cmPitchShiftFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->x); cmMemPtrFree(&p->y); cmMemPtrFree(&p->cf); cmObjFree(pp); } } return rc; } cmRC_t cmPitchShiftInit( cmPitchShift* p, unsigned procSmpCnt, double srate ) { cmRC_t rc; if((rc = cmPitchShiftFinal(p)) != cmOkRC ) return rc; p->procSmpCnt = procSmpCnt; p->srate = srate; p->wn = 4096; p->cfn = 1024; p->outN = p->procSmpCnt; p->x = cmMemResizeZ(cmSample_t, p->x,procSmpCnt + 3 ); p->y = cmMemResizeZ(cmSample_t, p->y, p->wn ); p->cf = cmMemResizeZ(cmSample_t, p->cf, p->cfn ); p->pii = procSmpCnt + p->cfn; p->poi = 0; p->outV = p->y; p->prv_x0 = 0; p->prv_x1 = 0; p->genFl = true; p->xfi = 3; p->cfi = 0; p->cubeFl = true; p->linCfFl = true; assert( p->cfn+p->procSmpCnt < p->wn ); unsigned i; for(i=0; i<p->cfn; ++i) { p->cf[i] = (sin(((double)i/p->cfn * M_PI) - (M_PI/2.0)) + 1.0) / 2.0; p->cf[i] = (double)i/p->cfn; } return rc; } // Algorithm: // 1. Generate srate converted values into p->y[] until it is full. // 2. Playback from y[] ignoring any incoming samples until less than // p->cfn + p->procSmpCnt samples remain in y[] (i.e. pii < procSmpCnt + cfn). // 3. At this point begin generating samples from the input and crossfading them // with the last cfn samples in y[]. // 4. After cfn new samples have been crossfaded proceed to fill the remaining // space in y[] // 5. Goto 2. // // Note that since we are pitch shifting down (ratio<1.0) the number of samples generated // will always be greater than the number of input samples. // // Notes: // For small downward shifts there will be large time aliasing because the length of time // to fill the buffer (step 4) will because only a few extra samples // are generated on each input cycle. Try decreasing the window length as the pitch ratio increases. // // Implement smoothly varying ratio changes. // // Change model so that at ratio 1.0 the input is effectively being constantly cross faded to produce // identity output. void _cmPitchShiftDown( cmPitchShift* p, double ratio, const cmSample_t* x, unsigned xn ) { // shift off the expired samples memmove(p->y,p->y + p->procSmpCnt, (p->pii - p->procSmpCnt) * sizeof(cmSample_t)); p->pii -= p->procSmpCnt; // if not currently generating and there are less than cfn + procSmpCnt samples remaining ... if( p->genFl == false && p->pii <= p->procSmpCnt + p->cfn ) { // ... then setup to begin generating p->cfi = 0; p->genFl = true; p->xfi = 3; } if( p->genFl ) { // setup the incoming samples p->x[0] = p->prv_x0; p->x[1] = p->prv_x1; p->x[2] = p->prv_x2; memcpy(p->x+2,x,p->procSmpCnt*sizeof(cmSample_t)); int n0 = p->cubeFl ? xn+1 : xn+2; // as long as there are incoming samples available and space left in the output buffer for(; p->xfi < n0 && p->pii < p->wn; p->xfi += ratio ) { unsigned xii = floor(p->xfi); double frac = p->xfi - xii; // generate the value of the output sample cmSample_t value; if( p->cubeFl ) value = _cube_interp(frac,p->x[xii-1],p->x[xii],p->x[xii+1],p->x[xii+2]); else value = p->x[ xii ] + frac * (p->x[ xii+1 ] - p->x[xii]); // if xfading if( p->cfi < p->cfn ) { // calc index into y[] of the sample to crossfade with int idx = p->pii - p->cfn + p->cfi; p->y[idx] = (1.0 - p->cf[p->cfi]) * p->y[idx] + p->cf[p->cfi] * value; ++p->cfi; } else { // else fill the remaing space in y[] p->y[p->pii] = value; ++p->pii; } } // if the output buffer is full then stop generating if( p->pii == p->wn ) p->genFl = false; } // reset the input index to the beginning of the buffer p->xfi -= xn; p->prv_x0 = x[xn-3]; p->prv_x1 = x[xn-2]; p->prv_x2 = x[xn-1]; } cmRC_t cmPitchShiftExec( cmPitchShift* p, const cmSample_t* x, cmSample_t* y, unsigned n, double shiftRatio ) { assert(n == p->procSmpCnt); if( shiftRatio >= 1 ) memcpy(y,x,n*sizeof(cmSample_t)); else { _cmPitchShiftDown(p,shiftRatio,x,n); if( y != NULL ) memcpy(y,p->y,n*sizeof(cmSample_t)); } return cmOkRC; } */ cmRC_t cmPitchShiftFree( cmPitchShift** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmPitchShift* p = *pp; if(( rc = cmPitchShiftFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->b); cmMemPtrFree(&p->outV); cmMemPtrFree(&p->wnd); cmMemPtrFree(&p->osc[0].y); cmMemPtrFree(&p->osc[1].y); cmObjFree(pp); } } return rc; } /* cmRC_t cmPitchShiftInit( cmPitchShift* p, unsigned procSmpCnt, double srate) { cmRC_t rc; if((rc = cmPitchShiftFinal(p)) != cmOkRC ) return rc; p->procSmpCnt = procSmpCnt; p->srate = srate; p->wn = 4096; p->in = 2*p->wn + p->procSmpCnt; p->outN = p->procSmpCnt; p->m = cmMemResizeZ(cmSample_t, p->m,p->in + 2 ); p->x = p->m + 1; p->outV = cmMemResizeZ(cmSample_t, p->outV,procSmpCnt ); p->wnd = cmMemResizeZ(cmSample_t, p->wnd, p->wn+1 ); p->ii = 1; p->cubeFl = true; p->ei0 = -1; p->ei1 = -1; p->osc[0].ratio = 1.0; p->osc[0].wi = 0; p->osc[0].xi = 0; p->osc[0].yN = 2*p->wn; p->osc[0].y = cmMemResizeZ(cmSample_t, p->osc[0].y, p->osc[0].yN ); p->osc[0].yii = 0; p->osc[0].yoi = 0; p->osc[0].ynn = 0; p->osc[1].ratio = 1.0; p->osc[1].wi = floor(p->wn/2); p->osc[1].xi = 0; p->osc[1].yN = 2*p->wn; p->osc[1].y = cmMemResizeZ(cmSample_t, p->osc[1].y, p->osc[1].yN ); p->osc[1].yii = 0; p->osc[1].yoi = 0; p->osc[1].ynn = 0; assert( p->in >= p->procSmpCnt + 1 ); cmVOS_Hann( p->wnd, p->wn+1 ); return rc; } #define _isInNoGoZone(p,i) ( ((0 <= (i)) && ((i) <= (p)->ei0)) || (((p)->ii <= (i)) && ((i) <= (p)->ei1)) ) #define _isNotInNoGoZone(p,i) (!_isInNoGoZone(p,i)) void _startNewWindow( cmPitchShift* p, cmPitchShiftOsc_t* op, int li, double ratio) { op->wi = 0; if( op->ratio < 1.0 ) op->xi = p->ii - p->procSmpCnt; else op->xi = p->ii + (li)*(p->procSmpCnt/ratio); while( op->xi < 0 ) op->xi += p->in-1; while( op->xi > (p->in-1) ) op->xi -= (p->in-1); op->xi = floor(op->xi); } void _cmPitchShiftOsc( cmPitchShift* p, cmPitchShiftOsc_t* op, double ratio ) { int li = 0; bool contFl = 1; // if we are waiting to start a new window until the output buffer drains if( op->wi==-1 ) { // if the output buffer has enough samples to complete this cycle - return if(op->ynn >= p->procSmpCnt) return; // otherwise start a new window _startNewWindow(p,op,li,ratio); } // iterate until all output samples have been generated for(li=0; contFl; ++li) { // iterate over one window or until output is complete while( op->wi < p->wn ) { int wii = floor(op->wi); double frac = op->wi - wii; int xii = (op->xi + wii) % (p->in-1); cmSample_t wnd = p->wnd[ wii ] + frac * (p->wnd[wii+1] - p->wnd[wii]); cmSample_t val; // if enough samples have been generated and the next input will not be in the no-go zone if( (op->ynn >= p->procSmpCnt) && _isNotInNoGoZone(p,xii-1) && _isNotInNoGoZone(p,xii+2) ) { contFl = false; break; } if( op->ynn >= op->yN ) { printf("OVER\n"); contFl = false; break; } // generate the value of the output sample if( p->cubeFl ) val = _cube_interp(frac,p->x[xii-1],p->x[xii],p->x[xii+1],p->x[xii+2]); else val = p->x[ xii ] + frac * (p->x[ xii+1 ] - p->x[xii]); // apply the window function and assign to output op->y[op->yii] = wnd * val; // incr the count of samples in y[] ++op->ynn; // advance the output buffers input location op->yii = (op->yii + 1) % op->yN; op->wi += ratio; // increment the window location } // if a window completed if( op->wi >= p->wn ) { if( (ratio < 1.0) && (op->ynn >= p->procSmpCnt) ) { op->wi = -1; break; } _startNewWindow(p,op,li+1,ratio); } } } // in=5 // m x // 0 1 2 3 4 5 // 1 x x a b c d e // 2 c d e f g h i // 3 g h i j k l m // // ratio < 1 - the output oscillators must be able to generate 1 complete window prior to new samples // overwriting the oscillators location in the input buffer. cmRC_t cmPitchShiftExec( cmPitchShift* p, const cmSample_t* x, cmSample_t* y, unsigned xn, double ratio ) { cmRC_t rc = cmOkRC; //memcpy(y,x,xn*sizeof(cmSample_t)); //return rc; int i; // copy in the incoming samples for(i=0; i<xn; ++i) { p->x[p->ii] = x[i]; ++p->ii; if( p->ii == p->in+1 ) { p->x[-1] = p->x[p->in-2]; p->x[ 0] = p->x[p->in-1]; p->x[ 1] = p->x[p->in]; p->ii = 2; } } // locate the section of the input buffer which // will be written over on the next cycle. // The oscillators have to avoid ending in this area if( (p->in+1) - p->ii >= p->procSmpCnt ) { p->ei1 = p->ii + p->procSmpCnt - 1; p->ei0 = -1; } else { int n = (p->in+1) - p->ii; p->ei1 = (p->ii + n) - 1; p->ei0 = (p->procSmpCnt - n) - 1; } //memset(p->outV,0,p->procSmpCnt*sizeof(cmSample_t)); _cmPitchShiftOsc(p, p->osc + 0, ratio ); _cmPitchShiftOsc(p, p->osc + 1, ratio ); // mix the indidual output of the two oscillators to form the final output if( p->osc[0].ynn < p->procSmpCnt || p->osc[1].ynn < p->procSmpCnt ) printf("UNDER\n"); for(i=0; i<p->procSmpCnt; ++i) { p->outV[i] = p->osc[0].y[p->osc[0].yoi] + p->osc[1].y[p->osc[1].yoi]; p->osc[0].yoi = (p->osc[0].yoi + 1) % p->osc[0].yN; p->osc[1].yoi = (p->osc[1].yoi + 1) % p->osc[1].yN; } p->osc[0].ynn -= p->procSmpCnt; p->osc[1].ynn -= p->procSmpCnt; if( y != NULL ) memcpy(y,p->outV,p->outN*sizeof(cmSample_t)); return rc; } */ cmRC_t cmPitchShiftInit( cmPitchShift* p, unsigned procSmpCnt, double srate) { cmRC_t rc; if((rc = cmPitchShiftFinal(p)) != cmOkRC ) return rc; p->procSmpCnt = procSmpCnt; p->outN = procSmpCnt; p->outV = cmMemAllocZ(cmSample_t,procSmpCnt); p->wn = 2048; p->xn = 2*p->wn + procSmpCnt; p->bn = p->xn + 3; p->b = cmMemAllocZ(cmSample_t,p->bn); p->x = p->b + 1; p->wnd = cmMemAllocZ(cmSample_t,p->wn+1); p->xni = p->xn - procSmpCnt + 2; p->cubeFl = true; int i; for(i=0; i<2; ++i) { cmPitchShiftOsc_t* op = p->osc + i; op->xi = p->procSmpCnt; op->yn = p->wn * 2; op->y = cmMemAllocZ(cmSample_t,op->yn); op->yii= 0; op->yoi= 0; op->ynn= 0; op->wi = i==0 ? 0 : p->wn/2; } cmVOS_Hann(p->wnd,p->wn+1); return rc; } void _cmPitchShiftOscExec( cmPitchShift* p, cmPitchShiftOsc_t* op, double ratio ) { int k = 0; // account for right buffer shift on input op->xi -= p->procSmpCnt; // pass through code for testing if(0) { int i; for(i=0; i<p->procSmpCnt; ++i) { op->y[op->yii] = p->x[ (int)floor(op->xi) ]; op->yii = (op->yii + 1) % op->yn; op->ynn += 1; op->xi += 1.0; } return; } while(1) { int wii = floor(op->wi); double wfrac = op->wi - wii; int xii = floor(op->xi); double vfrac = op->xi - xii; cmSample_t val; // if enough output samples have been generated and we are outside the no-land zone if( (op->ynn >= p->procSmpCnt && op->xi >= p->procSmpCnt) ) break; if( op->xi >= p->xn ) { //printf("Wrap %f %f\n",op->xi,op->wi); } cmSample_t wnd = p->wnd[ wii ] + wfrac * (p->wnd[wii+1] - p->wnd[wii]); // generate the value of the output sample if( p->cubeFl ) val = _cube_interp(vfrac,p->x[xii-1],p->x[xii],p->x[xii+1],p->x[xii+2]); else val = p->x[ xii ] + vfrac * (p->x[ xii+1 ] - p->x[xii]); // apply the window function and assign to output op->y[op->yii] = wnd * val; // incr the count of samples in y[] ++op->ynn; // advance the output buffers input location op->yii = (op->yii + 1) % op->yn; op->wi += ratio<1 ? 1 : ratio; // increment the window location op->xi += ratio; if( op->wi >= p->wn ) { ++k; op->wi = 0; if( ratio < 1 ) op->xi = p->xni; // begin of most recent block of procSmpCnt input samples else op->xi = k*p->procSmpCnt/ratio; } } //if( op->ynn != p->procSmpCnt ) // printf("wi:%f xi:%f ynn:%i\n",op->wi,op->xi,op->ynn); } // b: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 // x: -1 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 // // On each cycle: // 1) shift x[] left by procSmpCnt samples. // 2) add new samples on right side of x[] // 3) oscillator scans from right to left. cmRC_t cmPitchShiftExec( cmPitchShift* p, const cmSample_t* x, cmSample_t* y, unsigned xn, double ratio, bool bypassFl ) { if(0) { memcpy(p->outV,x,xn*sizeof(cmSample_t)); if( y != NULL ) memcpy(y,x,xn*sizeof(cmSample_t)); return cmOkRC; } if( y == NULL ) return cmOkRC; if( x == NULL ) { cmVOS_Zero(y,xn); return cmOkRC; } if( bypassFl ) { memcpy(p->outV,x,xn*sizeof(cmSample_t)); if( y != NULL ) memcpy(y,x,xn*sizeof(cmSample_t)); return cmOkRC; } int i; memmove(p->x - 1, p->x+p->procSmpCnt-1,(p->xn - p->procSmpCnt + 3)*sizeof(cmSample_t)); memcpy( p->x + p->xni, x, xn * sizeof(cmSample_t) ); //memmove(p->x + p->procSmpCnt -1, p->x - 1, (p->xn - p->procSmpCnt + 3) * sizeof(cmSample_t)); //memcpy( p->x-1, x, xn * sizeof(cmSample_t)); _cmPitchShiftOscExec(p, p->osc + 0, ratio ); _cmPitchShiftOscExec(p, p->osc + 1, ratio ); // mix the indidual output of the two oscillators to form the final output if( p->osc[0].ynn < p->procSmpCnt || p->osc[1].ynn < p->procSmpCnt ) printf("UNDER\n"); for(i=0; i<p->procSmpCnt; ++i) { p->outV[i] = p->osc[0].y[p->osc[0].yoi] + p->osc[1].y[p->osc[1].yoi]; p->osc[0].yoi = (p->osc[0].yoi + 1) % p->osc[0].yn; p->osc[1].yoi = (p->osc[1].yoi + 1) % p->osc[1].yn; } p->osc[0].ynn -= p->procSmpCnt; p->osc[1].ynn -= p->procSmpCnt; if( y != NULL ) memcpy(y,p->outV,xn*sizeof(cmSample_t)); return cmOkRC; } //======================================================================================================================= cmLoopRecord* cmLoopRecordAlloc( cmCtx* c, cmLoopRecord* p, unsigned procSmpCnt, unsigned maxRecdSmpCnt, unsigned xfadeSmpCnt ) { cmLoopRecord* op = cmObjAlloc(cmLoopRecord, c, p ); if( procSmpCnt != 0 ) if( cmLoopRecordInit(op, procSmpCnt, maxRecdSmpCnt, xfadeSmpCnt) != cmOkRC ) cmLoopRecordFree(&op); return op; } /* cmRC_t cmLoopRecordFree( cmLoopRecord** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmLoopRecord* p = *pp; if(( rc = cmLoopRecordFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->bufMem); cmMemPtrFree(&p->bufArray); cmMemPtrFree(&p->outV); cmMemPtrFree(&p->xfadeFunc); cmObjFree(pp); } } return rc; } cmRC_t cmLoopRecordInit( cmLoopRecord* p, unsigned procSmpCnt, unsigned maxRecdSmpCnt, unsigned xfadeSmpCnt ) { cmRC_t rc; unsigned i; if((rc = cmLoopRecordFinal(p)) != cmOkRC ) return rc; assert( xfadeSmpCnt < maxRecdSmpCnt ); p->maxRecdSmpCnt = maxRecdSmpCnt; p->bufArrayCnt = 2; p->bufMem = cmMemResizeZ( cmSample_t, p->bufMem, maxRecdSmpCnt * p->bufArrayCnt ); p->bufArray = cmMemResizeZ( cmLoopRecdBuf, p->bufArray, p->bufArrayCnt ); p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt ); p->xfadeFunc = cmMemResizeZ( cmSample_t, p->xfadeFunc, xfadeSmpCnt+1 ); p->outN = procSmpCnt; p->procSmpCnt = procSmpCnt; p->xfadeSmpCnt = xfadeSmpCnt; p->recdBufIdx = 0; p->playBufIdx = 1; p->recdFl = false; p->playFl = false; for(i=0; i<p->bufArrayCnt; ++i) { p->bufArray[i].bV = p->bufMem + (i * maxRecdSmpCnt); p->bufArray[i].bN = maxRecdSmpCnt; p->bufArray[i].xfi = xfadeSmpCnt; } for(i=0; i<=p->xfadeSmpCnt; ++i) p->xfadeFunc[i] = (cmReal_t)i/p->xfadeSmpCnt; return rc; } cmRC_t cmLoopRecordFinal( cmLoopRecord* p ) { return cmOkRC; } cmRC_t cmLoopRecordExec( cmLoopRecord* p, const cmSample_t* x, cmSample_t* y, unsigned xn, bool recdFl, bool playFl ) { unsigned i; // if the recdFl was enabled if(recdFl==true && p->recdFl==false) { p->recdFl = true; p->bufArray[p->recdBufIdx].bii = 0; p->bufArray[p->recdBufIdx].boi = 0; printf("Recd:on %i\n",p->recdBufIdx); } else // if the recdFl was disabled if( recdFl==false && p->recdFl==true ) { p->recdFl = false; playFl = true; p->playBufIdx = p->recdBufIdx; p->recdBufIdx = (p->recdBufIdx + 1) % p->bufArrayCnt; printf("Recd:off\n"); } // if the playFl triggered on if( playFl==true && p->playFl==false) { p->bufArray[p->playBufIdx].boi = 0; p->playFl = true; //printf("Play:on %i %i\n",p->playBufIdx,p->bufArray[p->playBufIdx].bii); } // if recording if( p->recdFl ) { cmLoopRecdBuf* rp = p->bufArray + p->recdBufIdx; for(i=0; i<xn && rp->bii < rp->bN; ++i,++rp->bii) { rp->bV[ rp->bii ] = x[i]; } p->recdFl = rp->bii != rp->bN; } // if playing if( p->playFl ) { cmLoopRecdBuf* rp = p->bufArray + p->playBufIdx; unsigned xf0n = p->xfadeSmpCnt/2; unsigned xf1n = rp->bii - p->xfadeSmpCnt/2; unsigned xfi0 = (rp->boi + p->xfadeSmpCnt/2) % rp->bii; for(i=0; i<xn; ++i) { bool fl = rp->boi < xf0n || rp->boi > xf1n; cmSample_t env = fl ? p->xfadeFunc[ rp->xfi ] : 1; p->outV[i] = ((1.0-env) * rp->bV[ rp->boi ]) + (env * rp->bV[ xfi0 ]); rp->boi = (rp->boi + 1) % rp->bii; xfi0 = (xfi0 + 1) % rp->bii; } } if( y != NULL ) memcpy(y,p->outV,xn*sizeof(cmSample_t)); return cmOkRC; } */ cmRC_t cmLoopRecordFree( cmLoopRecord** pp ) { cmRC_t rc = cmOkRC; if( pp != NULL && *pp != NULL ) { cmLoopRecord* p = *pp; if(( rc = cmLoopRecordFinal(p)) == cmOkRC ) { cmMemPtrFree(&p->bufMem); cmMemPtrFree(&p->bufArray); cmMemPtrFree(&p->outV); cmObjFree(pp); } } return rc; } cmRC_t cmLoopRecordInit( cmLoopRecord* p, unsigned procSmpCnt, unsigned maxRecdSmpCnt, unsigned xfadeSmpCnt ) { cmRC_t rc; unsigned i; if((rc = cmLoopRecordFinal(p)) != cmOkRC ) return rc; assert( xfadeSmpCnt < maxRecdSmpCnt ); p->maxRecdSmpCnt = maxRecdSmpCnt; p->bufArrayCnt = 2; p->bufMem = cmMemResizeZ( cmSample_t, p->bufMem, (maxRecdSmpCnt+3) * p->bufArrayCnt * 2 ); p->bufArray = cmMemResizeZ( cmLoopRecdBuf, p->bufArray, p->bufArrayCnt ); p->outV = cmMemResizeZ( cmSample_t, p->outV, procSmpCnt ); p->outN = procSmpCnt; p->procSmpCnt = procSmpCnt; p->xfadeSmpCnt = xfadeSmpCnt; p->recdBufIdx = 0; p->playBufIdx = 1; p->recdFl = false; p->playFl = false; for(i=0; i<p->bufArrayCnt; ++i) { p->bufArray[i].xV = p->bufMem + ((2 * i + 0) * (maxRecdSmpCnt+3)) + 1; p->bufArray[i].xN = maxRecdSmpCnt; p->bufArray[i].xii = 0; p->bufArray[i].wV = p->bufMem + ((2 * i + 1) * (maxRecdSmpCnt+3)); } return rc; } cmRC_t cmLoopRecordFinal( cmLoopRecord* p ) { return cmOkRC; } void _cmLoopRecordOscExec( cmLoopRecord* p, cmLoopRecdBuf* rp, cmLoopRecdOsc* op, double ratio ) { unsigned i; for(i=0; i<p->outN; ++i) { int xi = floor(op->xi); double vfrac = op->xi - xi; cmSample_t val = _cube_interp(vfrac,rp->xV[xi-1],rp->xV[xi],rp->xV[xi+1],rp->xV[xi+2]); int wi = floor(op->wi); double wfrac = op->wi - wi; cmSample_t wnd = rp->wV[ wi ] + wfrac * (rp->wV[wi+1] - rp->wV[wi]); wnd = (wnd - 0.5) * op->u + 0.5; p->outV[i] += wnd * val; op->wi += ratio; if( op->wi >= rp->xii ) { op->wi -= rp->xii; op->u *= -1.0; } op->xi += ratio; if( op->xi >= rp->xii ) op->xi -= rp->xii; } } // // a b c d e f g h i - osc 0 sample value // 0.0 .25 0.5 .75 1.0 1.0 .75 0.5 .25 - osc 0 window value // // e f g h i a b c d - osc 1 sample value // 1.0 .75 0.5 .25 0.0 0.0 .25 0.5 .75 - osc 1 window value // // Notes: // 1) The window values transition through zero // at the loop point. // 2) cmRC_t cmLoopRecordExec( cmLoopRecord* p, const cmSample_t* x, cmSample_t* y, unsigned xn, bool bypassFl, bool recdFl, bool playFl, double ratio, double pgain, double rgain ) { int i,j; assert( xn <= p->outN ); if( bypassFl ) { memcpy(p->outV,x,xn*sizeof(cmSample_t)); if( y != NULL ) { //memcpy(y,x,xn*sizeof(cmSample_t)); cmVOS_MultVVS(y,xn,x,pgain); } return cmOkRC; } // if the recdFl was enabled if(recdFl==true && p->recdFl==false) { p->recdFl = true; p->bufArray[p->recdBufIdx].xii = 0; //printf("Recd:on %i\n",p->recdBufIdx); } else // if the recdFl was disabled if( recdFl==false && p->recdFl==true ) { cmLoopRecdBuf* rp = p->bufArray + p->recdBufIdx; // arrange the 'wrap-around' samples rp->xV[-1] = rp->xV[rp->xii-1]; rp->xV[rp->xii ] = rp->xV[0]; rp->xV[rp->xii+1] = rp->xV[1]; // calc the length of the cross-fade if( rp->xii < p->xfadeSmpCnt * 2) rp->xfN = rp->xii/2; else rp->xfN = p->xfadeSmpCnt; assert( rp->xfN > 0 ); // fill the crossfade window with zeros cmVOS_Zero(rp->wV,rp->xii); // fill the last xfN samples in the xfade window vector with a fade-in slope int xfi = rp->xii - rp->xfN; for(j=0; j<rp->xfN; ++j) rp->wV[xfi+j] = (cmSample_t)j/rp->xfN; // initialize the oscillators for(j=0; j<2; ++j) { // rp->osc[j].xi = j==0 ? 0.0 : rp->xfN; // oscillators are p->xfN samples out of phase rp->osc[j].u = j==0 ? 1.0 : -1.0; // set windows to have opposite polarity rp->osc[j].wi = xfi; // begin window at cross-fade } p->recdFl = false; p->playFl = true; p->playBufIdx = p->recdBufIdx; p->recdBufIdx = (p->recdBufIdx + 1) % p->bufArrayCnt; //printf("Recd:off\n"); } // if recording if( p->recdFl ) { cmLoopRecdBuf* rp = p->bufArray + p->recdBufIdx; for(i=0; i<xn && rp->xii < rp->xN; ++i,++rp->xii) { rp->xV[ rp->xii ] = x[i]; } } if( playFl && p->bufArray[p->playBufIdx].xii > 0 ) { p->playFl = !p->playFl; if( p->playFl ) { // reset oscillators to start at the begin of loop } } if( p->playFl ) { cmLoopRecdBuf* rp = p->bufArray + p->playBufIdx; cmVOS_Zero(p->outV,p->outN); _cmLoopRecordOscExec(p,rp, rp->osc + 0, ratio ); _cmLoopRecordOscExec(p,rp, rp->osc + 1, ratio ); } if( y != NULL ) { //memcpy(y,p->outV,xn*sizeof(cmSample_t)); for(i=0; i<p->outN; ++i) y[i] = (pgain * x[i]) + (rgain * p->outV[i]); } return cmOkRC; } //======================================================================================================================= cmGateDetect* cmGateDetectAlloc( cmCtx* c, cmGateDetect* p, unsigned procSmpCnt, cmReal_t onThreshPct, cmReal_t onThreshDb, cmReal_t offThreshDb ) { cmGateDetect* op = cmObjAlloc(cmGateDetect, c, p ); if( procSmpCnt != 0 ) if( cmGateDetectInit(op, procSmpCnt, onThreshPct, onThreshDb, offThreshDb) != cmOkRC ) cmGateDetectFree(&op); return op; } cmRC_t cmGateDetectFree( cmGateDetect** pp ) { cmRC_t rc; if( pp==NULL || *pp == NULL ) return cmOkRC; cmGateDetect* p = *pp; if((rc = cmGateDetectFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->rmsV); cmMemPtrFree(&p->wndV); cmObjFree(pp); return cmOkRC; } cmRC_t cmGateDetectInit( cmGateDetect* p, unsigned procSmpCnt, cmReal_t onThreshPct, cmReal_t onThreshDb, cmReal_t offThreshDb ) { cmRC_t rc; if((rc = cmGateDetectFinal(p)) != cmOkRC ) return rc; p->rmsN = 3; p->rmsV = cmMemResizeZ(cmSample_t,p->rmsV,p->rmsN); p->wndN = 9; p->wndV = cmMemResizeZ(cmSample_t,p->wndV,p->wndN); p->rms = 0; p->durSmpCnt = 0; p->gateFl = false; p->deltaFl = false; p->onThreshPct = onThreshPct; p->onThreshDb = onThreshDb; p->offThreshDb = offThreshDb; return rc; } cmRC_t cmGateDetectFinal(cmGateDetect* p ) { return cmOkRC; } cmRC_t cmGateDetectExec22( cmGateDetect* p, const cmSample_t* x, unsigned xn ) { p->deltaFl = false; p->rms = cmVOS_RMS(x,xn,xn); cmReal_t db = p->rms==0 ? -100 : 20*log10(p->rms); //cmSample_t b0 = 0; cmSample_t b1 = 0; cmVOS_Shift(p->rmsV,p->rmsN,-1,p->rms); // if gate is on if( p->gateFl ) { p->deltaFl = db < p->offThreshDb; } else { //cmVOS_Lsq1(NULL,p->rmsV,p->rmsN,&b0,&b1); // p->deltaFl = b1 > p->onThreshPct && db > p->onThreshDb; unsigned i; for(i=0; i<p->rmsN-1; ++i) b1 += p->rmsV[i+1] - p->rmsV[i]; b1 /= p->rmsN; p->deltaFl = b1 > p->onThreshPct && db > p->onThreshDb; } if( p->deltaFl ) { p->gateFl = !p->gateFl; p->durSmpCnt = xn; } else { p->durSmpCnt += xn; } //p->rms = b1; //printf("%f %f %i %f;\n",db,p->rms,p->deltaFl,b1); return cmOkRC; } cmRC_t cmGateDetectExec( cmGateDetect* p, const cmSample_t* x, unsigned xn ) { p->deltaFl = false; p->rms = cmVOS_RMS(x,xn,xn); cmReal_t db = p->rms==0 ? -100 : 20*log10(p->rms); unsigned i; cmSample_t d = 0; // update the rms window cmVOS_Shift(p->rmsV,p->rmsN,-1,p->rms); // calc. derr of RMS for(i=0; i<p->rmsN-1; ++i) d += p->rmsV[i+1] - p->rmsV[i]; d /= p->rmsN; // zero negative derr's d = d<0 ? 0 : d; // update the peak window cmVOS_Shift(p->wndV,p->wndN,-1,d); p->mean = cmVOS_Mean(p->wndV,p->wndN); // if this is an offset if( p->gateFl && db < p->offThreshDb ) { p->gateFl = false; p->deltaFl = true; } else // if this may be an onset. if( db > p->onThreshDb ) { i = p->wndN - 2; // if previous derr was a peak if( p->wndV[i]>0 && p->wndV[i-1] < p->wndV[i] && p->wndV[i] > p->wndV[i+1] ) { // and the peak is the largest value in the exteneded window if( p->wndV[i] > p->mean ) { p->deltaFl = true; p->gateFl = true; p->durSmpCnt = 0; } } } if( p->gateFl ) p->durSmpCnt += xn; p->rms = p->d0; p->d0 = d; return cmOkRC; } //======================================================================================================================= cmGateDetect2* cmGateDetectAlloc2( cmCtx* c, cmGateDetect2* p, unsigned procSmpCnt, const cmGateDetectParams* args ) { cmGateDetect2* op = cmObjAlloc(cmGateDetect2, c, p ); if( procSmpCnt != 0 ) if( cmGateDetectInit2(op, procSmpCnt, args) != cmOkRC ) cmGateDetectFree2(&op); return op; } cmRC_t cmGateDetectFree2( cmGateDetect2** pp ) { cmRC_t rc; if( pp==NULL || *pp == NULL ) return cmOkRC; cmGateDetect2* p = *pp; if((rc = cmGateDetectFinal2(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->medV); cmObjFree(pp); return cmOkRC; } cmRC_t cmGateDetectInit2( cmGateDetect2* p, unsigned procSmpCnt, const cmGateDetectParams* args ) { cmRC_t rc; if((rc = cmGateDetectFinal2(p)) != cmOkRC ) return rc; unsigned pkCnt = 3; unsigned eleCnt = 3*args->medCnt + args->avgCnt + args->suprCnt + args->offCnt + pkCnt; unsigned i; p->args = *args; p->medV = cmMemResizeZ(cmSample_t,p->medV,eleCnt); p->fcofV = p->medV + args->medCnt; p->fdlyV = p->fcofV + args->medCnt; p->avgV = p->fdlyV + args->medCnt; p->suprV = p->avgV + args->avgCnt; p->offV = p->suprV + args->suprCnt; p->pkV = p->offV + args->offCnt; assert( p->medV + eleCnt == p->pkV + pkCnt ); p->medIdx = 0; p->avgIdx = 0; p->suprIdx = args->suprCnt; p->offIdx = 0; p->pkFl = false; p->gateFl = false; p->onFl = false; p->offFl = false; cmGateDetectSetOnThreshDb2(p,args->onThreshDb); cmGateDetectSetOnThreshDb2(p,args->offThreshDb); p->fcofV[0] = 1.0; for(i=1; i<args->medCnt; ++i) { p->fcofV[i] = (1.0 - 1.0/args->medCnt) / ( pow(2.0,i-1) ); //printf("%i %f ",i,p->fcofV[i]); } for(i=0; i<args->suprCnt; ++i) { p->suprV[i] = 1.0/pow(args->suprCoeff,i + 1.0); //printf("%i %f ",i,p->suprV[i]); } return rc; } cmRC_t cmGateDetectFinal2(cmGateDetect2* p ) { return cmOkRC; } void _cmGateDetectPickPeak( cmGateDetect2* p, cmSample_t input ) { p->pkV[0] = p->pkV[1]; p->pkV[1] = p->pkV[2]; p->pkV[2] = input; // if supression is active - apply it to the center pkV[] if( p->suprIdx < p->args.suprCnt ) { p->pkV[1] -= p->pkV[1] * p->suprV[p->suprIdx]; p->suprIdx = (p->suprIdx + 1) % p->args.suprCnt; } p->sup = p->pkV[1]; // if the center value in pkV[] is a local peak and above the onset threshold if( p->pkV[1] > p->onThresh && p->pkV[0] < p->pkV[1] && p->pkV[1] > p->pkV[2] ) { p->suprIdx = 0; p->gateFl = true; p->onFl = true; } // update the offset buffer p->offV[p->offIdx] = fabs(p->pkV[2]); p->offIdx = (p->offIdx + 1) % p->args.offCnt; // if this is an offset if( p->gateFl==true && cmVOS_Mean(p->offV,p->args.offCnt) < p->offThresh ) { p->gateFl = false; p->offFl = true; } } void _cmGateDetectPickPeak2( cmGateDetect2* p, cmSample_t input ) { // if supression is active - apply it to the input if( p->suprIdx < p->args.suprCnt ) { input -= input * p->suprV[p->suprIdx]; ++p->suprIdx;// = (p->suprIdx + 1) % p->args.suprCnt; } // update the peak buffer p->pkV[0] = p->pkV[1]; p->pkV[1] = p->pkV[2]; p->pkV[2] = input; p->sup = input; // if the signal increased above the threshold and is not already waiting for a peak if( p->pkV[1] < input && input > p->onThresh && p->pkFl == false ) { p->pkFl = true; p->gateFl = true; p->onFl = true; } // if the center value in pkV[] is a local peak and above the onset threshold ... if( p->gateFl && p->pkFl && p->pkV[0] < p->pkV[1] && p->pkV[1] > p->pkV[2] ) { p->suprIdx = 0; // ... turn on supression p->pkFl = false; // ... not longer waiting for the peak } // update the offset buffer p->offV[p->offIdx] = fabs(input); p->offIdx = (p->offIdx + 1) % p->args.offCnt; // if this is an offset if( p->gateFl==true && cmVOS_Mean(p->offV,p->args.offCnt) < p->offThresh ) { p->gateFl = false; p->offFl = true; p->pkFl = false; } } cmRC_t cmGateDetectExec2( cmGateDetect2* p, const cmSample_t* x, unsigned xn ) { p->rms = cmVOS_RMS(x,xn,xn); // take RMS of incoming window p->medV[ p->medIdx ] = p->rms; // input RMS to median filter p->medIdx = (p->medIdx + 1) % p->args.medCnt; p->med = cmVOS_Median(p->medV,p->args.medCnt); // calc the median p->dif = cmMax(0,p->rms - p->med); // dif = half_rect( rms - med ) p->avgV[ p->avgIdx ] = p->dif; // input dif to avg filter p->avgIdx = (p->avgIdx + 1) % p->args.avgCnt; p->avg = cmVOS_Mean(p->avgV,p->args.avgCnt); // calc the avg p->ons = p->dif - p->avg; // ons = dif - avg cmVOS_Shift(p->fdlyV,p->args.medCnt,1,p->ons); p->flt = cmVOS_MultSumVV(p->fdlyV,p->fcofV,p->args.medCnt); p->offFl = false; p->onFl = false; _cmGateDetectPickPeak2(p,p->flt); return cmOkRC; } void _cmGateDetectSetDb2( cmGateDetect2* p, cmReal_t db, cmReal_t* dbPtr ) { *dbPtr = pow(10.0, db/20.0 ); } void cmGateDetectSetOnThreshDb2( cmGateDetect2* p, cmReal_t db ) { _cmGateDetectSetDb2(p,db,&p->onThresh); } void cmGateDetectSetOffThreshDb2( cmGateDetect2* p, cmReal_t db ) { _cmGateDetectSetDb2(p,db,&p->offThresh); } //======================================================================================================================= cmAutoGain* cmAutoGainAlloc( cmCtx* c, cmAutoGain* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t hopMs, unsigned chCnt, const cmGateDetectParams* gd_args ) { cmAutoGain* op = cmObjAlloc(cmAutoGain, c, p ); op->sbp = cmShiftBufAlloc(c,NULL,0,0,0); op->gdp = cmGateDetectAlloc2(c,NULL,0,NULL); if( procSmpCnt != 0 ) if( cmAutoGainInit(op, procSmpCnt, srate, hopMs, chCnt, gd_args) != cmOkRC ) cmAutoGainFree(&op); return op; } cmRC_t cmAutoGainFree( cmAutoGain** pp ) { cmRC_t rc; if( pp==NULL || *pp == NULL ) return cmOkRC; cmAutoGain* p = *pp; if((rc = cmAutoGainFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->chArray); p->chCnt = 0; cmShiftBufFree(&p->sbp); cmGateDetectFree2(&p->gdp); cmObjFree(pp); return cmOkRC; } cmRC_t cmAutoGainInit( cmAutoGain* p, unsigned procSmpCnt, cmReal_t srate, cmReal_t hopMs, unsigned chCnt, const cmGateDetectParams* gd_args ) { unsigned i; cmRC_t rc; if((rc = cmAutoGainFinal(p)) != cmOkRC ) return rc; unsigned hopSmpCnt = (unsigned)floor(srate * hopMs / 1000.0); unsigned wndSmpCnt = hopSmpCnt * gd_args->medCnt; cmShiftBufInit(p->sbp,procSmpCnt,wndSmpCnt,hopSmpCnt); cmGateDetectInit2(p->gdp,procSmpCnt,gd_args); p->chCnt = chCnt; p->chArray = cmMemResizeZ(cmAutoGainCh,p->chArray,p->chCnt); p->chp = NULL; for(i=0; i<p->chCnt; ++i) p->chArray[i].id = cmInvalidIdx; return rc; } cmRC_t cmAutoGainFinal( cmAutoGain* p ) { return cmOkRC;} void _cmAutoGainChannelFinish( cmAutoGain* p ) { if( p->chp != NULL ) { if( p->gateMax != 0 ) { p->gateSum += p->gateMax; p->gateCnt += 1; } p->chp->gateMaxAvg = p->gateCnt == 0 ? 0.0 : p->gateSum / p->gateCnt; } } cmRC_t cmAutoGainStartCh( cmAutoGain* p, unsigned id ) { cmReal_t rmsMax = 1.0; unsigned i; if( id == cmInvalidIdx ) return cmOkRC; // do intermediate channel calculations on the last selected channel if( p->chp != NULL ) _cmAutoGainChannelFinish( p ); // if 'id' has already been used // then select the associated channel as the current channel // otherwise select the next avail channel as the current channel for(i=0; i<p->chCnt; ++i) if( p->chArray[i].id == id || p->chArray[i].id == cmInvalidId ) { p->chp = p->chArray + i; break; } if( p->chp == NULL ) return cmCtxRtCondition( &p->obj, cmArgAssertRC, "All channels are in use."); p->chp->id = id; p->gateCnt = 0; p->gateSum = 0; p->gateMax = 0; p->minRms = rmsMax; return cmOkRC; } // The goal of this process is to locate the max RMS value during // the duration of each note. When all the notes have been processed for // a given channel the average maximum value for all of the notes is // then calculated. cmRC_t cmAutoGainProcCh( cmAutoGain* p, const cmSample_t* x, unsigned xn ) { // shift the new samples into the shift buffer while(cmShiftBufExec(p->sbp,x,xn)) { // update the gate detector cmGateDetectExec2(p->gdp,p->sbp->outV,p->sbp->outN); // write the output matrix file //if( _cmPuWriteMtxFile(p,segFl) != kOkPuRC ) // goto errLabel; // if this frame is an RMS minimum or onset or offset // then select it as a possible segment end. // Note that for onsets this will effectively force the end to // come after the onset because the onset will not be an energy minimum // relative to subsequent frames. if( p->gdp->rms < p->minRms || p->gdp->onFl || p->gdp->offFl ) { p->minRms = p->gdp->rms; // count onsets if( p->gdp->onFl ) ++p->chp->onCnt; // count offsets if( p->gdp->offFl ) { ++p->chp->offCnt; // update the gate sum and count p->gateSum += p->gateMax; p->gateCnt += 1; p->gateMax = 0; } } // track the max RMS value during this gate if( p->gdp->gateFl && p->gdp->rms > p->gateMax ) p->gateMax = p->gdp->rms; } return cmOkRC; } cmRC_t cmAutoGainCalcGains( cmAutoGain* p ) { unsigned i; cmReal_t avg = 0; if( p->chCnt == 0 ) return cmOkRC; // verify that all channels were input for(i=0; i<p->chCnt; ++i) if( p->chArray[i].id == cmInvalidId ) break; if( i != p->chCnt ) return cmCtxRtCondition( &p->obj, cmArgAssertRC, "All channels must be set prior to calculating gains."); // process the last channel _cmAutoGainChannelFinish(p); // p->chp isn't used again unless we restart the indidual channel processing p->chp = NULL; for(i=0; i<p->chCnt; ++i) avg += p->chArray[i].gateMaxAvg; avg /= p->chCnt; for(i=0; i<p->chCnt; ++i) { cmReal_t d = p->chArray[i].gateMaxAvg==0 ? 1.0 : p->chArray[i].gateMaxAvg; p->chArray[i].gain = avg / d; } return cmOkRC; } void cmAutoGainPrint( cmAutoGain* p, cmRpt_t* rpt ) { unsigned i=0; for(i=0; i<p->chCnt; ++i) { cmAutoGainCh* chp = p->chArray + i; cmRptPrintf(rpt,"midi:%3i %4s on:%i off:%i avg:%5.5f gain:%5.5f\n", chp->id, cmStringNullGuard(cmMidiToSciPitch(chp->id,NULL,0)), chp->onCnt, chp->offCnt, chp->gateMaxAvg, chp->gain ); } } //========================================================================================================================================== cmChCfg* cmChCfgAlloc( cmCtx* c, cmChCfg* p, cmCtx_t* ctx, const cmChar_t* fn ) { cmChCfg* op = cmObjAlloc(cmChCfg, c, p ); if( fn != NULL ) if( cmChCfgInit( op, ctx, fn ) != cmOkRC ) cmChCfgFree(&op); return op; } cmRC_t cmChCfgFree( cmChCfg** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmChCfg* p = *pp; if((rc = cmChCfgFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->chArray); cmFsFreeFn(p->fn); cmObjFree(pp); return cmOkRC; } enum { kChColIdx, kSsiColIdx, kPitchColIdx, kMidiColIdx, kGainColIdx, kNsFlColIdx, kCdFlColIdx, kColCnt }; cmRC_t cmChCfgInit( cmChCfg* p, cmCtx_t* ctx, const cmChar_t* fn ) { cmRC_t rc = cmOkRC; unsigned i,j; const cmChar_t* ch_array_label = "ch_array"; typedef struct { unsigned id; const char* label; } map_t; map_t map[ kColCnt ] = { { kChColIdx, "ch" }, { kSsiColIdx, "ssi" }, { kPitchColIdx, "pitch" }, { kMidiColIdx, "midi" }, { kGainColIdx, "gain" }, { kNsFlColIdx, "ns_fl"}, { kCdFlColIdx, "cd_fl"} }; if((rc = cmChCfgFinal(p)) != cmOkRC ) return rc; p->fn = cmFsMakeFn(cmFsPrefsDir(),fn,NULL,NULL); // read the channel cfg JSON file if( cmJsonInitializeFromFile(&p->jsH, p->fn, ctx ) != kOkJsRC ) { rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "JSON initialize failed on '%s'.",cmStringNullGuard(p->fn)); goto errLabel; } // locate the 'ch_array' node if((p->cap = cmJsonFindValue( p->jsH, ch_array_label, cmJsonRoot(p->jsH), kArrayTId )) == NULL ) { rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "Unable to locate the JSON element '%s'.",ch_array_label); goto errLabel; } unsigned rowCnt = cmJsonChildCount(p->cap); // there must be at least 1 label row and 1 ch row if( rowCnt < 2 ) { rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "The 'ch_array' appears to be empty."); goto errLabel; } // allocate the ch array p->chCnt = rowCnt - 1; p->chArray = cmMemResizeZ( cmChCfgCh, p->chArray, p->chCnt ); p->nsChCnt = 0; // read each row for(i=0; i<rowCnt; ++i) { // get the array on row i const cmJsonNode_t* np = cmJsonArrayElementC(p->cap,i); // all row arrays contain 'kColCnt' elements if( cmJsonChildCount(np) != kColCnt ) { rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "All 'ch_array' element at index %i does not contain %i values.",i,kColCnt); goto errLabel; } // for each columns for(j=0; j<kColCnt; ++j) { const cmJsonNode_t* cp = cmJsonArrayElementC(np,j); // the first row contains the labels .... if( i == 0 ) { // verify that the column format is as expected if( cmJsonIsString(cp)==false || strcmp(cp->u.stringVal,map[j].label) != 0 ) { rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "The first row column at index %i of 'ch_array' should be the label '%s'.",map[j].label); goto errLabel; } } else // ... other rows contain Ch Cfg's. { cmChCfgCh* chp = p->chArray + (i-1); switch(j) { case kChColIdx: rc = cmJsonUIntValue( cp, &chp->ch ); break; case kSsiColIdx: rc = cmJsonUIntValue( cp, &chp->ssi ); break; case kPitchColIdx: rc = cmJsonStringValue( cp, &chp->pitchStr ); break; case kMidiColIdx: rc = cmJsonUIntValue( cp, &chp->midi ); break; case kGainColIdx: rc = cmJsonRealValue( cp, &chp->gain ); break; case kNsFlColIdx: rc = cmJsonBoolValue( cp, &chp->nsFl ); if( chp->nsFl ) ++p->nsChCnt; break; case kCdFlColIdx: rc = cmJsonBoolValue( cp, &chp->cdFl ); break; default: { assert(0); } } if( rc != kOkJsRC ) { rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "An error occurred while reading the '%s' column on row index:%i .", map[j].label,i); goto errLabel; } } } } errLabel: return rc; } cmRC_t cmChCfgFinal( cmChCfg* p ) { cmRC_t rc = cmOkRC; if( cmJsonIsValid(p->jsH) ) if( cmJsonFinalize(&p->jsH) != kOkJsRC ) rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "JSON finalize failed."); return rc; } cmRC_t cmChCfgWrite( cmChCfg* p ) { cmRC_t rc = cmOkRC; unsigned i; for(i=0; i<p->chCnt; ++i) { // get the array on row i+1 cmJsonNode_t* np = cmJsonArrayElement(p->cap,i+1); // get the ele in the 'gainColIdx' column np = cmJsonArrayElement(np,kGainColIdx); assert( cmJsonIsReal(np) ); np->u.realVal = p->chArray[i].gain; } if( cmJsonWrite( p->jsH, cmJsonRoot(p->jsH), p->fn ) != kOkJsRC ) rc = cmCtxRtCondition( &p->obj, cmSubSysFailRC, "The JSON Channel Cfg file write failed on '%s'.",cmStringNullGuard(p->fn)); return rc; } void cmChCfgPrint( cmChCfg* p, cmRpt_t* rpt ) { unsigned i; for(i=0; i<p->chCnt; ++i) { const cmChCfgCh* chp = p->chArray + i; cmRptPrintf(rpt,"%3i %3i %4s %3i %5.5f\n",chp->ch,chp->ssi,chp->pitchStr,chp->midi,chp->gain); } } unsigned cmChCfgChannelCount( cmCtx_t* ctx, const cmChar_t* fn, unsigned* nsChCntPtr ) { cmChCfg* ccp; unsigned chCnt = 0; cmCtx* c = cmCtxAlloc(NULL, &ctx->rpt, cmLHeapNullHandle, cmSymTblNullHandle ); if((ccp = cmChCfgAlloc(c, NULL, ctx, fn )) == NULL ) goto errLabel; chCnt = ccp->chCnt; if( nsChCntPtr != NULL ) *nsChCntPtr = ccp->nsChCnt; cmChCfgFree(&ccp); errLabel: cmCtxFree(&c); return chCnt; } unsigned cmChCfgChannelIndex( cmCtx_t* ctx, const cmChar_t* fn, unsigned chIdx ) { cmChCfg* ccp; unsigned retChIdx = -1; cmCtx* c = cmCtxAlloc(NULL, &ctx->rpt, cmLHeapNullHandle, cmSymTblNullHandle ); if((ccp = cmChCfgAlloc(c, NULL, ctx, fn )) == NULL ) goto errLabel; if( chIdx >= ccp->chCnt ) cmCtxRtCondition( &ccp->obj, cmArgAssertRC, "The channel index %i is not less than the channel count %i when querying '%s'.",chIdx,ccp->chCnt,cmStringNullGuard(ccp->fn)); else retChIdx = ccp->chArray[chIdx].ch; cmChCfgFree(&ccp); errLabel: cmCtxFree(&c); return retChIdx; } //========================================================================================================================================== cmChordDetect* cmChordDetectAlloc( cmCtx*c, cmChordDetect* p, cmReal_t srate, unsigned chCnt, cmReal_t maxTimeSpanMs, unsigned minNotesPerChord ) { cmChordDetect* op = cmObjAlloc(cmChordDetect, c, p ); if( srate != 0 ) if( cmChordDetectInit( op, srate, chCnt, maxTimeSpanMs, minNotesPerChord ) != cmOkRC ) cmChordDetectFree(&op); return op; } cmRC_t cmChordDetectFree( cmChordDetect** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmChordDetect* p = *pp; if((rc = cmChordDetectFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->chArray); cmObjFree(pp); return cmOkRC; } cmRC_t cmChordDetectInit( cmChordDetect* p, cmReal_t srate, unsigned chCnt, cmReal_t maxTimeSpanMs, unsigned minNotesPerChord ) { cmRC_t rc; if((rc = cmChordDetectFinal(p)) != cmOkRC ) return rc; p->chArray = cmMemResizeZ(cmChordDetectCh, p->chArray, chCnt ); p->chCnt = chCnt; p->minNotesPerChord = minNotesPerChord; p->detectFl = false; p->timeSmp = 0; p->srate = srate; cmChordDetectSetSpanMs(p,maxTimeSpanMs); unsigned i; for(i=0; i<p->chCnt; ++i) p->chArray[i].readyFl = true; return rc; } cmRC_t cmChordDetectFinal( cmChordDetect* P ) { return cmOkRC; } cmRC_t cmChordDetectExec( cmChordDetect* p, unsigned procSmpCnt, const bool* gateV, const cmReal_t* rmsV, unsigned chCnt ) { assert( chCnt == p->chCnt ); chCnt = cmMin(chCnt,p->chCnt); cmRC_t rc = cmOkRC; unsigned candCnt = 0; cmChordDetectCh* oldCand = NULL; unsigned i; p->detectFl = false; p->timeSmp += procSmpCnt; // update the readyFl's and candFl's based on onset and offsets for(i=0; i<chCnt; ++i) { cmChordDetectCh* cp = p->chArray + i; // if onset and the channel is ready if( gateV[i] && cp->gateFl==false && cp->readyFl ) { cp->candSmpTime = p->timeSmp; cp->candRMS = rmsV[i]; cp->candFl = true; } // if offset then this channel is again ready to be a candidate if( gateV[i]==false && cp->gateFl ) { cp->readyFl = true; } cp->gateFl = gateV[i]; cp->chordFl = false; } // check if we have enough channels to form a chord and // expire channels that have passed the max time out value for(i=0; i<chCnt; ++i) { cmChordDetectCh* cp = p->chArray + i; unsigned ageSmpCnt = p->timeSmp - cp->candSmpTime; // if this is a candiate ... if( cp->candFl ) { // ... that has not expired if( ageSmpCnt <= p->maxTimeSpanSmpCnt ) { // track the oldest candidate if( oldCand==NULL || cp->candSmpTime < oldCand->candSmpTime ) oldCand = cp; ++candCnt; } else // ... that has expired { cp->candFl = false; } } } // If we have enough notes and the oldest candiate will expire on the next cycle. // (By waiting for the oldest note to almost expire we gather the maximum number of // possible notes given the time duration. If we remove this condition then // we will tend to trigger chord detection with fewer notes.) if( oldCand != NULL ) { unsigned nextAge = p->timeSmp + procSmpCnt - oldCand->candSmpTime; if( candCnt >= p->minNotesPerChord && nextAge >= p->maxTimeSpanSmpCnt ) { for(i=0; i<chCnt; ++i) { cmChordDetectCh* cp = p->chArray + i; if( cp->candFl ) { cp->chordFl = true; cp->candFl = false; } } p->detectFl = true; } } return rc; } cmRC_t cmChordDetectSetSpanMs( cmChordDetect* p, cmReal_t maxTimeSpanMs ) { p->maxTimeSpanSmpCnt = floor( maxTimeSpanMs * p->srate / 1000.0 ); return cmOkRC; } //========================================================================================================================================== cmXfader* cmXfaderAlloc( cmCtx*c, cmXfader* p, cmReal_t srate, unsigned chCnt, cmReal_t fadeTimeMs ) { cmXfader* op = cmObjAlloc(cmXfader, c, p ); if( srate != 0 ) if( cmXfaderInit( op, srate, chCnt, fadeTimeMs ) != cmOkRC ) cmXfaderFree(&op); return op; } cmRC_t cmXfaderFree( cmXfader** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmXfader* p = *pp; if((rc = cmXfaderFinal(p)) != cmOkRC ) return rc; cmMemPtrFree(&p->chArray); cmObjFree(pp); return cmOkRC; } cmRC_t cmXfaderInit( cmXfader* p, cmReal_t srate, unsigned chCnt, cmReal_t fadeTimeMs ) { cmRC_t rc; if((rc = cmXfaderFinal(p)) != cmOkRC ) return rc; p->chCnt = chCnt; p->chArray = cmMemResizeZ(cmXfaderCh,p->chArray,p->chCnt); p->srate = srate; p->gateFl = false; p->onFl = false; p->offFl = false; cmXfaderSetXfadeTime(p,fadeTimeMs); return rc; } cmRC_t cmXfaderFinal( cmXfader* p ) { return cmOkRC; } cmRC_t cmXfaderExec( cmXfader* p, unsigned procSmpCnt, const bool* chGateV, unsigned chCnt ) { assert( chCnt == p->chCnt); chCnt = cmMin(chCnt,p->chCnt); bool gateFl = false; // gain change associated with procSmpCnt cmReal_t dgain = (cmReal_t)procSmpCnt / p->fadeSmpCnt; unsigned i; // for each channel for(i=0; i<chCnt; ++i) { cmXfaderCh* cp = p->chArray + i; cp->onFl = false; cp->offFl = false; if( chGateV != NULL ) { cp->onFl = chGateV[i] && !cp->gateFl; // notice fade-in transition begin cp->gateFl = chGateV[i]; } cmReal_t g = cp->gain; if( cp->gateFl ) cp->gain = cmMin(cp->gain + dgain,1.0); else { cp->gain = cmMax(cp->gain - dgain,0.0); cp->offFl = g>0.0 && cp->gain==0.0; // notice fade-out transition end } if( cp->gain != 0.0 ) gateFl = true; } p->onFl = false; p->offFl = false; if( p->gateFl==false && gateFl==true ) p->onFl = true; else if( p->gateFl==true && gateFl==false ) p->offFl = true; p->gateFl = gateFl; return cmOkRC; } cmRC_t cmXfaderExecAudio( cmXfader* p, unsigned procSmpCnt, const bool* gateV, unsigned chCnt, const cmSample_t* x[], cmSample_t* y ) { cmRC_t rc; assert( chCnt == p->chCnt); chCnt = cmMin(chCnt,p->chCnt); if((rc = cmXfaderExec(p,procSmpCnt,gateV,chCnt)) != cmOkRC ) return rc; unsigned i; for(i=0; i<chCnt; ++i) if( x[i] != NULL ) cmVOS_MultVaVS(y,procSmpCnt,x[i],p->chArray[i].gain); return rc; } void cmXfaderSetXfadeTime( cmXfader* p, cmReal_t fadeTimeMs ) { p->fadeSmpCnt = floor(fadeTimeMs * p->srate /1000.0); } void cmXfaderSelectOne( cmXfader* p, unsigned chIdx ) { unsigned i = 0; for(i=0; i<p->chCnt; ++i) p->chArray[i].gateFl = i == chIdx; } void cmXfaderAllOff( cmXfader* p ) { unsigned i = 0; for(i=0; i<p->chCnt; ++i) p->chArray[i].gateFl = false; } //========================================================================================================================================== cmFader* cmFaderAlloc( cmCtx*c, cmFader* p, cmReal_t srate, cmReal_t fadeTimeMs ) { cmFader* op = cmObjAlloc(cmFader, c, p ); if( srate != 0 ) if( cmFaderInit( op, srate, fadeTimeMs ) != cmOkRC ) cmFaderFree(&op); return op; } cmRC_t cmFaderFree( cmFader** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmFader* p = *pp; if((rc = cmFaderFinal(p)) != cmOkRC ) return rc; cmObjFree(pp); return cmOkRC; } cmRC_t cmFaderInit( cmFader* p, cmReal_t srate, cmReal_t fadeTimeMs ) { cmRC_t rc; if((rc = cmFaderFinal(p)) != cmOkRC ) return rc; p->srate = srate; p->gain = 0.0; cmFaderSetFadeTime(p,fadeTimeMs); return rc; } cmRC_t cmFaderFinal( cmFader* p ) { return cmOkRC; } cmRC_t cmFaderExec( cmFader* p, unsigned procSmpCnt, bool gateFl, bool mixFl, const cmSample_t* x, cmSample_t* y ) { cmReal_t d = (gateFl ? 1.0 : -1.0) * procSmpCnt / p->fadeSmpCnt; // TODO: add fade curves p->gain = cmMin(1.0,cmMax(0.0,p->gain + d)); if( x!=NULL && y!=NULL ) { if( mixFl ) cmVOS_MultVaVS(y, procSmpCnt, x, 1.0/* p->gain*/); else cmVOS_MultVVS(y,procSmpCnt,x,p->gain); } return cmOkRC; } void cmFaderSetFadeTime( cmFader* p, cmReal_t fadeTimeMs ) { p->fadeSmpCnt = (unsigned)floor( fadeTimeMs * p->srate / 1000.0 ); } //======================================================================================================================= cmCombFilt* cmCombFiltAlloc( cmCtx* c, cmCombFilt* p, cmReal_t srate, bool feedbackFl, cmReal_t minHz, cmReal_t alpha, cmReal_t hz, bool bypassFl ) { cmCombFilt* op = cmObjAlloc(cmCombFilt, c, p ); op->idp = cmIDelayAlloc(c, NULL, 0, 0, NULL, NULL, NULL, 0 ); if( srate != 0 ) if( cmCombFiltInit( op, srate, feedbackFl, minHz, alpha, hz, bypassFl ) != cmOkRC ) cmCombFiltFree(&op); return op; } cmRC_t cmCombFiltFree( cmCombFilt** pp) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmCombFilt* p = *pp; if((rc = cmCombFiltFinal(p)) != cmOkRC ) return rc; cmMemFree(p->a); cmMemFree(p->b); cmMemFree(p->d); cmIDelayFree(&p->idp); cmObjFree(pp); return cmOkRC; } cmRC_t cmCombFiltInit( cmCombFilt* p, cmReal_t srate, bool feedbackFl, cmReal_t minHz, cmReal_t alpha, cmReal_t hz, bool bypassFl ) { cmRC_t rc; if((rc = cmCombFiltFinal(p)) != cmOkRC ) return rc; p->feedbackFl = feedbackFl; p->dN = cmMax(1,floor(srate / minHz )); p->d = cmMemResizeZ( cmReal_t, p->d, p->dN+1 ); p->a = cmMemResizeZ( cmReal_t, p->a, p->dN ); p->b = cmMemResizeZ( cmReal_t, p->b, p->dN ); p->dn = 1; p->alpha = alpha; p->srate = srate; p->bypassFl = bypassFl; cmReal_t tapMs = p->dn * 1000.0 / srate; cmReal_t tapFf = 1.0; cmReal_t tapFb = 1.0; cmIDelayInit(p->idp, srate, p->dN * 1000.0 / srate, &tapMs, &tapFf, &tapFb, 1 ); cmCombFiltSetHz(p,hz); return rc; } cmRC_t cmCombFiltFinal( cmCombFilt* p ) { return cmOkRC; } cmRC_t cmCombFiltExec( cmCombFilt* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { if( y == NULL ) return cmOkRC; if( x == NULL ) { cmVOS_Zero(y,n); return cmOkRC; } if( p->bypassFl ) cmVOS_Copy(y,n,x); else cmIDelayExec(p->idp,x,y,n); return cmOkRC; } void cmCombFiltSetAlpha( cmCombFilt* p, cmReal_t alpha ) { p->b0 = 1.0 - fabs(alpha); // normalization coeff (could be applied directly to the input or output) p->a[p->dn-1] = -alpha; p->alpha = alpha; p->idp->tff[0] = p->b0; p->idp->tfb[0] = -alpha; } cmRC_t cmCombFiltSetHz( cmCombFilt* p, cmReal_t hz ) { if( hz < p->minHz ) return cmCtxRtCondition( &p->obj, cmInvalidArgRC, "The comb filter frequency %f Hz is invalid given the minimum frequency setting of %f Hz.",hz,p->minHz ); // clear the current alpha p->a[p->dn-1] = 0; // change location of alpha in p->a[] p->dn = cmMin(p->dN-1,cmMax(1,floor(p->srate / hz ))); p->hz = hz; cmCombFiltSetAlpha(p,p->alpha); // the location of filter coeff changed - reset it here cmIDelaySetTapMs(p->idp, 0,p->dn * 1000.0 / p->srate ); return cmOkRC; } //======================================================================================================================= cmDcFilt* cmDcFiltAlloc( cmCtx* c, cmDcFilt* p, bool bypassFl ) { cmDcFilt* op = cmObjAlloc(cmDcFilt, c, p ); if( cmDcFiltInit( op, bypassFl ) != cmOkRC ) cmDcFiltFree(&op); return op; } cmRC_t cmDcFiltFree( cmDcFilt** pp) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmDcFilt* p = *pp; if((rc = cmDcFiltFinal(p)) != cmOkRC ) return rc; cmObjFree(pp); return cmOkRC; } cmRC_t cmDcFiltInit( cmDcFilt* p, bool bypassFl ) { cmRC_t rc; if((rc = cmDcFiltFinal(p)) != cmOkRC ) return rc; p->b0 = 1; p->b[0] = -1; p->a[0] = -0.999; p->d[0] = 0; p->d[1] = 0; p->bypassFl = bypassFl; return rc; } cmRC_t cmDcFiltFinal( cmDcFilt* p ) { return cmOkRC; } cmRC_t cmDcFiltExec( cmDcFilt* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { if( p->bypassFl ) cmVOS_Copy(y,n,x); else cmVOS_Filter(y,n,x,n,p->b0, p->b, p->a, p->d, 1 ); return cmOkRC; } //======================================================================================================================= cmIDelay* cmIDelayAlloc( cmCtx* c, cmIDelay* p, cmReal_t srate, cmReal_t maxDelayMs, const cmReal_t* tapMs, const cmReal_t* tapFfGain, const cmReal_t* tapFbGain, unsigned tapCnt ) { cmIDelay* op = cmObjAlloc(cmIDelay, c, p ); if( srate != 0 ) if( cmIDelayInit( op, srate, maxDelayMs, tapMs, tapFfGain, tapFbGain, tapCnt ) != cmOkRC ) cmIDelayFree(&op); return op; } cmRC_t cmIDelayFree( cmIDelay** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmIDelay* p = *pp; if((rc = cmIDelayFinal(p)) != cmOkRC ) return rc; cmMemFree(p->m); cmMemFree(p->ti); cmMemFree(p->tff); cmMemFree(p->tfb); cmObjFree(pp); return cmOkRC; } cmRC_t cmIDelayInit( cmIDelay* p, cmReal_t srate, cmReal_t maxDelayMs, const cmReal_t* tapMs, const cmReal_t* tapFfGain, const cmReal_t* tapFbGain, unsigned tapCnt ) { cmRC_t rc; if(( rc = cmIDelayFinal(p)) != cmOkRC ) return rc; p->dn = (unsigned)floor( maxDelayMs * srate / 1000.0 ); p->mn = p->dn + 3; p->m = cmMemResizeZ(cmSample_t,p->m,p->mn); p->d = p->m + 1; p->tn = tapCnt; p->ti = cmMemResize(cmReal_t,p->ti,tapCnt); p->tff = cmMemResize(cmReal_t,p->tff,tapCnt); p->tfb = cmMemResize(cmReal_t,p->tfb,tapCnt); p->srate = srate; unsigned i; for(i=0; i<tapCnt; ++i) { cmIDelaySetTapMs(p,i,tapMs[i]); p->tff[i] = tapFfGain[i]; p->tfb[i] = tapFbGain[i]; } return rc; } cmRC_t cmIDelayFinal(cmIDelay* p ) { return cmOkRC; } cmRC_t cmIDelayExec( cmIDelay* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { unsigned i,j; for(i=0; i<n; ++i) { cmSample_t fb = 0; y[i] = 0; // calculate the output sample for(j=0; j<p->tn; ++j) { // get tap_j cmReal_t tfi = p->ii - p->ti[j]; // mod it into 0:dn-1 while( tfi < 0 ) tfi += p->dn; int ti = floor(tfi); cmReal_t tf = tfi - ti; cmSample_t v = _lin_interp(tf,p->d[ti],p->d[ti+1]); // _cube_interp(tf,p->d[ti-1],p->d[ti],p->d[ti+1],p->d[ti+2]); y[i] += p->tff[j] * v; fb += p->tfb[j] * v; } // insert incoming sample p->d[p->ii] = x[i] + fb; // advance the delay line ++p->ii; // handle beg/end delay sample duplication // -1 0 1 2 .... dn-1 dn dn+1 // a b c a b c // The samples at position -1 0 1 must be duplicated // at positions dn-1,dn,dn+1 so that output sample calculation // does not need to deal with buffer wrap-around issues. if( p->ii == 1 ) p->d[p->dn] = x[i]; else if( p->ii == 2 ) p->d[p->dn+1] = x[i]; else if( p->ii == p->dn ) { p->d[-1] = x[i]; p->ii = 0; } } return cmOkRC; } cmRC_t cmIDelaySetTapMs( cmIDelay* p, unsigned tapIdx, cmReal_t tapMs ) { cmRC_t rc = cmOkRC; if( tapIdx < p->tn ) p->ti[tapIdx] = tapMs * p->srate / 1000.0; else rc = cmCtxRtCondition( &p->obj, cmInvalidArgRC, "Tap index %i is out of range 0 - %i.",tapIdx,p->tn-1 ); return rc; } //======================================================================================================================= cmGroupSel* cmGroupSelAlloc( cmCtx* c, cmGroupSel* p, unsigned chCnt, unsigned groupCnt, unsigned chsPerGroup ) { cmGroupSel* op = cmObjAlloc(cmGroupSel, c, p ); if( chCnt != 0 ) if( cmGroupSelInit( op, chCnt, groupCnt, chsPerGroup ) != cmOkRC ) cmGroupSelFree(&op); return op; } cmRC_t cmGroupSelFree( cmGroupSel** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmGroupSel* p = *pp; if((rc = cmGroupSelFinal(p)) != cmOkRC ) return rc; cmMemFree(p->groupArray); cmMemFree(p->chArray); cmObjFree(pp); return cmOkRC; } cmRC_t cmGroupSelInit( cmGroupSel* p, unsigned chCnt, unsigned groupCnt, unsigned chsPerGroup ) { cmRC_t rc; if((rc = cmGroupSelFinal(p)) != cmOkRC ) return rc; p->chArray = cmMemResizeZ(cmGroupSelCh,p->chArray,chCnt); p->groupArray = cmMemResizeZ(cmGroupSelGrp,p->groupArray,chCnt); p->chCnt = chCnt; p->groupCnt = groupCnt; p->chsPerGroup = chsPerGroup; unsigned i; for(i=0; i<p->chCnt; ++i) p->chArray[i].groupIdx = cmInvalidIdx; for(i=0; i<p->groupCnt; ++i) { p->groupArray[i].chIdxArray = cmMemAllocZ(unsigned, p->chCnt); p->groupArray[i].chIdxCnt = 0; } return rc; } cmRC_t cmGroupSelFinal( cmGroupSel* p ) { unsigned i; for(i=0; i<p->groupCnt; ++i) cmMemFree(p->groupArray[i].chIdxArray); return cmOkRC; } cmRC_t cmGroupSetChannelGate( cmGroupSel* p, unsigned chIdx, bool gateFl ) { assert(chIdx <p->chCnt); cmGroupSelCh* cp = p->chArray + chIdx; if( gateFl==true && cp->gateFl==false ) { cp->readyFl = true; } if( gateFl==false && cp->gateFl==true ) { cp->offsetFl = true; cp->readyFl = false; } cp->gateFl = gateFl; //printf("ch:%i gate:%i ready:%i offset:%i grp:%i\n",chIdx,cp->gateFl,cp->readyFl,cp->offsetFl,cp->groupIdx); return cmOkRC; } cmRC_t cmGroupSetChannelRMS( cmGroupSel* p, unsigned chIdx, cmReal_t rms ) { assert(chIdx <p->chCnt); cmGroupSelCh* cp = p->chArray + chIdx; cp->rms = rms; return cmOkRC; } cmRC_t cmGroupSelExec( cmGroupSel* p ) { unsigned i,j; unsigned availGroupCnt = 0; p->chsPerGroup = cmMin( p->chsPerGroup, p->chCnt ); p->updateFl = false; // clear the create and release flags on each group // and get the count of available groups for(i=0; i<p->groupCnt; ++i) { cmGroupSelGrp* gp = p->groupArray + i; gp->createFl = false; if( gp->releaseFl ) { // clear the groupIdx from the channels assigned to this released group for(j=0; j<gp->chIdxCnt; ++j) p->chArray[ gp->chIdxArray[j] ].groupIdx = cmInvalidIdx; gp->releaseFl = false; gp->chIdxCnt = 0; } if( gp->chIdxCnt == 0 ) ++availGroupCnt; } // count the number of ready but unassigned ch's and // release any groups which contain a channel with a gate offset unsigned readyChCnt = 0; for(i=0; i<p->chCnt; ++i) { cmGroupSelCh* cp = p->chArray + i; // count the number of channels that are ready to be assigned if( cp->readyFl ) ++readyChCnt; // if this channel offset and it had been assigned to a group // then mark its group for release if( cp->offsetFl && cp->groupIdx != cmInvalidIdx ) { p->groupArray[cp->groupIdx].releaseFl = true; p->updateFl = true; } } // assign ready ch's to available groups while( readyChCnt > p->chsPerGroup && availGroupCnt > 0 ) { unsigned groupIdx; // locate an available group for(groupIdx=0; groupIdx<p->groupCnt; ++groupIdx) if( p->groupArray[groupIdx].chIdxCnt == 0 ) break; if( groupIdx == p->groupCnt ) break; --availGroupCnt; cmGroupSelGrp* gp = p->groupArray + groupIdx; printf("gs - group:%i chs: ",groupIdx); // assign chsPerGroup ch's to this group for(i=0; i<p->chCnt && gp->chIdxCnt < p->chsPerGroup; ++i) if(p->chArray[i].readyFl ) { p->chArray[i].readyFl = false; // this ch is no longer ready because it is assigned p->chArray[i].groupIdx = groupIdx; // set this ch's group idx gp->chIdxArray[ gp->chIdxCnt ] = i; // assign channel to group gp->chIdxCnt += 1; // update the group ch count gp->createFl = true; p->updateFl = true; --readyChCnt; printf("%i ",i); } printf("\n"); } return cmOkRC; } //======================================================================================================================= cmAudioNofM* cmAudioNofMAlloc( cmCtx* c, cmAudioNofM* p, cmReal_t srate, unsigned inChCnt, unsigned outChCnt, cmReal_t fadeTimeMs ) { cmAudioNofM* op = cmObjAlloc(cmAudioNofM, c, p ); if( srate != 0 ) if( cmAudioNofMInit( op, srate, inChCnt, outChCnt, fadeTimeMs ) != cmOkRC ) cmAudioNofMFree(&op); return op; } cmRC_t cmAudioNofMFree( cmAudioNofM** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmAudioNofM* p = *pp; if((rc = cmAudioNofMFinal(p)) != cmOkRC ) return rc; cmMemFree(p->outArray); cmMemFree(p->inArray); cmObjFree(pp); return cmOkRC; } cmRC_t cmAudioNofMInit( cmAudioNofM* p, cmReal_t srate, unsigned iChCnt, unsigned oChCnt, cmReal_t fadeTimeMs ) { cmRC_t rc; if((rc = cmAudioNofMFinal(p)) != cmOkRC ) return rc; p->iChCnt = iChCnt; p->inArray = cmMemResizeZ(cmAudioNofM_In,p->inArray,iChCnt); p->oChCnt = oChCnt; p->outArray = cmMemResizeZ(cmAudioNofM_Out,p->outArray,oChCnt); p->nxtOutChIdx = 0; unsigned i; for(i=0; i<p->iChCnt; ++i) { p->inArray[i].fader = cmFaderAlloc(p->obj.ctx, NULL, srate, fadeTimeMs ); p->inArray[i].outChIdx = cmInvalidIdx; } cmAudioNofMSetFadeMs( p, fadeTimeMs ); return rc; } cmRC_t cmAudioNofMFinal( cmAudioNofM* p ) { unsigned i; for(i=0; i<p->iChCnt; ++i) cmFaderFree(&p->inArray[i].fader); return cmOkRC; } cmRC_t cmAudioNofMSetChannelGate( cmAudioNofM* p, unsigned inChIdx, bool gateFl ) { assert( inChIdx < p->iChCnt ); cmAudioNofM_In* ip = p->inArray + inChIdx; if( ip->gateFl && gateFl == false ) ip->offsetFl = true; if( ip->gateFl == false && gateFl ) ip->onsetFl = true; ip->gateFl = gateFl; printf("nom: %p ch:%i gate:%i on:%i off:%i\n",p,inChIdx,ip->gateFl,ip->offsetFl,ip->onsetFl); return cmOkRC; } cmRC_t cmAudioNofMExec( cmAudioNofM* p, const cmSample_t* x[], unsigned inChCnt, cmSample_t* y[], unsigned outChCnt, unsigned n ) { assert( inChCnt == p->iChCnt && outChCnt == p->oChCnt ); unsigned i; // for each output channel for(i=0; i<p->oChCnt; ++i) { cmAudioNofM_Out* op = p->outArray + i; cmAudioNofM_In* ip = op->list; cmAudioNofM_In* pp = NULL; // for each input assigned to this output chanenl while( ip != NULL ) { // if the channel is no longer active if( ip->offsetFl && ip->fader->gain == 0.0 ) { printf("nom: off - out:%i\n",ip->outChIdx); // remove it from the output channels list ip->offsetFl = false; ip->outChIdx = cmInvalidIdx; if( pp == NULL ) op->list = ip->link; else pp->link = ip->link; } pp = ip; ip = ip->link; } } // for each input channel for(i=0; i<inChCnt; ++i) { cmAudioNofM_In* ip = p->inArray + i; // if this channel is starting if( ip->onsetFl == true && ip->offsetFl == false ) { // assign it to the next output channel ip->onsetFl = false; ip->outChIdx = p->nxtOutChIdx; ip->link = p->outArray[ ip->outChIdx ].list; p->outArray[ ip->outChIdx ].list = ip; p->nxtOutChIdx = (p->nxtOutChIdx + 1) % p->oChCnt; printf("nom: on - in:%i out:%i\n",i,ip->outChIdx); } // if this channel is active - then mix its input if( ip->outChIdx != cmInvalidIdx ) { cmFaderExec( ip->fader, n, ip->gateFl, true, x[i], y[ ip->outChIdx ] ); } } return cmOkRC; } cmRC_t cmAudioNofMSetFadeMs( cmAudioNofM* p, cmReal_t fadeTimeMs ) { unsigned i; for(i=0; i<p->iChCnt; ++i) cmFaderSetFadeTime(p->inArray[i].fader,fadeTimeMs); return cmOkRC; } //======================================================================================================================= cmAdsr* cmAdsrAlloc( cmCtx* c, cmAdsr* p, cmReal_t srate, bool trigFl, cmReal_t minL, cmReal_t dlyMs, cmReal_t atkMs, cmReal_t atkL, cmReal_t dcyMs, cmReal_t susMs, cmReal_t susL, cmReal_t rlsMs ) { cmAdsr* op = cmObjAlloc(cmAdsr, c, p ); if( srate != 0 ) if( cmAdsrInit( op, srate, trigFl, minL, dlyMs, atkMs, atkL, dcyMs, susMs, susL, rlsMs ) != cmOkRC ) cmAdsrFree(&op); return op; } cmRC_t cmAdsrFree( cmAdsr** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmAdsr* p = *pp; if((rc = cmAdsrFinal(p)) != cmOkRC ) return rc; cmObjFree(pp); return cmOkRC; } cmRC_t cmAdsrInit( cmAdsr* p, cmReal_t srate, bool trigFl, cmReal_t minL, cmReal_t dlyMs, cmReal_t atkMs, cmReal_t atkL, cmReal_t dcyMs, cmReal_t susMs, cmReal_t susL, cmReal_t rlsMs ) { cmRC_t rc; if((rc = cmAdsrFinal(p)) != cmOkRC ) return rc; // this is a limitation of the design - the design should be replaced with one // which increments/decrements the level until it reaches a limit instead of calculating // durations //assert(atkL>=0 && minL>=0); p->srate = srate; p->trigModeFl = trigFl; p->levelMin = minL; p->scaleDur = 1.0; cmAdsrSetTime(p,dlyMs,kDlyAdsrId); cmAdsrSetTime(p,atkMs,kAtkAdsrId); cmAdsrSetTime(p,dcyMs,kDcyAdsrId); cmAdsrSetTime(p,susMs,kSusAdsrId); cmAdsrSetTime(p,rlsMs,kRlsAdsrId); cmAdsrSetLevel(p,atkL,kAtkAdsrId); cmAdsrSetLevel(p,susL,kSusAdsrId); p->state = kDoneAdsrId; p->durSmp = 0; p->level = p->levelMin; p->gateFl = false; p->atkDurSmp = 0; p->rlsDurSmp = 0; return cmOkRC; } cmRC_t cmAdsrFinal( cmAdsr* p ) { return cmOkRC; } cmReal_t cmAdsrExec( cmAdsr* p, unsigned procSmpCnt, bool gateFl, cmReal_t tscale, cmReal_t ascale ) { double scaleAmp = ascale; double scaleDur = tscale; // if onset if( p->gateFl == false && gateFl==true ) { p->scaleDur = scaleDur==0 ? 1.0 : fabs(scaleDur); //printf("sd:%f %f\n",scaleDur,scaleAmp); switch( p->state ) { case kDlyAdsrId: // if in delay mode when the re-attack occurs don't do anything break; case kAtkAdsrId: case kDcyAdsrId: case kSusAdsrId: case kRlsAdsrId: // if the atk level == 0 then fall through to kDoneAdsrId if( p->actAtkLevel != 0 ) { // re-attak mode: // Scale the attack time to the current level relative to the attack level. // In general this will result in a decrease in the attack duration. p->atkDurSmp = cmMax(1,floor(p->atkSmp * (p->actAtkLevel - p->level) / p->actAtkLevel)); p->atkBegLevel = p->level; p->durSmp = 0; p->state = kAtkAdsrId; p->actAtkLevel = p->atkLevel * scaleAmp; p->actSusLevel = p->susLevel * scaleAmp; break; } case kDoneAdsrId: p->atkBegLevel = p->levelMin; p->atkDurSmp = p->atkSmp; p->state = p->dlySmp == 0 ? kAtkAdsrId : kDlyAdsrId; p->durSmp = 0; p->actAtkLevel = p->atkLevel * scaleAmp; p->actSusLevel = p->susLevel * scaleAmp; break; default: { assert(0); } } } // if an offset occurred and we are not in trigger mode - then go into release mode if( p->trigModeFl==false && p->gateFl == true && gateFl == false ) { switch( p->state ) { case kDlyAdsrId: case kAtkAdsrId: case kDcyAdsrId: case kSusAdsrId: if( p->actSusLevel == 0 ) p->state = kDoneAdsrId; else { // scale the release time to the current level relative to the sustain level p->rlsDurSmp = cmMax(1,floor(p->rlsSmp * p->level / p->actSusLevel)); p->rlsLevel = p->level; p->durSmp = 0; } break; case kRlsAdsrId: case kDoneAdsrId: // nothing to do break; default: { assert(0); } } p->state = kRlsAdsrId; } p->gateFl = gateFl; switch( p->state ) { case kDlyAdsrId: p->level = p->levelMin; if( p->durSmp >= p->dlySmp ) { p->state = kAtkAdsrId; p->durSmp = 0; if( p->trigModeFl ) { p->atkBegLevel = p->level; p->atkDurSmp = p->atkSmp; } } break; case kAtkAdsrId: if( p->atkDurSmp != 0 ) p->level = p->atkBegLevel + (p->actAtkLevel - p->atkBegLevel) * cmMin(p->durSmp,p->atkDurSmp) / p->atkDurSmp; if( p->durSmp >= p->atkDurSmp || p->atkDurSmp == 0 ) { p->state = kDcyAdsrId; p->durSmp = 0; } break; case kDcyAdsrId: if( p->dcySmp != 0 ) p->level = p->actAtkLevel - ((p->actAtkLevel - p->actSusLevel) * cmMin(p->durSmp,p->dcySmp) / p->dcySmp ); if( p->durSmp >= p->dcySmp || p->dcySmp==0 ) { p->state = kSusAdsrId; p->durSmp = 0; } break; case kSusAdsrId: p->level = p->actSusLevel; if( p->trigModeFl==true && p->durSmp >= p->susSmp ) { p->state = kRlsAdsrId; p->durSmp = 0; p->rlsLevel = p->level; p->rlsDurSmp = p->rlsSmp; } break; case kRlsAdsrId: if( p->rlsDurSmp != 0 ) p->level = p->rlsLevel - ((p->rlsLevel - p->levelMin) * cmMin(p->durSmp,p->rlsDurSmp) / p->rlsDurSmp); if( p->durSmp >= p->rlsDurSmp || p->rlsDurSmp==0 ) { p->state = kDoneAdsrId; p->durSmp = 0; } break; case kDoneAdsrId: p->level = p->levelMin; break; default: { assert(0); } } p->durSmp += floor(procSmpCnt/p->scaleDur); return p->level; } void _cmAdsrSetTime( cmAdsr* p, cmReal_t ms, int* smpPtr ) { *smpPtr = cmMax(1,floor(p->srate * ms / 1000.0 )); } void cmAdsrSetTime( cmAdsr* p, cmReal_t ms, unsigned id ) { switch( id ) { case kDlyAdsrId: _cmAdsrSetTime(p,ms,&p->dlySmp); break; case kAtkAdsrId: _cmAdsrSetTime(p,ms,&p->atkSmp); break; case kDcyAdsrId: _cmAdsrSetTime(p,ms,&p->dcySmp); break; case kSusAdsrId: _cmAdsrSetTime(p,ms,&p->susSmp); break; case kRlsAdsrId: _cmAdsrSetTime(p,ms,&p->rlsSmp); break; default: { assert(0); } } } void cmAdsrSetLevel( cmAdsr* p, cmReal_t level, unsigned id ) { switch( id ) { case kDlyAdsrId: p->levelMin = level; break; case kAtkAdsrId: p->atkLevel = level; p->actAtkLevel = p->atkLevel; break; case kSusAdsrId: p->susLevel = level; p->actSusLevel = p->susLevel; break; default: { assert(0); } } } void cmAdsrReport( cmAdsr* p, cmRpt_t* rpt ) { cmRptPrintf(rpt,"state:%i gate:%i phs:%i d:%i a:%i (%i) d:%i s:%i r:%i (%i) - min:%f atk:%f\n",p->state,p->gateFl,p->durSmp,p->dlySmp,p->atkSmp,p->atkDurSmp,p->dcySmp,p->susSmp,p->rlsSmp,p->rlsDurSmp, p->levelMin, p->atkLevel); } //======================================================================================================================= cmCompressor* cmCompressorAlloc( cmCtx* c, cmCompressor* p, cmReal_t srate, unsigned procSmpCnt, cmReal_t inGain, cmReal_t rmsWndMaxMs, cmReal_t rmsWndMs, cmReal_t threshDb, cmReal_t ratio_num, cmReal_t atkMs, cmReal_t rlsMs, cmReal_t outGain, bool bypassFl ) { cmCompressor* op = cmObjAlloc(cmCompressor, c, p ); if( srate != 0 ) if( cmCompressorInit( op, srate, procSmpCnt, inGain, rmsWndMaxMs, rmsWndMs, threshDb, ratio_num, atkMs, rlsMs, outGain, bypassFl ) != cmOkRC ) cmCompressorFree(&op); return op; } cmRC_t cmCompressorFree( cmCompressor** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmCompressor* p = *pp; if((rc = cmCompressorFinal(p)) != cmOkRC ) return rc; cmMemFree(p->rmsWnd); cmObjFree(pp); return cmOkRC; } cmRC_t cmCompressorInit( cmCompressor* p, cmReal_t srate, unsigned procSmpCnt, cmReal_t inGain, cmReal_t rmsWndMaxMs, cmReal_t rmsWndMs, cmReal_t threshDb, cmReal_t ratio_num, cmReal_t atkMs, cmReal_t rlsMs, cmReal_t outGain, bool bypassFl ) { cmRC_t rc; if((rc = cmCompressorFinal(p)) != cmOkRC ) return rc; p->srate = srate; p->procSmpCnt = procSmpCnt; p->threshDb = threshDb; p->ratio_num = ratio_num; cmCompressorSetAttackMs(p,atkMs); cmCompressorSetReleaseMs(p,rlsMs); p->inGain = inGain; p->outGain = outGain; p->bypassFl = bypassFl; p->rmsWndAllocCnt = cmMax(1,(unsigned)floor(rmsWndMaxMs * srate / (1000.0 * procSmpCnt))); p->rmsWnd = cmMemResizeZ(cmSample_t,p->rmsWnd,p->rmsWndAllocCnt); cmCompressorSetRmsWndMs(p, rmsWndMs ); p->rmsWndIdx = 0; p->state = kRlsCompId; p->timeConstDb = 10.0; p->accumDb = p->threshDb; return rc; } cmRC_t cmCompressorFinal( cmCompressor* p ) { return cmOkRC; } /* The ratio determines to what degree a signal above the threshold is reduced. Given a 2:1 ratio, a signal 2dB above the threshold will be reduced to 1db above the threshold. Given a 4:1 ratio, a signal 2dB above the threshold will be reduced to 0.25db above the threshold. Gain_reduction_db = (thresh - signal) / ratio_numerator (difference between the threshold and signal level after reduction) Gain Coeff = 10^(gain_reduction_db / 20); Total_reduction_db = signal - threshold + Gain_reduc_db (total change in signal level) The attack can be viewed as beginning at the threshold and moving to the peak over some period of time. In linear terms this will go from 1.0 to the max gain reductions. In this case we step from thresh to peak at a fixed rate in dB based on the attack time. Db: thresh - [thesh:peak] / ratio_num Linear: pow(10, (thresh - [thesh:peak] / ratio_num)/20 ); During attacks p->accumDb increments toward the p->pkDb. During release p->accumDb decrements toward the threshold. (thresh - accumDb) / ratio_num gives the signal level which will be achieved if this value is converted to linear form and applied as a gain coeff. See compressor.m */ cmRC_t cmCompressorExec( cmCompressor* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { cmSample_t xx[n]; cmVOS_MultVVS(xx,n,x,p->inGain); // apply input gain p->rmsWnd[ p->rmsWndIdx ] = cmVOS_RMS(xx, n, n ); // calc and store signal RMS p->rmsWndIdx = (p->rmsWndIdx + 1) % p->rmsWndCnt; // advance the RMS storage buffer cmReal_t rmsLin = cmVOS_Sum(p->rmsWnd,p->rmsWndCnt) / p->rmsWndCnt; // calc avg RMS cmReal_t rmsDb = cmMax(-100.0,20 * log10(cmMax(0.00001,rmsLin))); // convert avg RMS to dB rmsDb += 100.0; // if the compressor is bypassed if( p->bypassFl ) { cmVOS_Copy(y,n,x); // copy through - with no input gain return cmOkRC; } // if the signal is above the threshold if( rmsDb <= p->threshDb ) p->state = kRlsCompId; else { if( rmsDb > p->pkDb ) p->pkDb = rmsDb; p->state = kAtkCompId; } switch( p->state ) { case kAtkCompId: p->accumDb = cmMin(p->pkDb, p->accumDb + p->timeConstDb * n / p->atkSmp ); break; case kRlsCompId: p->accumDb = cmMax(p->threshDb, p->accumDb - p->timeConstDb * n / p->rlsSmp ); break; } p->gain = pow(10.0,(p->threshDb - p->accumDb) / (p->ratio_num * 20.0)); cmVOS_MultVVS(y,n,xx,p->gain * p->outGain); return cmOkRC; } void _cmCompressorSetMs( cmCompressor* p, cmReal_t ms, unsigned* smpPtr ) { *smpPtr = cmMax(1,(unsigned)floor(ms * p->srate / 1000.0)); } void cmCompressorSetAttackMs( cmCompressor* p, cmReal_t ms ) { _cmCompressorSetMs(p,ms,&p->atkSmp); } void cmCompressorSetReleaseMs( cmCompressor* p, cmReal_t ms ) { _cmCompressorSetMs(p,ms,&p->rlsSmp); } void cmCompressorSetThreshDb( cmCompressor* p, cmReal_t threshDb ) { p->threshDb = cmMax(0.0,100 + threshDb); } void cmCompressorSetRmsWndMs( cmCompressor* p, cmReal_t ms ) { p->rmsWndCnt = cmMax(1,(unsigned)floor(ms * p->srate / (1000.0 * p->procSmpCnt))); // do not allow rmsWndCnt to exceed rmsWndAllocCnt if( p->rmsWndCnt > p->rmsWndAllocCnt ) p->rmsWndCnt = p->rmsWndAllocCnt; } //======================================================================================================================= cmBiQuadEq* cmBiQuadEqAlloc( cmCtx* c, cmBiQuadEq* p, cmReal_t srate, unsigned mode, cmReal_t f0Hz, cmReal_t Q, cmReal_t gainDb, bool bypassFl ) { cmBiQuadEq* op = cmObjAlloc(cmBiQuadEq, c, p ); if( srate != 0 ) if( cmBiQuadEqInit( op, srate, mode, f0Hz, Q, gainDb, bypassFl ) != cmOkRC ) cmBiQuadEqFree(&op); return op; } cmRC_t cmBiQuadEqFree( cmBiQuadEq** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmBiQuadEq* p = *pp; if((rc = cmBiQuadEqFinal(p)) != cmOkRC ) return rc; cmObjFree(pp); return cmOkRC; } void _cmBiQuadEqInit( cmBiQuadEq* p ) { cmReal_t w0 = 2*M_PI*p->f0Hz/p->srate; cmReal_t cos_w0 = cos(w0); cmReal_t alpha = sin(w0)/(2*p->Q); if( p->mode==kLowShelfBqId || p->mode==kHighShelfBqId ) { cmReal_t c = p->mode==kLowShelfBqId ? 1.0 : -1.0; cmReal_t A = pow(10.0,p->gainDb/40.0); cmReal_t B = 2*sqrt(A)*alpha; p->b[0] = A*( (A+1) - c * (A-1)*cos_w0 + B ); p->b[1] = c*2*A*( (A-1) - c * (A+1)*cos_w0); p->b[2] = A*( (A+1) - c * (A-1)*cos_w0 - B ); p->a[0] = (A+1) + c * (A-1)*cos_w0 + B; p->a[1] = -c*2*( (A-1) + c * (A+1)*cos_w0); p->a[2] = (A+1) + c * (A-1)*cos_w0 - B; } else { if( p->mode != kPeakBqId ) { p->a[0] = 1 + alpha; p->a[1] = -2*cos_w0; p->a[2] = 1 - alpha; } switch(p->mode) { case kLpfBqId: case kHpFBqId: { cmReal_t c = p->mode==kLpfBqId ? 1.0 : -1.0; p->b[0] = (1 - c * cos_w0)/2; p->b[1] = c * (1 - c * cos_w0); p->b[2] = (1 - c * cos_w0)/2; } break; case kBpfBqId: p->b[0] = p->Q*alpha; p->b[1] = 0; p->b[2] = -p->Q*alpha; break; case kNotchBqId: p->b[0] = 1; p->b[1] = -2*cos_w0; p->b[2] = 1; break; case kAllpassBqId: p->b[0] = 1 - alpha; p->b[1] = -2*cos_w0; p->b[2] = 1 + alpha; break; case kPeakBqId: { cmReal_t A = pow(10.0,p->gainDb/40.0); p->b[0] = 1 + alpha*A; p->b[1] = -2*cos_w0; p->b[2] = 1 - alpha*A; p->a[0] = 1 + alpha/A; p->a[1] = -2*cos_w0; p->a[2] = 1 - alpha/A; } break; } } cmReal_t a0 = p->a[0]; unsigned i=0; for(; i<3; ++i) { p->b[i]/=a0; p->a[i]/=a0; } if(0) { printf("sr:%f mode:%i f0:%f q:%f gain:%f\n", p->srate,p->mode,p->f0Hz,p->Q,p->gainDb); for(i=0; i<3; ++i) printf("a[%i]=%f b[%i]=%f ",i,p->a[i],i,p->b[i]); printf("\n"); } } cmRC_t cmBiQuadEqInit( cmBiQuadEq* p, cmReal_t srate, unsigned mode, cmReal_t f0Hz, cmReal_t Q, cmReal_t gainDb, bool bypassFl ) { cmRC_t rc; if((rc = cmBiQuadEqFinal(p)) != cmOkRC ) return rc; memset(p->d,0,sizeof(p->d)); p->srate = srate; cmBiQuadEqSet(p, mode, f0Hz, Q, gainDb ); _cmBiQuadEqInit(p); return rc; } cmRC_t cmBiQuadEqFinal( cmBiQuadEq* p ) { return cmOkRC;} cmRC_t cmBiQuadEqExec( cmBiQuadEq* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { if( y == NULL ) return cmOkRC; if( x == NULL ) { cmVOS_Zero(y,n); return cmOkRC; } if( p->bypassFl ) { cmVOS_Copy(y,n,x); return cmOkRC; } // Direct Form I implementation unsigned i=0; for(; i<n; ++i) { y[i] = p->b[0]*x[i] + p->b[1]*p->d[0] + p->b[2]*p->d[1] - p->a[1]*p->d[2] - p->a[2]*p->d[3]; p->d[1] = p->d[0]; p->d[0] = x[i]; p->d[3] = p->d[2]; p->d[2] = y[i]; } return cmOkRC; } void cmBiQuadEqSet( cmBiQuadEq* p, unsigned mode, cmReal_t f0Hz, cmReal_t Q, cmReal_t gainDb ) { p->mode = mode; p->f0Hz = f0Hz; p->Q = Q; p->gainDb= gainDb; _cmBiQuadEqInit(p); } //======================================================================================================================= cmDistDs* cmDistDsAlloc( cmCtx* c, cmDistDs* p, cmReal_t srate, cmReal_t inGain, cmReal_t downSrate, cmReal_t bits, bool rectFl, bool fullFl, cmReal_t clipDb, cmReal_t outGain, bool bypassFl ) { cmDistDs* op = cmObjAlloc(cmDistDs, c, p ); if( srate != 0 ) if( cmDistDsInit( op, srate, inGain, downSrate, bits, rectFl, fullFl, clipDb, outGain, bypassFl ) != cmOkRC ) cmDistDsFree(&op); return op; } cmRC_t cmDistDsFree( cmDistDs** pp ) { cmRC_t rc = cmOkRC; if( pp == NULL || *pp == NULL ) return cmOkRC; cmDistDs* p = *pp; if((rc = cmDistDsFinal(p)) != cmOkRC ) return rc; cmObjFree(pp); return cmOkRC; } cmRC_t cmDistDsInit( cmDistDs* p, cmReal_t srate, cmReal_t inGain, cmReal_t downSrate, cmReal_t bits, bool rectFl, bool fullFl, cmReal_t clipDb, cmReal_t outGain, bool bypassFl ) { cmRC_t rc; if((rc = cmDistDsFinal(p)) != cmOkRC ) return rc; p->srate = srate; p->downSrate = downSrate; p->bits = bits; p->rectFl = rectFl; p->fullFl = fullFl; p->clipDb = clipDb; p->inGain = inGain; p->outGain = outGain; p->bypassFl = bypassFl; p->fracIdx = 0; p->lastVal = 0; p->lastY = 0; p->lastX = 0; return rc; } cmRC_t cmDistDsFinal( cmDistDs* p ) { return cmOkRC; } void _cmDistDsExpr0( cmDistDs* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { unsigned i= 0; for(i=0; i<n; ++i) { p->lastY = fmod(p->lastY + fabs(x[i] - p->lastX),2.0); y[i] = cmVOS_RMS(x,n,n) * x[i] * (p->lastY - 1.0); p->lastX = x[i]; } } void _cmDistDsExpr1( cmDistDs* p, cmSample_t* x, cmSample_t* y, unsigned n ) { unsigned i= 0; for(i=0; i<n; ++i) { p->lastY = fmod(p->lastY + fabs(x[i] - p->lastX),2.0*M_PI); y[i] = x[i] * sin(p->lastY); p->lastX = x[i]; } } cmRC_t cmDistDsExec( cmDistDs* p, const cmSample_t* x, cmSample_t* y, unsigned n ) { if( x == NULL ) { if( y != NULL ) cmVOS_Zero(y,n); return cmOkRC; } if( p->bypassFl ) { cmVOS_Copy(y,n,x); return cmOkRC; } unsigned maxVal = cmMax(2,(unsigned)round(pow(2.0,p->bits))); double incr = 1.0; // p->downSrate / p->srate; unsigned i; enum { kNoRectId, kFullRectId, kHalfRectId }; unsigned rectCode = kNoRectId; //cmSample_t t[n]; //_cmDistDsExpr0(p,x,t,n); //x = t; if( p->rectFl ) { if( p->fullFl ) rectCode = kFullRectId; else rectCode = kHalfRectId; } double clipLevel = p->clipDb < -100.0 ? 0.0 : pow(10.0,p->clipDb/20.0); for(i=0; i<n; ++i) { double ii = floor(p->fracIdx); p->fracIdx += incr; // if it is time to sample again if( floor(p->fracIdx) != ii ) { cmSample_t v = p->inGain * floor(x[i] * maxVal) / maxVal; switch( rectCode ) { case kFullRectId: v = (cmSample_t)fabs(v); break; case kHalfRectId: if( v < 0.0 ) v = 0.0; break; } if( fabs(v) > clipLevel ) v = v<0.0 ? -clipLevel : clipLevel; p->lastVal = v * p->outGain; } y[i] = p->lastVal; } return cmOkRC; }