cmAudioSys.h,cmMsgProtocol.h: Update comments. Removed dead code.

This commit is contained in:
kevin 2013-03-25 16:00:39 -07:00
parent 92c8f52ec8
commit bbc847f3c1
2 changed files with 181 additions and 204 deletions

View File

@ -1,57 +1,57 @@
/// \file cmAudioSys.h
/// \brief Implements a real-time audio processing engine.
///
/// The audio system is composed a collection of independent sub-systems.
/// Each sub-system maintains a thread which runs asynchrounsly
/// from the application, the MIDI devices, and the audio devices.
/// To faciliate communication between these components each sub-system maintains
/// two thread-safe data buffers one for control information and a second
/// for audio data.
///
/// The audio devices are the primary driver for the system.
/// Callbacks from the audio devices (See #cmApCallbackPtr_t)
/// inserts incoming audio samples into the audio
/// record buffers and extracts samples from the playback buffer.
/// When sufficient incoming samples and outgoing empty buffer space exists
/// a sub-system thread is waken up by the callback. This triggers a DSP audio
/// processing cycle which empties/fills the audio buffers. During a DSP
/// processing cycle control messages from the application and MIDI are blocked and
/// buffered. Upon completetion of the DSP cycle a control message
/// transfer cycles occurs - buffered incoming messages are passed to
/// the DSP system and messages originating in the DSP system are
/// buffered by the audio system for later pickup by the application
/// or MIDI system.
///
/// Note that control messages that arrive when the DSP cycle is not
/// occurring can pass directly through to the DSP system.
///
/// The DSP system sends messages back to the host by calling
/// cmAsDspToHostFunc_t provided by cmAudioSysCtx_t. These
/// calls are always made from within an audio system call to
/// audio or control update within cmAsCallback_t. cmAsDspToHostFunc_t
/// simply stores the message in a message buffer. The host picks
/// up the message at some later time when it notices that messages
/// are waiting via polling cmAudioSysIsMsgWaiting().
///
/// Implementation: \n
/// The audio sub-systems work by maintaining an internal thread
/// which blocks on a mutex condition variable.
/// While the thread is blocked the mutex is unlocked allowing messages
/// to pass directly through to the DSP procedure via cmAsCallback().
///
/// Periodic calls from running audio devices update the audio buffer.
/// When the audio buffer has input samples waiting and output space
/// available the condition variable is signaled, the mutex is
/// then automatically locked by the system, and the DSP execution
/// procedure is called via cmAsCallback().
///
/// Messages arriving while the mutex is locked are queued and
/// delivered to the DSP procedure at the end of the DSP execution
/// procedure.
///
/// Usage example and testing code:
/// See cmAudioSysTest().
/// \snippet cmAudioSys.c cmAudioSysTest
// cmAudioSys.h
// Implements a real-time audio processing engine.
//
// The audio system is composed a collection of independent sub-systems.
// Each sub-system maintains a thread which runs asynchrounsly
// from the application, the MIDI devices, and the audio devices.
// To faciliate communication between these components each sub-system maintains
// two thread-safe data buffers one for control information and a second
// for audio data.
//
// The audio devices are the primary driver for the system.
// Callbacks from the audio devices (See #cmApCallbackPtr_t)
// inserts incoming audio samples into the audio
// record buffers and extracts samples from the playback buffer.
// When sufficient incoming samples and outgoing empty buffer space exists
// a sub-system thread is waken up by the callback. This triggers a DSP audio
// processing cycle which empties/fills the audio buffers. During a DSP
// processing cycle control messages from the application and MIDI are blocked and
// buffered. Upon completetion of the DSP cycle a control message
// transfer cycles occurs - buffered incoming messages are passed to
// the DSP system and messages originating in the DSP system are
// buffered by the audio system for later pickup by the application
// or MIDI system.
//
// Note that control messages that arrive when the DSP cycle is not
// occurring can pass directly through to the DSP system.
//
// The DSP system sends messages back to the host by calling
// cmAsDspToHostFunc_t provided by cmAudioSysCtx_t. These
// calls are always made from within an audio system call to
// audio or control update within cmAsCallback_t. cmAsDspToHostFunc_t
// simply stores the message in a message buffer. The host picks
// up the message at some later time when it notices that messages
// are waiting via polling cmAudioSysIsMsgWaiting().
//
// Implementation: \n
// The audio sub-systems work by maintaining an internal thread
// which blocks on a mutex condition variable.
// While the thread is blocked the mutex is unlocked allowing messages
// to pass directly through to the DSP procedure via cmAsCallback().
//
// Periodic calls from running audio devices update the audio buffer.
// When the audio buffer has input samples waiting and output space
// available the condition variable is signaled, the mutex is
// then automatically locked by the system, and the DSP execution
// procedure is called via cmAsCallback().
//
// Messages arriving while the mutex is locked are queued and
// delivered to the DSP procedure at the end of the DSP execution
// procedure.
//
// Usage example and testing code:
// See cmAudioSysTest().
// \snippet cmAudioSys.c cmAudioSysTest
#ifndef cmAudioSys_h
#define cmAudioSys_h
@ -60,7 +60,7 @@
extern "C" {
#endif
/// Audio system result codes
// Audio system result codes
enum
{
kOkAsRC = cmOkRC,
@ -81,213 +81,204 @@ extern "C" {
kNotInitAsRC
};
typedef cmHandle_t cmAudioSysH_t; ///< Audio system handle type
typedef unsigned cmAsRC_t; ///< Audio system result code
typedef cmHandle_t cmAudioSysH_t; //< Audio system handle type
typedef unsigned cmAsRC_t; //< Audio system result code
struct cmAudioSysCtx_str;
///
/// DSP system callback function.
///
/// This is the sole point of entry into the DSP system while the audio system is running.
///
/// ctxPtr is pointer to a cmAudioSysCtx_t record.
///
/// This function is called under two circumstances:
///
/// 1) To notify the DSP system that the audio input/output buffers need to be serviced.
/// This is a perioidic request which the DSP system uses as its execution trigger.
/// The msgByteCnt argument is set to zero to indicate this type of call.
///
/// 2) To pass messages from the host application to the DSP system.
/// The DSP system is asyncronous with the host because it executes in the audio system thread
/// rather than the host thread. The cmAudioSysDeliverMsg() function synchronizes incoming
/// messages with the internal audio system thread to prevent thread collisions.
///
/// Notes:
/// This callback is always made with the internal audio system mutex locked.
///
/// The signal time covered by the callback is from
/// ctx->begSmpIdx to ctx->begSmpIdx+cfg->dspFramesPerCycle.
///
/// The return value is currently not used.
//
// DSP system callback function.
//
// This is the sole point of entry into the DSP system while the audio system is running.
//
// ctxPtr is pointer to a cmAudioSysCtx_t record.
//
// This function is called under two circumstances:
//
// 1) To notify the DSP system that the audio input/output buffers need to be serviced.
// This is a perioidic request which the DSP system uses as its execution trigger.
// cmAudioSysCtx_t.audioRateFl is set to true to indicate this type of callback.
//
// 2) To pass messages from the host application to the DSP system.
// The DSP system is asyncronous with the host because it executes in the
// audio system thread rather than the host thread. The cmAudioSysDeliverMsg()
// function synchronizes incoming messages with the internal audio system
// thread to prevent thread collisions.
//
// Notes:
// This callback is always made with the internal audio system mutex locked.
//
// The signal time covered by the callback is from
// ctx->begSmpIdx to ctx->begSmpIdx+cfg->dspFramesPerCycle.
//
// The return value is currently not used.
typedef cmRC_t (*cmAsCallback_t)(void* ctxPtr, unsigned msgByteCnt, const void* msgDataPtr );
/// Audio device sub-sytem configuration record
typedef struct
// Audio device sub-sytem configuration record
typedef struct cmAudioSysArgs_str
{
cmRpt_t* rpt; ///< system console object
unsigned inDevIdx; ///< input audio device
unsigned outDevIdx; ///< output audio device
bool syncInputFl; ///< true/false sync the DSP update callbacks with audio input/output
unsigned msgQueueByteCnt; ///< Size of the internal msg queue used to buffer msgs arriving via cmAudioSysDeliverMsg().
unsigned devFramesPerCycle; ///< (512) Audio device samples per channel per device update buffer.
unsigned dspFramesPerCycle; ///< (64) Audio samples per channel per DSP cycle.
unsigned audioBufCnt; ///< (3) Audio device buffers.
double srate; ///< Audio sample rate.
cmRpt_t* rpt; // system console object
unsigned inDevIdx; // input audio device
unsigned outDevIdx; // output audio device
bool syncInputFl; // true/false sync the DSP update callbacks with audio input/output
unsigned msgQueueByteCnt; // Size of the internal msg queue used to buffer msgs arriving via cmAudioSysDeliverMsg().
unsigned devFramesPerCycle; // (512) Audio device samples per channel per device update buffer.
unsigned dspFramesPerCycle; // (64) Audio samples per channel per DSP cycle.
unsigned audioBufCnt; // (3) Audio device buffers.
double srate; // Audio sample rate.
} cmAudioSysArgs_t;
/// Audio sub-system configuration record.
/// This record is provided by the host to configure the audio system
/// via cmAudioSystemAllocate() or cmAudioSystemInitialize().
// Audio sub-system configuration record.
// This record is provided by the host to configure the audio system
// via cmAudioSystemAllocate() or cmAudioSystemInitialize().
typedef struct cmAudioSysSubSys_str
{
cmAudioSysArgs_t args; ///< Audio device configuration
cmAsCallback_t cbFunc; ///< DSP system entry point function.
void* cbDataPtr; ///< Host provided data for the DSP system callback.
cmAudioSysArgs_t args; // Audio device configuration
cmAsCallback_t cbFunc; // DSP system entry point function.
void* cbDataPtr; // Host provided data for the DSP system callback.
} cmAudioSysSubSys_t;
/// Signature of a callback function provided by the audio system to receive messages
/// from the DSP system for later dispatch to the host application.
/// This declaration is used by the DSP system implementation and the audio system.
/// Note that this function is intended to convey one message broken into multiple parts.
/// See cmTsQueueEnqueueSegMsg() for the equivalent interface.
// Signature of a callback function provided by the audio system to receive messages
// from the DSP system for later dispatch to the host application.
// This declaration is used by the DSP system implementation and the audio system.
// Note that this function is intended to convey one message broken into multiple parts.
// See cmTsQueueEnqueueSegMsg() for the equivalent interface.
typedef cmAsRC_t (*cmAsDspToHostFunc_t)(struct cmAudioSysCtx_str* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt);
/// Informational record passed with each call to the DSP callback function cmAsCallback_t
// Record passed with each call to the DSP callback function cmAsCallback_t
typedef struct cmAudioSysCtx_str
{
void* reserved; ///< used internally by the system
void* reserved; // used internally by the audio system
bool audioRateFl;
bool audioRateFl; // true if this is an audio update callback
unsigned srcNetNodeId; ///<
unsigned asSubIdx; ///< index of the sub-system this DSP process is serving
unsigned srcNetNodeId; // Source net node if this is a msg callback originating from a remote network node.
unsigned asSubIdx; // index of the sub-system this DSP process is serving
cmAudioSysSubSys_t* ss; ///< ptr to a copy of the cfg recd used to initialize the audio system
unsigned begSmpIdx; ///< gives signal time as a sample count
cmAudioSysSubSys_t* ss; // ptr to a copy of the cfg recd used to initialize the audio system
unsigned begSmpIdx; // gives signal time as a sample count
cmAsDspToHostFunc_t dspToHostFunc; ///< Callback used by the DSP process to send messages to the host
///< via the audio system. Returns a cmAsRC_t result code.
cmAsDspToHostFunc_t dspToHostFunc; // Callback used by the DSP process to send messages to the host
// via the audio system. Returns a cmAsRC_t result code.
///< output (playback) buffers
cmSample_t** oChArray; ///< each ele is a ptr to buffer with cfg.dspFramesPerCycle samples
unsigned oChCnt; ///< count of output channels (ele's in oChArray[])
// output (playback) buffers
cmSample_t** oChArray; // each ele is a ptr to buffer with cfg.dspFramesPerCycle samples
unsigned oChCnt; // count of output channels (ele's in oChArray[])
///< input (recording) buffers
cmSample_t** iChArray; ///< each ele is a ptr to buffer with cfg.dspFramesPerCycle samples
unsigned iChCnt; ///< count of input channels (ele's in iChArray[])
// input (recording) buffers
cmSample_t** iChArray; // each ele is a ptr to buffer with cfg.dspFramesPerCycle samples
unsigned iChCnt; // count of input channels (ele's in iChArray[])
} cmAudioSysCtx_t;
/*
typedef struct
{
const cmChar_t* devLabel;
const cmChar_t* inAudioFn;
const cmChar_t* outAudioFn;
unsigned oBits;
unsigned oChCnt;
} cmAudioSysFilePort_t;
*/
/// Audio system configuration record used by cmAudioSysAllocate().
// Audio system configuration record used by cmAudioSysAllocate().
typedef struct cmAudioSysCfg_str
{
cmAudioSysSubSys_t* ssArray; ///< sub-system cfg record array
unsigned ssCnt; ///< count of sub-systems
//cmAudioSysFilePort_t* afpArray; ///< audio port file cfg recd array
//unsigned afpCnt; ///< audio port file cnt
unsigned meterMs; ///< Meter sample period in milliseconds
void* clientCbData; ///< User arg. for clientCbFunc().
cmTsQueueCb_t clientCbFunc; ///< Called by cmAudioSysReceiveMsg() to deliver internally generated msg's to the host.
/// Set to NULL if msg's will be directly returned by buffers passed to cmAudioSysReceiveMsg().
cmAudioSysSubSys_t* ssArray; // sub-system cfg record array
unsigned ssCnt; // count of sub-systems
unsigned meterMs; // Meter sample period in milliseconds
void* clientCbData; // User arg. for clientCbFunc().
cmTsQueueCb_t clientCbFunc; // Called by cmAudioSysReceiveMsg() to deliver internally generated msg's to the host.
// Set to NULL if msg's will be directly returned by buffers passed to cmAudioSysReceiveMsg().
cmUdpNetH_t netH;
} cmAudioSysCfg_t;
extern cmAudioSysH_t cmAudioSysNullHandle;
/// Allocate and initialize an audio system as a collection of 'cfgCnt' sub-systems.
/// Notes:
/// The audio ports system must be initalized (via cmApInitialize()) prior to calling cmAudioSysAllocate().
/// The MIDI port system must be initialized (via cmMpInitialize()) prior to calling cmAudioSysAllocate().
/// Furthermore cmApFinalize() and cmMpFinalize() cannot be called prior to cmAudioSysFree().
/// See cmAudioSystemTest() for a complete example.
// Allocate and initialize an audio system as a collection of 'cfgCnt' sub-systems.
// Prior to call this function the audio audio ports system must be initalized
// (via cmApInitialize()) and the MIDI port system must be initialized
// (via cmMpInitialize()). Note also that cmApFinalize() and cmMpFinalize()
// cannot be called prior to cmAudioSysFree().
// See cmAudioSystemTest() for a complete example.
cmAsRC_t cmAudioSysAllocate( cmAudioSysH_t* hp, cmRpt_t* rpt, const cmAudioSysCfg_t* cfg );
/// Finalize and release any resources held by the audio system.
// Finalize and release any resources held by the audio system.
cmAsRC_t cmAudioSysFree( cmAudioSysH_t* hp );
/// Returns true if 'h' is a handle which was successfully allocated by cmAudioSysAllocate().
// Returns true if 'h' is a handle which was successfully allocated by
// cmAudioSysAllocate().
bool cmAudioSysHandleIsValid( cmAudioSysH_t h );
/// Reinitialize a previously allocated audio system. This function
/// begins with a call to cmAudioSysFinalize().
/// Use cmAudioSysEnable(h,true) to begin processing audio following this call.
// Reinitialize a previously allocated audio system. This function
// begins with a call to cmAudioSysFinalize().
// Use cmAudioSysEnable(h,true) to begin processing audio following this call.
cmAsRC_t cmAudioSysInitialize( cmAudioSysH_t h, const cmAudioSysCfg_t* cfg );
/// Complements cmAudioSysInitialize(). In general there is no need to call this function
/// since calls to cmAudioSysInitialize() and cmAudioSysFree() automaticatically call it.
// Complements cmAudioSysInitialize(). In general there is no need to call this function
// since calls to cmAudioSysInitialize() and cmAudioSysFree() automaticatically call it.
cmAsRC_t cmAudioSysFinalize( cmAudioSysH_t h );
/// Returns true if the audio system has been successfully initialized.
// Returns true if the audio system has been successfully initialized.
bool cmAudioSysIsInitialized( cmAudioSysH_t );
/// Returns true if the audio system is enabled.
// Returns true if the audio system is enabled.
bool cmAudioSysIsEnabled( cmAudioSysH_t h );
/// Enable/disable the audio system. Enabling the starts audio stream
/// in/out of the system.
// Enable/disable the audio system. Enabling the starts audio stream
// in/out of the system.
cmAsRC_t cmAudioSysEnable( cmAudioSysH_t h, bool enableFl );
/// \name Host to DSP delivery functions
/// @{
//
// Host to DSP delivery functions
//
/// Deliver a message from the host application to the DSP process. (host -> DSP);
/// The message is formed as a concatenation of the bytes in each of the segments
/// pointed to by 'msgDataPtrArrary[segCnt][msgByteCntArray[segCnt]'.
/// This is the canonical msg delivery function in so far as the other host->DSP
/// msg delivery function are written in terms of this function.
/// The first 4 bytes in the first segment must contain the index of the audio sub-system
/// which is to receive the message.
// Deliver a message from the host application to the DSP process. (host -> DSP);
// The message is formed as a concatenation of the bytes in each of the segments
// pointed to by 'msgDataPtrArrary[segCnt][msgByteCntArray[segCnt]'.
// This is the canonical msg delivery function in so far as the other host->DSP
// msg delivery function are written in terms of this function.
// The first 4 bytes in the first segment must contain the index of the audio sub-system
// which is to receive the message.
cmAsRC_t cmAudioSysDeliverSegMsg( cmAudioSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId );
/// Deliver a single message from the host to the DSP system.
// Deliver a single message from the host to the DSP system.
cmAsRC_t cmAudioSysDeliverMsg( cmAudioSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId );
/// Deliver a single message from the host to the DSP system.
/// Prior to delivery the 'id' is prepended to the message.
// Deliver a single message from the host to the DSP system.
// Prior to delivery the 'id' is prepended to the message.
cmAsRC_t cmAudioSysDeliverIdMsg( cmAudioSysH_t h, unsigned asSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId );
///@}
/// \name DSP to Host message functions
/// @{
/// Is a msg from the DSP waiting to be picked up by the host? (host <- DSP)
/// 0 = no msgs are waiting or the msg queue is locked by the DSP process.
/// >0 = the size of the buffer required to hold the next msg returned via
/// cmAudioSysReceiveMsg().
//
// DSP to Host message functions
//
// Is a msg from the DSP waiting to be picked up by the host? (host <- DSP)
// 0 = no msgs are waiting or the msg queue is locked by the DSP process.
// >0 = the size of the buffer required to hold the next msg returned via
// cmAudioSysReceiveMsg().
unsigned cmAudioSysIsMsgWaiting( cmAudioSysH_t h );
/// Copy the next available msg sent from the DSP process to the host into the host supplied msg buffer
/// pointed to by 'msgBufPtr'. Set 'msgDataPtr' to NULL to receive msg by callback from cmAudioSysCfg_t.clientCbFunc.
/// Returns kBufTooSmallAsRC if msgDataPtr[msgByteCnt] is too small to hold the msg.
/// Returns kNoMsgWaitingAsRC if no messages are waiting for delivery or the msg queue is locked by the DSP process.
/// Returns kOkAsRC if a msg was delivered.
/// Call cmAudioSysIsMsgWaiting() prior to calling this function to get
/// the size of the data buffer required to hold the next message.
// Copy the next available msg sent from the DSP process to the host into the host supplied msg buffer
// pointed to by 'msgBufPtr'. Set 'msgDataPtr' to NULL to receive msg by callback from cmAudioSysCfg_t.clientCbFunc.
// Returns kBufTooSmallAsRC if msgDataPtr[msgByteCnt] is too small to hold the msg.
// Returns kNoMsgWaitingAsRC if no messages are waiting for delivery or the msg queue is locked by the DSP process.
// Returns kOkAsRC if a msg was delivered.
// Call cmAudioSysIsMsgWaiting() prior to calling this function to get
// the size of the data buffer required to hold the next message.
cmAsRC_t cmAudioSysReceiveMsg( cmAudioSysH_t h, void* msgDataPtr, unsigned msgByteCnt );
/// @}
/// Fill an audio system status record.
// Fill an audio system status record.
void cmAudioSysStatus( cmAudioSysH_t h, unsigned asSubIdx, cmAudioSysStatus_t* statusPtr );
/// Enable cmAudioSysStatus_t notifications to be sent periodically to the host.
/// Set asSubIdx to cmInvalidIdx to enable/disable all sub-systems.
/// The notifications occur approximately every cmAudioSysCfg_t.meterMs milliseconds.
// Enable cmAudioSysStatus_t notifications to be sent periodically to the host.
// Set asSubIdx to cmInvalidIdx to enable/disable all sub-systems.
// The notifications occur approximately every cmAudioSysCfg_t.meterMs milliseconds.
void cmAudioSysStatusNotifyEnable( cmAudioSysH_t, unsigned asSubIdx, bool enableFl );
/// Return a pointer the context record associated with a sub-system
// Return a pointer the context record associated with a sub-system
cmAudioSysCtx_t* cmAudioSysContext( cmAudioSysH_t h, unsigned asSubIdx );
/// Return the count of audio sub-systems.
/// This is the same as the count of cfg recds passed to cmAudioSystemInitialize().
// Return the count of audio sub-systems.
// This is the same as the count of cfg recds passed to cmAudioSystemInitialize().
unsigned cmAudioSysSubSystemCount( cmAudioSysH_t h );
/// Audio system test and example function.
// Audio system test and example function.
void cmAudioSysTest( cmRpt_t* rpt, int argc, const char* argv[] );

View File

@ -181,20 +181,6 @@ extern "C" {
// char dstVarLabel[] - with kNetSyncSelAsId only
} cmDspNetMsg_t;
/*
typedef struct
{
unsigned asSubIdx;
unsigned selId; // kNetEvtSelAsId
unsigned dstId;
// The cmDspValue_t field must come last in the structure in
// order for the cmDsvSerialize() to work.
cmDspValue_t value; // Data value associated with this msg.
} cmDspNetEvt_t;
*/
enum
{
kOkMsgRC = cmOkRC,