cmProc5.h/c : Added cmPhat. Does not yet compile.

This commit is contained in:
kevin 2015-07-03 18:22:52 -04:00
parent f481f7f62a
commit 384dc72cc1
2 changed files with 601 additions and 0 deletions

516
cmProc5.c
View File

@ -342,4 +342,520 @@ cmRC_t cmGoldSigGen( cmGoldSig_t* p, unsigned chIdx, unsigned prefixN, unsigned
} }
//=======================================================================================================================
cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
{
cmPhat_t* op = cmObjAlloc(cmPhat_t,ctx,p);
// The FFT buffer and the delay line is at least twice the size of the
// id signal. This will guarantee that at least one complete id signal
// is inside the buffer. In practice it means that it is possible
// that there will be two id's in the buffer therefore if there are
// two correlation spikes it is important that we take the second.
p->fhN = cmNextPowerOfTwo(mult*hN);
// allocate the FFT object
cmFftAllocSR(ctx,&p->fft,NULL,p->fhN,kToPolarFftFl);
if( chN != 0 )
if( cmPhatInit(op,chN,hN,alpha,mult,flags) != cmOkRC )
cmPhatFree(&op);
return op;
}
cmRC_t cmPhatFree( cmPhat_t** pp )
{
cmRC_t rc = cmOkRC;
if( pp == NULL || *pp == NULL )
return rc;
cmPhat_t* p = *pp;
if((rc = cmPhatFinal(p)) != cmOkRC )
return rc;
cmMemFree(p->t0V);
cmMemFree(p->t1V);
cmMemFree(p->dV);
cmMemFree(p->xV);
cmMemFree(p->fhM);
cmMemFree(p->mhM);
cmMemFree(p->wndV);
cmObjFreeStatic(cmFftFreeSR, cmFftSR, p->fft);
cmVectArrayFree(&p->ftVa);
cmObjFree(pp);
return rc;
}
cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags )
{
cmRC_t rc = cmOkRC;
if((rc = cmPhatFinal(cmOkRC)) != cmOkRC )
return rc;
p->fhN = cmNextPowerOfTwo(mult*hN);
if((cmFftInitSR(&p->fft, NULL, p->fhN, kToPolarFftFl)) != cmOkRC )
return rc;
p->alpha = alpha;
p->flags = flags;
// allocate the delay line
p->dV = cmMemResizeZ(cmSample_t,p->dV,p->fhN);
p->di = 0;
// allocate the linear buffer
p->xV = cmMemResizeZ(cmSample_t,p->xV,p->fhN);
p->t0V = cmMemResizeZ(cmComplexR_t,p->t0V,p->fhN);
p->t1V = cmMemResizeZ(cmComplexR_t,p->t1V,p->fhN);
// allocate the window function
p->wndV = cmMemResizeZ(cmSample_t,p->wndV,p->fhN);
cmVOS_Hann(p->wndV,p->fhN);
// allocate the signal id matrix
p->chN = chN;
p->hN = hN;
p->binN = p->fft.binCnt; //atFftRealBinCount(p->fftH);
p->fhM = cmMemResizeZ(cmComplexR_t, p->fhM, p->fhN * chN);
p->mhM = cmMemResizeZ(float, p->mhM, p->binN * chN);
cmPhatReset(p);
//if( cmIsFlag(p->flags,kDebugAtPhatFl))
// cmVectArrayAlloc(ctx, &p->ftVa, kSampleVaFl );
//else
// p->ftVa = NULL;
return rc;
}
cmRC_t cmPhatFinal( cmPhat_t* p )
{ return cmOkRC; }
cmRC_t cmPhatReset( cmPhat_t* p )
{
p->di = 0;
p->absIdx = 0;
cmVOS_Zero(p->dV,p->fhN);
return cmOkRC;
}
cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned hN )
{
unsigned i;
assert( chIdx < p->chN );
assert( hN == p->hN );
// Allocate a window vector
cmSample_t* wndV = cmMemAllocZ(cmSample_t,hN);
cmVOS_Hann(wndV,hN);
// get ptr to output column in p->fhM[].
cmComplexR_t* yV = p->fhM + (chIdx*p->fhN);
// Zero pad hV[hN] to p->fhN;
assert( hN <= p->fhN );
cmVOS_Zero(p->xV,p->fhN);
cmVOS_Copy(p->xV,hV,hN);
// Apply the window function to the id signal
if(atIsFlag(p->flags,kHannAtPhatFl) )
cmVOS_MultVVV(p->xV,hV,wndV,hN);
// take FFT of id signal. The result is in fft->complexV and fft->magV,phsV
cmFftExecSR(p->fft, p->xV, p->fhN );
// Store the magnitude of the id signal
//atFftComplexAbs(p->mhM + (chIdx*p->binN), yV, p->binN);
cmVOR_Copy(p->mhM + (chIdx*p->binN), p->fft->magV, p->binN );
// Scale the magnitude
cmVOS_MultVS( p->mhM + (chIdx*p->binN), p->binN, p->alpha);
// store the complex conjugate of the FFT result in yV[]
//atFftComplexConj(yV,p->binN);
for(i=0; i<p->binN; ++i)
yV[i].i = -(p->fft->complexV[i].i);
cmMemFree(wndV);
return kOkAtRC;
}
cmSample_t* _cmPhatReadVector( cmCtx* ctx, cmPhat_t* p, const char* fn, unsigned* vnRef )
{
cmVectArray_t* vap = NULL;
cmSample_t* v = NULL;
// instantiate a VectArray from a file
if( cmVectArrayAllocFromFile(ctx, &vap, fn ) != kOkAtRC )
{
atErrMsg(&p->obj.err,kFileReadFailAtRC,"Id component vector file read failed '%s'.",fn);
goto errLabel;
}
// get the count of elements in the vector
*vnRef = cmVectArrayEleCount(vap);
// allocate memory to hold the vector
v = cmMemAlloc(&p->obj.err,cmSample_t,*vnRef);
// copy the vector from the vector array object into v[]
if( cmVectArrayGetF(vap,v,vnRef) != kOkAtRC )
{
cmMemFree(v);
v = NULL;
atErrMsg(&p->obj.err,kFileReadFailAtRC,"Id component vector copy out failed '%s'.",fn);
goto errLabel;
}
cmRptPrintf(p->obj.err.rpt,"%i : %s",*vnRef,fn);
errLabel:
cmVectArrayFree(&vap);
return v;
}
cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN )
{
unsigned n = atMin(xN,p->fhN-p->di);
// update the delay line
cmVOS_Copy(p->dV+p->di,xV,n);
if( n < xN )
cmVOS_Copy(p->dV,xV+n,xN-n);
p->di = atModIncr(p->di,xN,p->fhN);
// p->absIdx is the absolute sample index associated with di
p->absIdx += xN;
return kOkAtRC;
}
void cmPhatChExec(
cmPhat_t* p,
unsigned chIdx,
unsigned sessionId,
unsigned roleId)
{
unsigned n0 = p->fhN - p->di;
unsigned n1 = p->fhN - n0;
// Linearize the delay line into xV[]
cmVOS_Copy(p->xV, p->dV + p->di, n0 );
cmVOS_Copy(p->xV+n0, p->dV, n1 );
if( atIsFlag(p->flags,kDebugAtPhatFl))
cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
// apply a window function to the incoming signal
if( atIsFlag(p->flags,kHannAtPhatFl) )
cmVOS_MultVV(p->xV,p->fhN,p->wndV);
// Take the FFT of the delay line.
// p->t0V[p->binN] = fft(p->xV)
//atFftRealForward(p->fftH, p->xV, p->fhN, p->t0V, p->binN );
cmFftExecSR(p->fft, p->xV, p->fhN );
// Calc. the Cross Power Spectrum (aka cross spectral density) of the
// input signal with the id signal.
// Note that the CPS is equivalent to the Fourier Transform of the
// cross-correlation of the two signals.
// t0V[] *= p->fhM[:,chIdx]
//atFftComplexMult( p->t0V, p->fhM + (chIdx * p->fhN), p->binN );
cmVOCR_MultVVV( p->t0V, p->fft->complexV, p->fhM + (chIdx * p->fhN), p->binN)
// Calculate the magnitude of the CPS.
// xV[] = | t0V[] |
cmVOCR_Abs( p->xV, p->t0V, p->binN );
// Weight the CPS by the scaled magnitude of the id signal
// (we want to emphasize the limited frequencies where the
// id signal contains energy)
// t0V[] *= p->mhM[:,chIdx]
if( p->alpha > 0 )
cmVOCR_MultR_VV( p->t0V, p->mhM + (chIdx*p->binN), p->binN);
// Divide through by the magnitude of the CPS
// This has the effect of whitening the spectram and thereby
// minimizing the effect of the magnitude correlation
// while maximimizing the effect of the phase correlation.
//
// t0V[] /= xV[]
cmVOCR_DivR_VV( p->t0V, p->xV, p->binN );
// Take the IFFT of the weighted CPS to recover the cross correlation.
// xV[] = IFFT(t0V[])
//// ***** atFftRealInverse( p->fftH, p->t0V, p->xV, p->fhN );
// Shift the correlation spike to mark the end of the id
cmVOS_Rotate( p->xV, p->fhN, -((int)p->hN) );
// normalize by the length of the correlation
cmVOS_DivVS(p->xV,p->fhN,p->fhN);
if( atIsFlag(p->flags,kDebugAtPhatFl))
{
cmVectArrayAppendS(p->ftVa, p->xV, p->fhN );
cmSample_t v[] = { sessionId, roleId };
cmVectArrayAppendS(p->ftVa, v, sizeof(v)/sizeof(v[0]));
}
}
cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr )
{
cmRC_t rc = kOkAtRC;
if( atIsFlag(p->flags, kDebugAtPhatFl))
{
char* path = NULL;
if( p->ftVa != NULL )
if((rc = cmVectArrayWrite(p->ftVa, path = atMakePath(&p->obj.err,path,"cmPhatFT","va",dirStr,NULL) )) != kOkAtRC )
rc = atErrMsg(&p->obj.err,rc,"PHAT debug file write failed.");
cmMemFree(path);
}
return rc;
}
cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirStr )
{
cmRC_t rc = kOkAtRC;
atSignalArg_t sa;
atSignal_t* s = NULL;
cmPhat_t* p = NULL;
char* path = NULL;
unsigned dspFrmCnt = 256;
unsigned listenDelaySmp = 8196;
double noiseGain = 0.05;
unsigned chIdx = 0;
cmSample_t* yV = NULL;
unsigned yN = 0;
double phatAlpha = 0.5;
unsigned phatMult = 4.0;
double nonLinExpo = 4.0;
cmVectArray_t* outVA = NULL;
cmVectArray_t* inVA = NULL;
cmVectArray_t* statusVA = NULL;
unsigned bsiN = 4;
unsigned bsiV[bsiN]; // known signal onset in absolute samples
unsigned esiV[bsiN]; // known signal offset
unsigned lsiV[bsiN]; // end of listen time (when cmPhatChExec()) is run.
unsigned dsiV[bsiN]; // detection time
unsigned i,j;
sa.chN = 1;
sa.srate = 44100.0;
sa.lfsrN = 8;
sa.mlsCoeff0 = 0x8e;
sa.mlsCoeff1 = 0x96;
sa.samplesPerChip = 64;
sa.rcosBeta = 0.5;
sa.rcosOSFact = 4;
sa.carrierHz = 17000.0;
sa.envMs = 50.0;
// allocate the the id signals
if( atSignalAlloc( ctx, &s, &sa ) != kOkAtRC )
return atErrMsg(&ctx->err, kTestFailAtRC, "Signal allocate failed.");
// set the post signal listen delay to half the signal length
listenDelaySmp = s->sigN/2;
// allocate a PHAT detector
if( cmPhatAlloc(ctx,&p,sa.chN,s->sigN, phatAlpha, phatMult, kDebugAtPhatFl ) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "PHAT allocate failed.");
goto errLabel;
}
// register an id signal with the PHAT detector
if( cmPhatSetId(p, chIdx, s->ch[chIdx].mdV, s->sigN ) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "PHAT setId failed.");
goto errLabel;
}
// generate an input test signal containing bsiN id signals
if( atSignalGen(s,chIdx,p->fhN,s->sigN,bsiV,bsiN,noiseGain,&yV,&yN) != kOkAtRC )
{
rc = atErrMsg(&ctx->err,kTestFailAtRC,"Signal generation failed.");
goto errLabel;
}
// bsiV[] now holds signal onsets. Set esiV[] to signal offsets.
atVOU_AddVVS(esiV,bsiV,bsiN,s->sigN );
// set lsiV[] to end-of-listen location
atVOU_AddVVS(lsiV,esiV,bsiN,listenDelaySmp);
// zero the detection vector
atVOU_Zero(dsiV,bsiN);
// allocate a vector array to record the PHAT input signals
if( cmVectArrayAlloc(ctx,&inVA,kSampleVaFl) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray inVA alloc failed.");
goto errLabel;
}
// allocate a vector array to record the PHAT correlation output signals
if( cmVectArrayAlloc(ctx,&outVA,kSampleVaFl) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray outVA alloc failed.");
goto errLabel;
}
// allocate a vector array to record the PHAT status
if( cmVectArrayAlloc(ctx,&statusVA,kSampleVaFl) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray statusVA alloc failed.");
goto errLabel;
}
// for each 'dspFrmCnt' samples in the input signal
for(i=0,j=0; j<bsiN && i<=yN-dspFrmCnt; i+=dspFrmCnt)
{
// store a copy of the input signal
cmVectArrayAppendS(inVA,yV+i,dspFrmCnt);
// feed the next dspFrmCnt samples to the PHAT detector
cmPhatExec(p,yV+i,dspFrmCnt);
// if the approximate end of an id signal is encountered
if( lsiV[j] <= i && i < lsiV[j] + dspFrmCnt )
{
// execute the PHAT correlator
cmPhatChExec( p, chIdx, -1, -1 );
// apply non-linear exponent to the correlation vector
cmVOS_PowV(p->xV,p->fhN,nonLinExpo);
// locate the corr. peak inside the listening window
// (the detection window is last 'detectWndSmp' samples in the corr. vector )
unsigned detectWndSmp = 2*listenDelaySmp;
dsiV[j] = cmVOS_ArgMax( p->xV + p->fhN - detectWndSmp, detectWndSmp);
// convert the pk index to absolute time
dsiV[j] = i + dspFrmCnt - detectWndSmp + dsiV[j];
// sig beg sig end detect begin dtct end detect
cmSample_t v[] = { bsiV[j], esiV[j], lsiV[j]-detectWndSmp, lsiV[j], dsiV[j] };
// store the detection information
cmVectArrayAppendS(statusVA,v,sizeof(v)/sizeof(v[0]));
// store the correlation output vector
cmVectArrayAppendS(outVA,p->xV,p->fhN);
j += 1;
}
}
// write inVA
if( cmVectArrayWrite(inVA,path = atMakePath(&ctx->err,path,"phatIn","va",dirStr,NULL)) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray outVA write failed.");
goto errLabel;
}
// write outVA
if( cmVectArrayWrite(outVA,path = atMakePath(&ctx->err,path,"phatOut","va",dirStr,NULL)) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray outVA write failed.");
goto errLabel;
}
// write statusVA
if( cmVectArrayWrite(statusVA,path = atMakePath(&ctx->err,path,"phatStatus","va",dirStr,NULL)) != kOkAtRC )
{
rc = atErrMsg(&ctx->err, kTestFailAtRC, "vectArray statusVA write failed.");
goto errLabel;
}
errLabel:
cmVectArrayFree(&outVA);
cmVectArrayFree(&inVA);
if( cmPhatFree(&p) != kOkAtRC )
atErrMsg(&ctx->err,kTestFailAtRC,"PHAT free failed.");
if( atSignalFree(&s) != kOkAtRC )
atErrMsg(&ctx->err,kTestFailAtRC,"Signal free failed.");
return rc;
}
cmRC_t cmPhatTest2( cmCtx* ctx )
{
cmRC_t rc = kOkAtRC;
cmPhat_t* p = NULL;
unsigned hN = 16;
float alpha = 1.0;
unsigned mult = 4;
cmSample_t hV[] = { 4,3,2,1, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
cmSample_t x0V[] = { 4,3,2,1, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
cmSample_t x1V[] = { 0,0,0,0, 4,3,2,1, 0,0,0,0, 0,0,0,0 };
cmSample_t x2V[] = { 0,0,0,0, 0,0,0,0, 4,3,2,1, 0,0,0,0 };
cmSample_t x3V[] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 4,3,2,1 };
cmSample_t* xV[] = { x0V, x1V, x2V, x3V };
unsigned chN = sizeof(xV)/sizeof(xV[0]);
unsigned i;
if(cmPhatAlloc(ctx,&p,chN,hN,alpha,mult,kNoFlagsAtPhatFl) != kOkAtRC )
{
rc = atErrMsg(&ctx->err,kTestFailAtRC,"cmPhatAlloc() failed.");
goto errLabel;
}
for(i=0; i<chN; ++i)
if( cmPhatSetId(p,i,hV,hN) != kOkAtRC )
rc = atErrMsg(&ctx->err,kTestFailAtRC,"cmPhatSetId() failed.");
for(i=0; i<chN; ++i)
{
cmPhatReset(p);
if( cmPhatExec(p,xV[i],hN) != kOkAtRC )
{
rc = atErrMsg(&ctx->err,kTestFailAtRC,"cmPhatExec() failed.");
goto errLabel;
}
cmPhatChExec(p, i, -1, -1);
cmVOS_PrintL(&ctx->printRpt,"x:",p->xV,1,p->fhN);
}
errLabel:
cmPhatFree(&p);
return rc;
}

View File

@ -109,6 +109,91 @@ extern "C" {
cmRC_t cmGoldSigTest( cmCtx* ctx ); cmRC_t cmGoldSigTest( cmCtx* ctx );
//=======================================================================================================================
// Phase aligned transform generalized cross correlator
//
// Flags for use with the 'flags' argument to cmPhatAlloc()
enum
{
kNoFlagsAtPhatFl= 0x00,
kDebugAtPhatFl = 0x01, // generate debugging file
kHannAtPhatFl = 0x02 // apply a hann window function to the id/audio signals prior to correlation.
};
typedef struct
{
cmObj obj;
cmFftSR fft;
float alpha;
unsigned flags;
cmComplexR_t* fhM; // fhM[fhN,chN] FT of each id signal stored in complex form
float* mhM; // mhM[binN,chN] magnitude of each fhM column
unsigned chN; // count of id signals
unsigned fhN; // length of each FT id signal (fft->xN)
unsigned binN; // length of each mhM column (fft->xN/2);
unsigned hN; // length of each time domain id signal (hN<=fhN/2)
unsigned absIdx; // abs. sample index of p->di
cmSample_t* dV; // dV[fhN] delay line
unsigned di; // next input into delay line
cmSample_t* xV; // xV[fhN] linear delay buffer
cmComplexR_t* t0V; // t0V[fhN]
cmComplexR_t* t1V; // t1V[fhN]
cmSample_t* wndV;
cmVectArray_t* ftVa;
} cmPhat_t;
// Allocate a PHAT based multi-channel correlator.
// 'chN' is the maximum count of id signals to be set via cmPhatSetId().
// 'hN' is the the length of the id signal in samples.
// 'alpha' weight used to emphasize the frequencies where the
// id signal contains energy.
// 'mult' * 'hN' is the correlation length (fhN)
// 'flags' See kDebugAtPhatFl and kWndAtPhatFl.
cmPhat_t* cmPhatAlloc( cmCtx* ctx, cmPhat_t* pp, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags );
cmRC_t cmPhatFree( cmPhat_t** pp );
cmRC_t cmPhatInit( cmPhat_t* p, unsigned chN, unsigned hN, float alpha, unsigned mult, unsigned flags );
cmRC_t cmPhatFinal( cmPhat_t* p );
// Zero the audio delay line and reset the current input sample (di)
// and absolute time index (absIdx) to 0.
cmRC_t cmPhatReset( cmPhat_t* p );
// Register an id signal with the correlator.
cmRC_t cmPhatSetId( cmPhat_t* p, unsigned chIdx, const cmSample_t* hV, unsigned hN );
// Update the correlators internal delay buffer.
cmRC_t cmPhatExec( cmPhat_t* p, const cmSample_t* xV, unsigned xN );
// Set p->xV[0:fhN-1] to the correlation function based on
// correlation between the current audio delay line d[] and
// the id signal in fhM[:,chIdx].
// 'sessionId' and 'roleId' are only used to label the
// data stored in the debug file and may be set to any
// arbitrary value if the debug files are not being generated.
void cmPhatChExec(
cmPhat_t* p,
unsigned chIdx,
unsigned sessionId,
unsigned roleId);
cmRC_t cmPhatWrite( cmPhat_t* p, const char* dirStr );
cmRC_t cmPhatTest1( cmCtx* ctx, const char* dirFn );
cmRC_t cmPhatTest2( cmCtx* ctx );
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif