cmProc5.h/c : Many changes and additions to cmPhat. (still needs IFFT update to be fully implemented)

This commit is contained in:
kevin 2015-07-16 19:01:10 -04:00
parent 7669faceba
commit 7fd6ee2cc0
2 changed files with 84 additions and 76 deletions

157
cmProc5.c
View File

@ -343,25 +343,26 @@ cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned
//======================================================================================================================= //=======================================================================================================================
cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags ) cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* ap, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
{ {
cmPhat_t* op = cmObjAlloc(cmPhat_t,ctx,p); cmPhat_t* p = cmObjAlloc(cmPhat_t,ctx,ap);
// The FFT buffer and the delay line is at least twice the size of the // The FFT buffer and the delay line is at least twice the size of the
// id signal. This will guarantee that at least one complete id signal // id signal. This will guarantee that at least one complete id signal
// is inside the buffer. In practice it means that it is possible // is inside the buffer. In practice it means that it is possible
// that there will be two id's in the buffer therefore if there are // that there will be two id's in the buffer therefore if there are
// two correlation spikes it is important that we take the second. // two correlation spikes it is important that we take the second.
p->fhN = cmNextPowerOfTwo(mult*hN); unsigned fhN = cmNextPowerOfTwo(mult*hN);
// allocate the FFT object // allocate the FFT object
cmFftAllocSR(ctx,&p->fft,NULL,p->fhN,kToPolarFftFl); cmFftAllocSR(ctx,&p->fft,NULL,fhN,kToPolarFftFl);
cmIFftAllocRS(ctx,&p->ifft,fhN/2 + 1 );
if( chN != 0 ) if( chN != 0 )
if( cmPhatInit(op,chN,hN,alpha,mult,flags) != cmOkRC ) if( cmPhatInit(p,chN,hN,alpha,mult,flags) != cmOkRC )
cmPhatFree(&op); cmPhatFree(&p);
return op; return p;
} }
@ -384,6 +385,7 @@ cmRC_t cmPhatFree( cmPhat_t** pp )
cmMemFree(p->mhM); cmMemFree(p->mhM);
cmMemFree(p->wndV); cmMemFree(p->wndV);
cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft); cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft);
cmObjFreeStatic(cmIFftFreeRS, cmIFftRS, p->ifft);
cmVectArrayFree(&p->ftVa); cmVectArrayFree(&p->ftVa);
cmObjFree(pp); cmObjFree(pp);
@ -403,6 +405,9 @@ cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsig
if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC ) if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC )
return rc; return rc;
if((cmFftInitRS(&p->ifft, NULL, p->fft->binCnt )) != cmOkRC )
return rc;
p->alpha = alpha; p->alpha = alpha;
p->flags = flags; p->flags = flags;
@ -463,18 +468,18 @@ cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned
// Zero pad hV[hN] to p->fhN; // Zero pad hV[hN] to p->fhN;
assert( hN <= p->fhN ); assert( hN <= p->fhN );
cmVOS_Zero(p->xV,p->fhN); cmVOS_Zero(p->xV,p->fhN);
cmVOS_Copy(p->xV,hV,hN); cmVOS_Copy(p->xV,hN,hV);
// Apply the window function to the id signal // Apply the window function to the id signal
if(atIsFlag(p->flags,kHannAtPhatFl) ) if(cmIsFlag(p->flags,kHannAtPhatFl) )
cmVOS_MultVVV(p->xV,hV,wndV,hN); cmVOS_MultVVV(p->xV,hN,hV,wndV);
// take FFT of id signal. The result is in fft->complexV and fft->magV,phsV // take FFT of id signal. The result is in fft->complexV and fft->magV,phsV
cmFftExecSR(p->fft, p->xV, p->fhN ); cmFftExecSR(&p->fft, p->xV, p->fhN );
// Store the magnitude of the id signal // Store the magnitude of the id signal
//atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN); //atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN);
cmVOR_Copy(p->mhM + (chIdx*p->binN), p->fft->magV, p->binN ); cmVOF_CopyR(p->mhM + (chIdx*p->binN), p->binN, p->fft.magV );
// Scale the magnitude // Scale the magnitude
cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha); cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha);
@ -482,22 +487,23 @@ cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned
// store the complex conjugate of the FFT result in yV[] // store the complex conjugate of the FFT result in yV[]
//atFftComplexConj(yV,p->binN); //atFftComplexConj(yV,p->binN);
for(i=0; i<p->binN; ++i) for(i=0; i<p->binN; ++i)
yV[i].i = -(p->fft->complexV[i].i); yV[i] = cmCconjR(p->fft.complexV[i]);
cmMemFree(wndV); cmMemFree(wndV);
return kOkAtRC; return cmOkRC;
} }
cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef ) cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef )
{ {
cmVectArray_t* vap = NULL; cmVectArray_t* vap = NULL;
cmSample_t* v = NULL; cmSample_t* v = NULL;
cmRC_t rc = cmOkRC;
// instantiate a VectArray from a file // instantiate a VectArray from a file
if( cmVectArrayAllocFromFile(ctx, &vap, fn ) != kOkAtRC ) if( (vap = cmVectArrayAllocFromFile(ctx, fn )) == NULL )
{ {
atErrMsg(&p->obj.err,kFileReadFailAtRC,"Id component vector file read failed '%s'.",fn); rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector file read failed '%s'.",fn);
goto errLabel; goto errLabel;
} }
@ -505,14 +511,14 @@ cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned
*vnRef = cmVectArrayEleCount(vap); *vnRef = cmVectArrayEleCount(vap);
// allocate memory to hold the vector // allocate memory to hold the vector
v = cmMemAlloc(&p->obj.err,cmSample_t,*vnRef); v = cmMemAlloc(cmSample_t,*vnRef);
// copy the vector from the vector array object into v[] // copy the vector from the vector array object into v[]
if( cmVectArrayGetF(vap,v,vnRef) != kOkAtRC ) if((rc = cmVectArrayGetF(vap,v,vnRef)) != cmOkRC )
{ {
cmMemFree(v); cmMemFree(v);
v = NULL; v = NULL;
atErrMsg(&p->obj.err,kFileReadFailAtRC,"Id component vector copy out failed '%s'.",fn); rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"Id component vector copy out failed '%s'.",fn);
goto errLabel; goto errLabel;
} }
@ -528,20 +534,20 @@ cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned
cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN ) cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN )
{ {
unsigned n = atMin(xN,p->fhN-p->di); unsigned n = cmMin(xN,p->fhN-p->di);
// update the delay line // update the delay line
cmVOS_Copy(p->dV+p->di,xV,n); cmVOS_Copy(p->dV+p->di,n,xV);
if( n < xN ) if( n < xN )
cmVOS_Copy(p->dV,xV+n,xN-n); cmVOS_Copy(p->dV,xN-n,xV+n);
p->di = atModIncr(p->di,xN,p->fhN); p->di = cmModIncr(p->di,xN,p->fhN);
// p->absIdx is the absolute sample index associated with di // p->absIdx is the absolute sample index associated with di
p->absIdx += xN; p->absIdx += xN;
return kOkAtRC; return cmOkRC;
} }
@ -556,20 +562,20 @@ void cmPhatChExec(
unsigned n1 = p->fhN - n0; unsigned n1 = p->fhN - n0;
// Linearize the delay line into xV[] // Linearize the delay line into xV[]
cmVOS_Copy(p->xV, p->dV + p->di, n0 ); cmVOS_Copy(p->xV, n0, p->dV + p->di );
cmVOS_Copy(p->xV+n0, p->dV, n1 ); cmVOS_Copy(p->xV+n0, n1, p->dV );
if( atIsFlag(p->flags,kDebugAtPhatFl)) if( cmIsFlag(p->flags,kDebugAtPhatFl))
cmVectArrayAppendS(p->ftVa, p->xV, p->fhN ); cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
// apply a window function to the incoming signal // apply a window function to the incoming signal
if( atIsFlag(p->flags,kHannAtPhatFl) ) if( cmIsFlag(p->flags,kHannAtPhatFl) )
cmVOS_MultVV(p->xV,p->fhN,p->wndV); cmVOS_MultVV(p->xV,p->fhN,p->wndV);
// Take the FFT of the delay line. // Take the FFT of the delay line.
// p->t0V[p->binN] = fft(p->xV) // p->t0V[p->binN] = fft(p->xV)
//atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN ); //atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN );
cmFftExecSR(p->fft, p->xV, p->fhN ); cmFftExecSR(&p->fft, p->xV, p->fhN );
// Calc. the Cross Power Spectrum (aka cross spectral density) of the // Calc. the Cross Power Spectrum (aka cross spectral density) of the
// input signal with the id signal. // input signal with the id signal.
@ -577,7 +583,7 @@ void cmPhatChExec(
// cross-correlation of the two signals. // cross-correlation of the two signals.
// t0V[] *= p->fhM[:,chIdx] // t0V[] *= p->fhM[:,chIdx]
//atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN ); //atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN );
cmVOCR_MultVVV( p->t0V, p->fft->complexV, p->fhM + (chIdx * p->fhN), p->binN) cmVOCR_MultVVV( p->t0V, p->fft.complexV, p->fhM + (chIdx * p->fhN), p->binN);
// Calculate the magnitude of the CPS. // Calculate the magnitude of the CPS.
// xV[] = | t0V[] | // xV[] = | t0V[] |
@ -588,7 +594,7 @@ void cmPhatChExec(
// id signal contains energy) // id signal contains energy)
// t0V[] *= p->mhM[:,chIdx] // t0V[] *= p->mhM[:,chIdx]
if( p->alpha > 0 ) if( p->alpha > 0 )
cmVOCR_MultR_VV( p->t0V, p->mhM + (chIdx*p->binN), p->binN); cmVOCR_MultVFV( p->t0V, p->mhM + (chIdx*p->binN), p->binN);
// Divide through by the magnitude of the CPS // Divide through by the magnitude of the CPS
// This has the effect of whitening the spectram and thereby // This has the effect of whitening the spectram and thereby
@ -596,11 +602,11 @@ void cmPhatChExec(
// while maximimizing the effect of the phase correlation. // while maximimizing the effect of the phase correlation.
// //
// t0V[] /= xV[] // t0V[] /= xV[]
cmVOCR_DivR_VV( p->t0V, p->xV, p->binN ); cmVOCR_DivVFV( p->t0V, p->xV, p->binN );
// Take the IFFT of the weighted CPS to recover the cross correlation. // Take the IFFT of the weighted CPS to recover the cross correlation.
// xV[] = IFFT(t0V[]) // xV[] = IFFT(t0V[])
cmIFftExecRS( p->ifft, );
//// ***** atFftRealInverse( p->fftH, p->t0V, p->xV, p->fhN ); //// ***** atFftRealInverse( p->fftH, p->t0V, p->xV, p->fhN );
@ -610,7 +616,7 @@ void cmPhatChExec(
// normalize by the length of the correlation // normalize by the length of the correlation
cmVOS_DivVS(p->xV,p->fhN,p->fhN); cmVOS_DivVS(p->xV,p->fhN,p->fhN);
if( atIsFlag(p->flags,kDebugAtPhatFl)) if( cmIsFlag(p->flags,kDebugAtPhatFl))
{ {
cmVectArrayAppendS(p->ftVa, p->xV, p->fhN ); cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
@ -622,28 +628,28 @@ void cmPhatChExec(
cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr ) cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr )
{ {
cmRC_t rc = kOkAtRC; cmRC_t rc = cmOkRC;
if( atIsFlag(p->flags, kDebugAtPhatFl)) if( cmIsFlag(p->flags, kDebugAtPhatFl))
{ {
char* path = NULL; const char* path = NULL;
if( p->ftVa != NULL ) if( p->ftVa != NULL )
if((rc = cmVectArrayWrite(p->ftVa, path = atMakePath(&p->obj.err,path,"cmPhatFT","va",dirStr,NULL) )) != kOkAtRC ) if((rc = cmVectArrayWrite(p->ftVa, path = cmFsMakeFn(path,"cmPhatFT","va",dirStr,NULL) )) != cmOkRC )
rc = atErrMsg(&p->obj.err,rc,"PHAT debug file write failed."); rc = cmCtxRtCondition(&p->obj,cmSubSysFailRC,"PHAT debug file write failed.");
cmMemFree(path); cmFsFreeFn(path);
} }
return rc; return rc;
} }
#ifdef NOTDEF
cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr ) cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
{ {
cmRC_t rc = kOkAtRC; cmRC_t rc = cmOkRC;
atSignalArg_t sa; cmGoldSigArg_t sa;
atSignal_t* s = NULL; cmGoldSig_t* s = NULL;
cmPhat_t* p = NULL; cmPhat_t* p = NULL;
char* path = NULL; char* path = NULL;
unsigned dspFrmCnt = 256; unsigned dspFrmCnt = 256;
@ -677,30 +683,30 @@ cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
sa.envMs = 50.0; sa.envMs = 50.0;
// allocate the the id signals // allocate the the id signals
if( atSignalAlloc( ctx, &s, &sa ) != kOkAtRC ) if( (s = cmGoldSigAlloc( ctx, NULL, &sa ) == NULL )
return atErrMsg(&ctx->err, kTestFailAtRC, "Signal allocate failed."); return cmErrMsg(&ctx->err, cmSubSysFailRC, "Signal allocate failed.");
// set the post signal listen delay to half the signal length // set the post signal listen delay to half the signal length
listenDelaySmp = s->sigN/2; listenDelaySmp = s->sigN/2;
// allocate a PHAT detector // allocate a PHAT detector
if( cmPhatAlloc(ctx,&p,sa.chN,s->sigN, phatAlpha, phatMult, kDebugAtPhatFl ) != kOkAtRC ) if( (p = cmPhatAlloc(ctx,NULL,sa.chN,s->sigN, phatAlpha, phatMult, kDebugAtPhatFl ) == NULL )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "PHAT allocate failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "PHAT allocate failed.");
goto errLabel; goto errLabel;
} }
// register an id signal with the PHAT detector // register an id signal with the PHAT detector
if( cmPhatSetId(p, chIdx, s->ch[chIdx].mdV, s->sigN ) != kOkAtRC ) if( cmPhatSetId(p, chIdx, s->ch[chIdx].mdV, s->sigN ) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "PHAT setId failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "PHAT setId failed.");
goto errLabel; goto errLabel;
} }
// generate an input test signal containing bsiN id signals // generate an input test signal containing bsiN id signals
if( atSignalGen(s,chIdx,p->fhN,s->sigN,bsiV,bsiN,noiseGain,&yV,&yN) != kOkAtRC ) if( atSignalGen(s,chIdx,p->fhN,s->sigN,bsiV,bsiN,noiseGain,&yV,&yN) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err,kTestFailAtRC,"Signal generation failed."); rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"Signal generation failed.");
goto errLabel; goto errLabel;
} }
@ -714,23 +720,23 @@ cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
atVOU_Zero(dsiV,bsiN); atVOU_Zero(dsiV,bsiN);
// allocate a vector array to record the PHAT input signals // allocate a vector array to record the PHAT input signals
if( cmVectArrayAlloc(ctx,&inVA,kSampleVaFl) != kOkAtRC ) if( cmVectArrayAlloc(ctx,&inVA,kSampleVaFl) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray inVA alloc failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray inVA alloc failed.");
goto errLabel; goto errLabel;
} }
// allocate a vector array to record the PHAT correlation output signals // allocate a vector array to record the PHAT correlation output signals
if( cmVectArrayAlloc(ctx,&outVA,kSampleVaFl) != kOkAtRC ) if( cmVectArrayAlloc(ctx,&outVA,kSampleVaFl) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray outVA alloc failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray outVA alloc failed.");
goto errLabel; goto errLabel;
} }
// allocate a vector array to record the PHAT status // allocate a vector array to record the PHAT status
if( cmVectArrayAlloc(ctx,&statusVA,kSampleVaFl) != kOkAtRC ) if( cmVectArrayAlloc(ctx,&statusVA,kSampleVaFl) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray statusVA alloc failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray statusVA alloc failed.");
goto errLabel; goto errLabel;
} }
@ -775,23 +781,23 @@ cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
} }
// write inVA // write inVA
if( cmVectArrayWrite(inVA,path = atMakePath(&ctx->err,path,"phatIn","va",dirStr,NULL)) != kOkAtRC ) if( cmVectArrayWrite(inVA,path = atMakePath(&ctx->err,path,"phatIn","va",dirStr,NULL)) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray outVA write failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray outVA write failed.");
goto errLabel; goto errLabel;
} }
// write outVA // write outVA
if( cmVectArrayWrite(outVA,path = atMakePath(&ctx->err,path,"phatOut","va",dirStr,NULL)) != kOkAtRC ) if( cmVectArrayWrite(outVA,path = atMakePath(&ctx->err,path,"phatOut","va",dirStr,NULL)) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray outVA write failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray outVA write failed.");
goto errLabel; goto errLabel;
} }
// write statusVA // write statusVA
if( cmVectArrayWrite(statusVA,path = atMakePath(&ctx->err,path,"phatStatus","va",dirStr,NULL)) != kOkAtRC ) if( cmVectArrayWrite(statusVA,path = atMakePath(&ctx->err,path,"phatStatus","va",dirStr,NULL)) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray statusVA write failed."); rc = cmErrMsg(&ctx->err, cmSubSysFailRC, "vectArray statusVA write failed.");
goto errLabel; goto errLabel;
} }
@ -799,18 +805,18 @@ cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
cmVectArrayFree(&outVA); cmVectArrayFree(&outVA);
cmVectArrayFree(&inVA); cmVectArrayFree(&inVA);
if( cmPhatFree(&p) != kOkAtRC ) if( cmPhatFree(&p) != cmOkRC )
atErrMsg(&ctx->err,kTestFailAtRC,"PHAT free failed."); cmErrMsg(&ctx->err,cmSubSysFailRC,"PHAT free failed.");
if( atSignalFree(&s) != kOkAtRC ) if( atSignalFree(&s) != cmOkRC )
atErrMsg(&ctx->err,kTestFailAtRC,"Signal free failed."); cmErrMsg(&ctx->err,cmSubSysFailRC,"Signal free failed.");
return rc; return rc;
} }
cmRC_t cmPhatTest2( cmCtx* ctx ) cmRC_t cmPhatTest2( cmCtx* ctx )
{ {
cmRC_t rc = kOkAtRC; cmRC_t rc = cmOkRC;
cmPhat_t* p = NULL; cmPhat_t* p = NULL;
unsigned hN = 16; unsigned hN = 16;
float alpha = 1.0; float alpha = 1.0;
@ -826,24 +832,24 @@ cmRC_t cmPhatTest2( cmCtx* ctx )
unsigned chN = sizeof(xV)/sizeof(xV[0]); unsigned chN = sizeof(xV)/sizeof(xV[0]);
unsigned i; unsigned i;
if(cmPhatAlloc(ctx,&p,chN,hN,alpha,mult,kNoFlagsAtPhatFl) != kOkAtRC ) if(cmPhatAlloc(ctx,&p,chN,hN,alpha,mult,kNoFlagsAtPhatFl) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err,kTestFailAtRC,"cmPhatAlloc() failed."); rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"cmPhatAlloc() failed.");
goto errLabel; goto errLabel;
} }
for(i=0; i<chN; ++i) for(i=0; i<chN; ++i)
if( cmPhatSetId(p,i,hV,hN) != kOkAtRC ) if( cmPhatSetId(p,i,hV,hN) != cmOkRC )
rc = atErrMsg(&ctx->err,kTestFailAtRC,"cmPhatSetId() failed."); rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"cmPhatSetId() failed.");
for(i=0; i<chN; ++i) for(i=0; i<chN; ++i)
{ {
cmPhatReset(p); cmPhatReset(p);
if( cmPhatExec(p,xV[i],hN) != kOkAtRC ) if( cmPhatExec(p,xV[i],hN) != cmOkRC )
{ {
rc = atErrMsg(&ctx->err,kTestFailAtRC,"cmPhatExec() failed."); rc = cmErrMsg(&ctx->err,cmSubSysFailRC,"cmPhatExec() failed.");
goto errLabel; goto errLabel;
} }
@ -859,3 +865,4 @@ cmRC_t cmPhatTest2( cmCtx* ctx )
return rc; return rc;
} }
#endif

View File

@ -125,6 +125,7 @@ extern "C" {
{ {
cmObj obj; cmObj obj;
cmFftSR fft; cmFftSR fft;
cmIFftRS ifft;
float alpha; float alpha;
unsigned flags; unsigned flags;
@ -159,7 +160,7 @@ extern "C" {
// id signal contains energy. // id signal contains energy.
// 'mult' * 'hN' is the correlation length (fhN) // 'mult' * 'hN' is the correlation length (fhN)
// 'flags' See kDebugAtPhatFl and kWndAtPhatFl. // 'flags' See kDebugAtPhatFl and kWndAtPhatFl.
cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* pp, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags ); cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags );
cmRC_t cmPhatFree( cmPhat_t** pp ); cmRC_t cmPhatFree( cmPhat_t** pp );
cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags ); cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags );